METHOD DEVELOPMENT OF THE INFORMATION MODELS' DESIGN AND SYNTHESIS FOR INFOCOMMUNICATION SYSTEMS OF AIR TRAFFIC CONTROL
Main Article Content
Abstract
The present article describes research of information models' design and synthesis as a necessary component of the information provision system for decision-makers in infocommunication air traffic control systems. It gives analysis of possible information models' construction and suggests linear or hierarchical structure for relatively simple situations. We use combined information model that permits to take into account possible changes in any situation, which lead to a significant increase of displayed information. The present study shows interrelations that give an opportunity to evaluate the characteristics of information models at the stage of their ergonomic design and to determine the number of information elements in a single displayed program, considering the minimization of search time of the specified element. It suggests possible variants of common use for different ways of information display of an individual as well as group and collective usage.
Article Details
References
Nolan M.S. (2010), Fundamentals of air traffic control, MA : Cengage Learning, Boston 672 р.
Card, S.K. (2018), The psychology of human-computer interaction, FL : CRC Press, Boca Raton, 513 р.
Mattsson, S. (2018), Towards increasing operator wellbeing and performance in complex assembly, Chalmers University of Technology, Göteborg, 64 р.
Isaac, A.R. and Ruitenberg, B. (2017), Air traffic control: human performance factors, Routledge, London, 365 р.
Szalma, J.L. (2014), “On the application of motivation theory to human factors/ergonomics: Motivational design principles for human-technology interaction”, Human Factors, Vol. 56, No. 8, pp. 1453–1471.
Reason, J. (2016), Managing the risks of organizational accidents, Routledge, London, 252 р.
Dehais, F., Causse, M. and Tremblay, S. (2011), “Mitigation of conflicts with automation: use of cognitive countermeasures”, Human Factors, Vol. 53, No. 5, pp. 448–460.
Bich, W., Cox, M.G. and Harris, P.M. (2006), “Evolution of the ‘Guide to the Expression of Uncertainty in Measurement”, Metrologia, Vol. 43, No. 4, pp. 161–166.
Insaurralde, C.C. and Blasch, E. (2016), “Ontological knowledge representation for avionics decision-making support”, IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, 25-29 Sept. 2016, IEEE, pp. 1–8.
Berdnik, P.G. (2016), Matematicheskie osnovy ergonomicheskih issledovanij, KLA NAU, Kropyvnetskyi, 248 р.
Polonskij, Y.І., Borozenec, І.O., Shilo, S.G. and Litvinenko, M.І. (2016), “Formalіzovanij opis procesu vіdboru іnformacіjnih oznak dlya formuvannya modelі povіtryanoї obstanovki”, Zbіrnik naukovih prac' Harkіvs'kogo unіversitetu Povіtryanih Sil, Kharkіv, Vol. 2, No. 48, pp. 115–117.
Shilo, S.G., Dmitrіev O.M. and Novіkova І.V. (2018), “Metod formalіzacії znan' pro situacіjnij analіz obstanovki dlya sistemi pіdtrimki prijnyattya rіshen' avtomatizovanoї sistemi upravlіnnya povіtryanim ruhom”, Suchasnі іnformacіjnі tekhnologії u sferі bezpeki ta oboroni, Kyiv, Vol. 3, No. 33, pp. 93–98.
Dehais, F., Causse, M., Vachon, F. and Tremblay S. (2012), “Cognitive conflict in human-automation interactions: a psychophysiological study”, Applied ergonomic, Vol. 43, No. 3, pp. 588–595.
Salvendym G. (2012), Handbook of human factors and ergonomics, Hoboken, NJ : John Wiley & Sons, 1752 р.
Pizziol, S., Tessier, C. and Dehais, F. (2014), “Petri net-based modelling of human-automation conflicts in aviation”, Ergonomics, Vol. 57, No. 3, pp. 319–331.
Diez, M., Boehm-Davis, D.A., Holt, R.W., Pinney, M.E., Hansberger, J.T. and Schoppek, W. (2001), “Tracking pilot interactions with flight management systems through eye movements”, Proceedings of the 11th International Symposium on Aviation Psychology, Columbus, OH : The Ohio State University, Vol. 6, pp. 1–5.
Kuchuk, G., Kovalenko, A., Komari, I.E., Svyrydov, A. and Kharchenko, V. (2019), “Improving big data centers energy efficiency: Traffic based model and method”, Studies in Systems, Decision and Control”, vol. 171, Springer Nature Switzerland AG, pp. 161-183, DOI: http://doi.org/10.1007/978-3-030-00253-4_8
Svyrydov, A., Kuchuk, H., Tsiapa, O. (2018), “Improving efficienty of image recognition process: Approach and case study”, Proceedings of 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies, DESSERT 2018, pp. 593-597, DOI: http://dx.doi.org/10.1109/DESSERT.2018.8409201
Donets, V., Kuchuk, N. and Shmatkov, S. (2018), “Development of software of e-learning information system synthesis modeling process”, Advanced Information Systems, Vol. 2, No 2, pp. 117–121, DOI: https://doi.org/10.20998/2522-9052.2018.2.20
Merlac, V., Smatkov, S., Kuchuk, N. and Nechausov A. (2018), “Resourses Distribution Method of University e-learning on the Hypercovergent platform”, Сonf. Proc. of 2018 IEEE 9th International Conference on Dependable Systems, Service and Technologies. DESSERT’2018, Ukraine, Kyiv, May 24-27, pp. 136-140, – DOI:
http://dx.doi.org/ 10.1109/DESSERT.2018.8409114
Sarter, N.B., Mumaw, R.J. and Wickens, C.D. (2007), “Pilots monitoring strategies and performance on automated flight decks: An empirical study combining behavioral and eye-tracking data”, Human Factors, Vol. 49, No. 3, pp. 347–357.
Rushby, J. (2012), “Using model checking to help discover mode confusions and other automation surprises”, Reliability Engineering & System Safety, Vol. 75, No. 2, pp. 167–177.