Distillation process optimization using continuous mobile control actions by redistributing the feed flow
Main Article Content
Abstract
Object. Systems of the distillation processes automatic control, that provide extreme quality indicators of the column functioning using mobile control actions and a nonlinear predictive simulation. Subject. A method for optimizing the distillation process using continuous mobile control actions in the feed flow redistribution between the apparatus’ contact devices. Aim. The method development for computation of optimal control actions on the process of multicomponent distillation, including continuous mobile actions, that provide optimal operating modes for columns according to criteria for productivity maximization and energy costs minimization. Results. The static simulation allowed computing the concentration profiles of the column for the separation of the methyl tert-butyl ether synthesis products (MTBE) and it was proved that the feed flow redistribution between two contact devices can significantly affect the apparatus’ static characteristics, meanwhile the quality of the target product is extremely dependent on the redistribution coefficient. The choice of the feed tray is justified considering the criterial losses on the contact devices of the column. The problem of the multicomponent distillation process optimizing for a normalized criterion, which simultaneously includes the process productivity and the energy consumption for its conduct, is solved. The selected criterion extremely depends on the magnitude of the continuous control action, that determines the existence and uniqueness of the optimization problem solution. Conclusions. It is proved that the continuous mobile actions allow providing many modes of operation of the column, unattainable in the class of traditional and discrete, and to improve the technical and economic performance of the process compared with cases of full feed supply to any of the trays. The research’s results can be used in solving problems of designing and optimizing the operation modes of distillation apparatuses, for making automatic control systems for distillation processes.
Article Details
References
Górak, A. and Sorensen, E. (2014), Distillation: Fundamentals and Principles, Academic Press, 450 p., DOI: http://dx.doi.org/10.1016/C2010-0-66923-9
Tovazhnjanskij, L.L., Gotlinskaja, A.P., Leshhenko, V.A., Nechiporenko, I.A. and Chernyshov, I.S. (2005), Processy i appa-raty himicheskoj tehnologii [Processes and apparatus of chemical technology], NTU „KhPI”, Kharkiv, 532 p.
Werle, L.O., Marangoni, C., Teleken, J.G., Sayer, C. and Machado R.F. (2009), “Control Strategy with Distributed Action for Minimization of Transients in Distillation Column”, Computer Aided Chemical Engineering, 27, pp. 1527-1532, DOI: http://dx.doi.org/10.1016/s1570-7946(09)70645-5
Butkovskij, A.G. and Pustyl'nikov, L.M. (1980), Teorija podvizhnogo upravlenija sistemami s raspredelennymi parametrami [Theory of mobile control of the systems with distributed parameters], Nauka, Moscow, 384 p.
Kubyshkin, V.A. (2011), “Mobile control of vibrations in systems with distributed parameters”, Automation and Remote Con-trol, 72 (10), pp. 2112-2122, DOI: http://dx.doi.org/10.1134/S0005117911100109
Demidenko, N.D. and Kulagina, L.V. (2018), “Distributed control for systems with distributed parametres”, J. Sib. Fed. Univ. Eng. technol, 11 (2), pp. 221-228, DOI: http://dx.doi.org/10.17516/1999-494X-0025
Chien, I.-L., Lee, H.-Y., Gau, T.-K. and Huang, H.-P. (2006), “Importance of the selection of feed tray location on the optimum design of a heterogeneous azeotropic distillation column with p-xylene feed impurity”, Computer Aided Chemical Engineering, pp. 997-1002, DOI: http://dx.doi.org/10.1016/s1570-7946(06)80176-8
Cheng, Y.-C. and Yu, C.-C. (2005), “Effects of feed tray locations to the design of reactive distillation and its implication to control”, Chemical Engineering Science, 60(17), pp. 4661-4677, DOI: http://dx.doi.org/10.1016/j.ces.2005.03.033
Bіlobrova, O.V., Sheikus, A.R. and Korsun, V.І. (2013), “Sposib keruvannja procesom rektyfikacii'” [The method of control of the distillation process], Ukrainian patent 88190, No. u201308262, No. 5, 4 p.
