PREDICTING THE EFFICIENCY OF DCT-BASED DENOISING OF 1-D SIGNALS CORRUPTED BY ADDITIVE WHITE GAUSSIAN NOISE

Main Article Content

Petro Brysin
Volodymyr Lukin
Bogdan Kovalenko
Oleh Viunytskyi
Karen Egiazarian

Abstract

The object of the study is the process of 1-D signal processing by means of DCT-based filter. The subject of the study is the method for prediction of filtering efficiency in terms of signal-to-noise ratio improvement. The goal of the study is to identify which parameters can be used for prediction, evaluate the potential accuracy of the predictions, and assess whether the proposed approach is sufficiently generalizable. Methods used: numerical simulation, verification for a set of test 1-D signals of different origins. Results obtained: (1) accurate prediction is feasible, with a high level of accuracy achieved; (2) prediction accuracy depends on an input parameter that can be computed relatively easily; and (3) the proposed approach is sufficiently general to be applicable to both speech and medical signals affected by additive white Gaussian noise. Conclusions: (1) If the input SNR is below 30 dB, DCT-based filtering with appropriately chosen parameters can enhance it; (2) the extent of this improvement varies significantly but is predictable; and (3) this predictability enables informed decisions about whether filtering is beneficial and how to optimally configure its parameters.

Article Details

How to Cite
Brysin , P. ., Lukin , V. ., Kovalenko , B. ., Viunytskyi , O. ., & Egiazarian , K. . (2026). PREDICTING THE EFFICIENCY OF DCT-BASED DENOISING OF 1-D SIGNALS CORRUPTED BY ADDITIVE WHITE GAUSSIAN NOISE. Advanced Information Systems, 10(1), 58–65. https://doi.org/10.20998/2522-9052.2026.1.07
Section
Information systems research
Author Biographies

Petro Brysin , National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

PhD student of the Department of Information and Communication Technology

Volodymyr Lukin , National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

Doctor of Technical Sciences, Professor, Head of the Department of Information and Communication Technology

Bogdan Kovalenko , National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

PhD, Researcher of the Department of Information and Communication Technology

Oleh Viunytskyi , National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

PhD, Associate Professor of the Department of Information and Communication Technology

Karen Egiazarian , Tampere University, Tampere, Finland

Doctor of Physical and Mathematical Sciences, Doctor of Technology, Professor, Professor of Tampere University

References

(2017), Eds., Audio Signal Processing, Special Issue Editor Vesa Välimäki, MDPI, Basel, Switzerland, 434 p., available at: https://mdpi-res.com/bookfiles/book/268/Audio_Signal_Processing.pdf

Ardeti, V.A., Kolluru, V.R., Varghese, G.T. and Patjoshi, R.K. (2023), “An overview on state-of-the-art electrocardiogram signal processing methods: Traditional to AI-based approaches”, Expert Systems with Applications, vol. 217, 119561, doi: https://doi.org/10.1016/j.eswa.2023.119561

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M. and Inman, D.J. (2021), “1D convolutional neural networks and applications: A survey”, Mechanical Systems and Signal Processing, vol. 151, 107398, doi:

https://doi.org/10.1016/j.ymssp.2020.107398

Muthu, R., Bharath, P., Mahalti M.S. and Kumar, M.R. (2020), “Denoising of Speech Signal using Empirical Mode Decomposition and Kalman Filter”, International Journal of Innovative Technology and Exploring Engineering, vol. 9, is. 8, doi: https://doi.org/10.35940/ijitee.H6313.069820

Kumar, P. and Sharma, V.K. (2020), “Detection and classification of ECG noises using decomposition on mixed codebook for quality analysis”, Healthc Technol Lett., vol. 7, is. 1, pp. 18–24, doi: https://doi.org/10.1049/htl.2019.0096

Figwer, J. and Michalczyk, M.I. (2020), “Notes on a New Structure of Active Noise Control Systems”, Appl. Sci., vol. 10, 4705, doi: https://doi.org/10.3390/app10144705

Apandi, Z.F.M., Ikeura, R., Hayakawa, S. and Tsutsumi, S. (2020), “An Analysis of the Effects of Noisy Electrocardiogram Signal on Heartbeat Detection Performance”, Bioengineering (Basel), vol. 7, no. 2, article number 53, doi: https://doi.org/10.3390/bioengineering7020053

Davis, L. S. and Rosenfeld, A. (19750, “Detection of Step Edges in Noisy One-Dimensional Data”, IEEE Transactions on Computers, vol. C-24, no. 10, pp. 1006–1010, doi: https://doi.org/10.1109/T-C.1975.224111

Djurović, I. and Wojciechowski, A. (2025), “Estimating Parameters of Signals With Hybrid Sinusoidal and Polynomial Modulation Using RANSAC-Based Approach”, IEEE Transactions on Aerospace and Electronic Systems, vol. 61, no. 2, pp. 5377–5387, doi: https://doi.org/10.1109/TAES.2024.3466837

Xie, X. H. and Wang, W. C. (2023), “An Improved LMS Adaptive Filtering Speech Enhancement Algorithm”, 2023 5th International Conference on Natural Language Processing (ICNLP), Guangzhou, China, pp. 146–150, doi: https://doi.org/10.1109/ICNLP58431.2023.00033

Velusamy, S., Thangavel, G. and Rahman, M. (2024), “Comprehensive survey on ECG signal denoising, feature extraction and classification methods for heart disease diagnosis”, AIP Conference Proceeding, vol. 2512, is. 1, 020014 (2024), doi: https://doi.org/10.1063/5.0111952

Chen, W. (2021), “Two Mirroring And Interpolating Methods To Estimate Peak Position For Symmetric Signals With Single Peak”, arXiv:2103.07059, doi: https://doi.org/10.48550/arXiv.2103.07059

Kowalski, P. and Smyk, R. (2018), “Review and comparison of smoothing algorithms for one-dimensional data noise reduction”, 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnouście, Poland, pp. 277–281, doi: https://doi.org/10.1109/IIPHDW.2018.8388373

Kavya Krishna P.J., Anulekha K.A., Niharika V.Anil, Aleena Merin Anto and Abhilash O.S. (2025), “Comparative Study of Signal Processing Algorithms for Noise Reduction and Sonar Signal Reconstruction”, 2025 2nd Int. Conference on Trends in Engineering Systems and Technologies, Ernakulam, India, pp. 1–5, doi: https://doi.org/10.1109/ICTEST64710.2025.11042817

Haykin, S. (1995), “Recurrent Neural Networks for Adaptive Filtering”, Control and Dynamic Systems, Academic Press, vol. 68, pp. 89–119, doi: https://doi.org/10.1016/S0090-5267(06)80038-1

Arce, G. R. (2004), Nonlinear Signal Processing: A Statistical Approach, John Wiley & Sons, doi:

https://doi.org/10.1002/0471691852

Upadhay, P., Shukla, K. and Upadhyay, S.K. (2020), “Denoising 1D signal using wavelets”, International Journal of Intelligent Systems Technologies and Applications, vol. 19, 517, doi: https://doi.org/10.1504/IJISTA.2020.10034664

Polyakova, M., Witenberg, A. and Cariow, A. (2024), “The Design of Fast Type-V Discrete Cosine Transform Algorithms for Short-Length Input Sequences”, Electronics, vol. 13, 4165, doi: https://doi.org/10.3390/electronics13214165

Nacar, O. and Koc, T. (2025), “Enhancing CNN-Based Signal Denoising: A Novel Metric Framework With Harmonic Suppression Through Hybrid Modeling”, IEEE Access, vol. 13, pp. 109399–109417, doi: https://doi.org/10.1109/ACCESS.2025.3582668

Lukin, V.V., Fevralev, D.V., Abramov, S.K., Peltonen, S. and Astola, J. (2008), Proceedings of the 2008 International Workshop on Local and Non-Local Approximation in Image Processing, LNLA2008, Lausanne, Switzerland, 8 p, doi: http://sp.cs.tut.fi/pubdl/Lukin2008-AdaptiveDCT.pdf

Brysin, P.V. and Lukin V.V. (2024), “DCT-based denoising of speech signals”, Herald of Khmelnytskyi National University Technical sciences, pp. 301–309, doi: https://doi.org/10.31891/2307-5732-2024-339-4-48

Abramov, S., Abramova, V., Lukin, V. and Egiazarian, K. (2019), “Prediction of Signal Denoising Efficiency for DCT Based Filter”, Telecommunications and Radio Engineering, vol. 78, no 13, pp. 1129–1142, doi:

https://doi.org/10.1615/TelecomRadEng.v78.i13.10

Makovoz, D. (2006), “Noise Variance Estimation In Signal Processing”, 2006 IEEE International Symposium on Signal Processing and Information Technology, pp. 364–369, doi: https://doi.org/10.1109/ISSPIT.2006.270827

Ondusko, R., Marbach, M., Ramachandran, R. and Head, L. (2017), “Blind Signal-to-Noise Ratio Estimation of Speech Based on Vector Quantizer Classifiers and Decision Level Fusion”, Journal of Signal Processing Systems, vol. 89, pp. 345-355, doi: https://doi.org/10.1007/s11265-016-1200-z

(1969), “IEEE Recommended Practice for Speech Quality Measurements”, IEEE Subcommittee on Subjective Measurements, IEEE Trans. Audio and Electroacoustics, vol. AU-17, no. 3, pp. 225–246, (IEEE Standards Publication No. 297-1969), doi: https://doi.org/10.1109/TAU.1969.1162058

Rubel, O., Abramov, S., Lukin, V., Egiazarian, K., Vozel, B. and Pogrebnyak, A. (2018), “Is Texture Denoising Efficiency Predictable”, International Journal on Pattern Recognition and Artificial Intelligence, vol. 32, 1860005, 32 p., doi: https://doi.org/10.1142/S0218001418600054

Cameron, C., Windmeijer, A., Frank, A.G., Gramajo, H., Cane, D.E., and Khosla, C. (1997), “An R-squared measure of goodness of fit for some common nonlinear regression models”, Journal of Econometrics, vol. 77, no. 2, 16 p. doi: https://doi.org/10.1016/S0304-4076(96)01818-0

García-González, M. A., and Argelagós-Palau, A. (2014), “Combined measurement of ECG, Breathing and Seismocardiograms Database (CEBSDB, v1.0.0)”, [Data set], PhysioNet. doi: https://doi.org/10.13026/C2KW23

García-González, M. A., Argelagós-Palau, A., Fernández-Chimeno, M. and Ramos-Castro, J. (2013), “A comparison of heartbeat detectors for the seismocardiogram”, Computing in Cardiology, Zaragoza, Spain, pp. 461–464, available at: https://ieeexplore.ieee.org/document/6713413 .

Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C, Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K. and Stanley, H.E. (2000), “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals”, Circulation, vol. 101(23), E215-20, doi: https://doi.org/10.1161/01.cir.101.23.e215