Marushkin, B.K. (1968), “Dvuhpotochnyj vvod syr'ja v rektifikacionnuju kolonnu” [Two-stream input of feed into the distillation column], Neftepererabotka i neftehimija, pp. 16-21.
Levchuk, I.L., Sheikus, A.R. and Trishkin, V.Ja. (2015), “Sposob upravlenija processom rektifikacii s pomoshh'ju raspredelennyh upravljajushhih vozdejstvij” [The method of control of the distillation process using distributed control actions], Vіsnik NTU „KhPI”. Serіja: Novі rіshennja v suchasnih tehnologіjah, No. 14 (1123), Kharkiv, pp. 100-105.
Zajko, A.P. (1989), “Sposob avtomaticheskogo regulirovanija rektifikacionnoj kolonny s dvumja potokami syr'ja” [The method of automatic control of a distillation column with two streams of feed], USSR copyright certificate 1740026, No. 4761778/26, No. 22, 6 p.
Kafarov, V.V. and Glebov, M.B. (1991), Matematicheskoe modelirovanie osnovnyh processov himicheskih proizvodstv [Mathematical modeling of the basic processes of chemical productions], Vysshaja shkola, Moskow, 400 p.
Hoffmann, A., Bortz, M., Welke, R., Burger, J., Küfer, K.-H. and Hasse, H. (2017), “Stage-to-stage calculations of distillation columns by fixed-point iteration and application of the Banach fixed-point theorem”, Chemical Engineering Science, 164, pp. 188-201, DOI: http://dx.doi.org/10.1016/j.ces.2017.02.006
Sheikus, A.R., Tryshkin, V.Ja. and Levchuk, I.L. (2018), “Modeljuvannja procesu bagatokomponentnoi' rektyfikacii' z vrahu-vannjam ruhlyvyh kerujuchyh vplyviv” [Modeling of the process of multicomponent distillation taking into account mobile con-trol actions], Komp’juterne modeljuvannja: analiz, upravlinnja, optymizacija, No. 1 (3), pp. 82-91.
Krivosheev, V.P., Nikiforova, K.E., Anufriev, A.V. and Kan, B.A. (2013), “Issledovanie optimal'nyh staticheskih rezhimov slozhnoj rektifikacionnoj kolonny dlja poluchenija jetilena” [The study of optimal static modes of a complex distillation column for ethylene production], Sovremennye problemy nauki i obrazovanija, No.6, URL: https://www.science-education.ru/ru/article/view?id=11210
Caballero, J.A. and Grossmann, I.E. (2014), Optimization of Distillation Processes, Distillation: Fundamentals and Principles, Academic Press, pp. 437-496, DOI: http://dx.doi.org/10.1016/b978-0-12-386547-2.00011-9
Anisimov, I.V., Bodrov, V.I. and Pokrovskij, V.B. (1975), Matematicheskoe modelirovanie i optimizacija rektifikacionnyh ustanovok [Mathematical modeling and optimization of distillation plants], Himija, Moscow, 216 p.
Samborskaya, M.A., Gusev, V.P., Gryaznova, I.A., Vdovushkina, N.S. and Volf, A.V. (2014), “Crude Oil Distillation with Superheated Water Steam: Parametrical Sensitivity and Optimization”, Procedia Chemistry, 10, pp. 337-342, DOI: http://dx.doi.org/10.1016/j.proche.2014.10.057
Sheikus, A.R. and Trishkin, V.Ya. (2018), “Static optimization of rectification processes using mobile control actions”, Radio Electronics, Computer Science, Control, 1, pp. 192-201. DOI: http://dx.doi.org/10.15588/1607-3274-2018-1-22
Sudibyo, Murat, M.N. and Aziz, N. (2012), “Simulation Studies and Sensitivity Analysis of Methyl Tert-butyl Ether Reactive Distillation”, Computer Aided Chemical Engineering, 31, pp. 130-134. DOI: