COMPARISON OF VISULALLY LOSSLESS COMPRESSION OF DENTAL IMAGES BY DIFFERENT CODERS BASED ON HAARPSI METRIC

Main Article Content

Sergii Kryvenko
Vladimir Lukin
Ekaterina Bataeva
Olha Krylova
Liudmyla Kryvenko

Abstract

The object of the study is the process of visually lossless compression of dental images by means of five coders using HaarPSI metrics and its distortion invisibility threshold. The subject of the study is the method for selection of parameters that control compression to provide invisibility of distortions with further comparison of performance characteristics for the considered coders. The goal of the study is to analyze compression ratio range for image fragments of different complexity and to give recommendations concerning coders to be used and their parameters setting. Methods used: numerical simulation, verification for a set of test images. Results obtained: 1) the compression ratios vary in rather wide limits depending on image complexity and noise characteristics; 2) the coders AGU-M and BPG produce the best compression ratios for the same visual quality compared to other considered coders; 3) there is high correlation of compression ratios of the considered coders. Conclusions: 1) it is possible to provide rather large compression ratios without losing diagnostically valuable information; 2) adapting the compression to image complexity allows significant increasing of compression ratios for simple structure images. 

Article Details

How to Cite
Kryvenko , S. ., Lukin , V. ., Bataeva , E. ., Krylova , O. ., & Kryvenko , L. . (2025). COMPARISON OF VISULALLY LOSSLESS COMPRESSION OF DENTAL IMAGES BY DIFFERENT CODERS BASED ON HAARPSI METRIC . Advanced Information Systems, 9(3), 83–90. https://doi.org/10.20998/2522-9052.2025.3.10
Section
Information systems research
Author Biographies

Sergii Kryvenko , National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

Candidate of Technical Sciences, Senior Researcher, Doctorate of the Department of Information and Communication Technology

Vladimir Lukin , National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

Doctor of Technical Sciences, Professor, Head of the Department of Information and Communication Technology

Ekaterina Bataeva , Zhytomyr Institute of Economics and Humanities of University “Ukraine”, Zhytomyr, Ukraine

Doctor of Sciences in Philosophy, Professor, Professor at the Department of Social Rehabilitation Technologies

Olha Krylova , Kharkiv National Medical University, Kharkiv, Ukraine

Candidate of Medical Sciences, Associate Professor of the Department of Therapeutic Dentistry

Liudmyla Kryvenko , Kharkiv National Medical University, Kharkiv, Ukraine

Doctor of Medical Sciences, Professor of the Department of Pediatric Dentistry and Implantology

References

Suetens, P. (2017), Fundamentals of medical imaging, 3rd ed., Cambridge University Press, Cambridge, 268 p., available at: https://www.amazon.com/Fundamentals-Medical-Imaging-Paul-Suetens/dp/1107159784

Abramov, S.K., Abramova, V.V., Lukin, V.V., Abramov K.D. and Bataeva E.V. (2022), “Analysis of statistical and spatial spectral characteristics of distortions in lossy image compression”, Proc IEEE UkrMW-2022, Nov 2022, Kharkiv, Ukraine, 2022, p. 644–649, doi: https://doi.org/10.1109/UkrMW58013.2022.10036949

Radosavljević, M., Brkljač, B., Lugonja, P., Crnojević, V., Trpovski, Ž., Xiong, Z. and Vukobratović, D. (2020), “Lossy Compression of Multispectral Satellite Images with Application to Crop Thematic Mapping: A HEVC Comparative Study”, Remote Sensing, vol. 12, 1590, doi: https://doi.org/10.3390/rs12101590

Blanes, I., Magli, E. and Serra-Sagrista, J. (2014), “A Tutorial on Image Compression for Optical Space Imaging Systems”, IEEE Geosci. Remote Sens. Mag. 2014, vol. 2, no. 3, pp. 8-26, doi: https://doi.org/10.1109/MGRS.2014.2352465

Hussain, J.A., Al-Fayadh, A. and Radi, N. (2018), “Image compression techniques: A survey in lossless and lossy algorithms”, Neurocomputing, vol. 300, pp. 44-69, doi: https://doi.org/10.1016/j.neucom.2018.02.094

Bondžulić, B., Stojanović, N., Petrović, V., Pavlović, B. and Miličević, Z. (2021), “Efficient Prediction of the First Just Noticeable Difference Point for JPEG Compressed Images. Acta Polytechnica Hungarica”, vol. 18(8), pp. 201–220, doi: https://doi.org/10.12700/APH.18.8.2021.8.11

Blau, Y. and Michaeli, T. (2019), “Rethinking lossy compression: The rate-distortion-perception tradeoff”, International Conference on Machine Learning, PMLR, p p. 675–685, doi: https://doi.org/10.48550/arXiv.1901.07821

Yee, D., Soltaninejad, S., Hazarika, D, Mbuyi, G., Barnwal, R. and Basu, A. (2017), “Medical image compression based on region of interest using better portable graphics (BPG)”, IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 216–221, doi: https://doi.org/10.1109/SMC.2017.8122605

Fornaini, C. and Rocca, J.P. (2022), “Relevance of teledentistry: brief report and future perspectives”, Front Dent, vol. 19(25), doi: https://doi.org/10.18502/fid.v19i25.10596

Liu, F., Hernandez-Cabronero, M., Sanchez, V., Marcellin, M.W. and Bilgin, A. (2017), “The current role of image compression standards in medical imaging, Information (Basel), vol. 8(4), 131, doi: https://doi.org/10.3390/info8040131

Fidler, A. and Likar, B. (2007), “What is wrong with compression ratio in lossy image compression?”, Radiology, vol. 245(1), pp. 299–300, doi: https://doi.org/10.1148/radiol.2451062005

Suapang, P., Dejhan, K. and Yimmun, S. (2010), “Medical image archiving, processing, analysis and communication system for teleradiology”, TENCON 2010 – IEEE Region 10 Conf., pp. 339–345, doi: https://doi.org/10.1109/TENCON.2010.5686025

Kocsis, O., Costaridou, L., Mandellos, G., Lymberopoulos, D. and Panayiotakis, G. (2003), “Compression assessment based on medical image quality concepts using computer-generated test images”, Comput Methods Programs Biomed., vol. 71(2), pp. 105–115, doi: https://doi.org/10.1016/s0169-2607(02)00090-1

Wu, D., Tan, D.M. and Wu, H.R. (2003), “Visually lossless adaptive compression of medical images”, 4th Int Conf Info, Comm and Signal Processing, pp. 458–463, doi: https://doi.org/10.1109/ICICS.2003.1292494

Al-Shebani, Q., Premaratne, P., Vial, P.J. and McAndrew, D.J. (2019), “The development of a clinically tested visually lossless image compression system for capsule endoscopy”, Signal Process Image Commun., vol. 76, pp. 135–150, doi: https://doi.org/10.1016/j.image.2019.04.008

Afnan, A., Ullah, F., Yaseen, Y., Lee, J., Jamil, S. and Kwon, O.J. (2023), “Subjective assessment of objective image quality metrics range guaranteeing visually lossless compression”, Sensors, vol. 23(3), 1297, doi: https://doi.org/10.3390/s23031297

Kryvenko, L., Krylova, O., Lukin, V. and Kryvenko, S. (2024), “Intelligent visually lossless compression of dental images”, Adv Opt Technol., vol. 13, 1306142, doi: https://doi.org/10.3389/aot.2024.1306142

Seibert, J.A. (2020), “Medical image data characteristics. Chapter 2”, Society for Imaging Informatics in Medicine, available at: https://siim.org/

Barman, N. and Martini, M.G. (2020), “An evaluation of the next-generation image coding standard AVIF”, 2020 12th Int. Conf. on Quality of Multimedia Experience (QoMEX), IEEE; pp. 1–4, doi: https://doi.org/10.1109/QoMEX48832.2020.9123131

Radosavljević, M., Brkljač, B., Lugonja, P., Crnojević, V., Trpovski, Ž., Xiong, Z. and Vukobratović, D. (2020), “Lossy compression of multispectral satellite images with application to crop thematic mapping: a HEVC comparative study”, Remote Sens., vol. 12(10), 1590, doi: https://doi.org/10.3390/rs12101590

Bellard, F. (2024), BPG image format, available from: http://bellard.org/bpg/

Kryvenko S., Bondžulić, B., Lukin, V., Bujaković, D., Kryvenko, S. and Ieremeiev, O. (2023), “JPEG and BPG visually lossless image compression via KonJND-1k database”, Mathematics, vol. 13(9), 1445, doi: https://doi.org/10.3390/math13091445

Bao, Y., Tan, W., Li, M., Chen, J., Mao, Q. and Liang, Y. (2025), “SFNIC: Hybrid spatial-frequency information for lightweight neural image compression”, CAAI Trans Intell Technol., doi: https://doi.org/10.1049/cit2.70034

Mikhailiuk, A., Ye, N. and Mantiuk, R.K. (2021), “The effect of display brightness and viewing distance: a dataset for visually lossless image compression”, IS&T Int Symp Electronic Imaging, pp. 152-1–152-8, doi: https://doi.org/10.17863/CAM.79094

Zhang, Y., Lin, H., Sun, J., Zhu, L. and Kwong, S. (2024), “Learning to predict object-wise just recognizable distortion for image and video compression”, IEEE Trans Multimed, vol. 26, pp. 5925–5938, doi: https://doi.org/10.1109/TMM.2023.3340882

Bondžulić, B., Stojanović, N., Petrović, V., Pavlović, B. and Miličević, Z. (2021), “Efficient prediction of the first just noticeable difference point for JPEG compressed images”, Acta Polytech Hung, vol. 18, pp. 201–220, doi: https://doi.org/10.12700/APH.18.8.2021.8.11

Abramova, V., Krivenko, S., Lukin, V.and Krylova, O. (2020), “Analysis of noise properties in dental images”, Proc Elnano 2020, Apr 2020, Kiev, Ukraine. pp. 511–515, doi: https://doi.org/10.1109/ELNANO50318.2020.9088768

Chang, S.G., Yu, B. and Vetterli, M. (2000), “Adaptive wavelet thresholding for image denoising and compression”, IEEE Trans Image Process, vol. 9(9), pp. 1532–1546, doi: https://doi.org/10.1109/83.862633

Reisenhofer, R., Bosse, S., Kutyniok, G. and Wiegand, T. (2018), “A Haar wavelet-based perceptual similarity index for image quality assessment”, Signal Process Image Commun., vol. 61, pp. 33–43, doi: https://doi.org/10.1016/j.image.2017.08.009

Li, F., Dohtiev, I., Abramov, S. and Lukin, V. (2024), “Advantages and drawbacks of two-step approach to providing desired parameters in lossy image compression”, Advanced Information Systems, vol. 8, no. 1, pp. 57–63, doi: https://doi.org/10.20998/2522-9052.2024.1.07

Bondžulić, B. P., Stojanović, N. M., Lukin, V. V. and Kryvenko, S. S. (2024), “JPEG and BPG visually lossless image compression via KonJND-1k database”, Vojnotehnički glasnik/Military Technical Courier, vol. 72(3), pp. 1214-1241, doi: https://doi.org/10.5937/vojtehg72-50300

(2025), Morita Group: Diagnostic and imaging equipment, available at:

https://www.jmoritaeurope.de/en/products/diagnostic-and-imaging-equipment-overview/

Wang, Z., Simoncelli, E.P. and Bovik, A.C. (2003), “Multiscale structural similarity for image quality assessment”, 37th Asilomar Conf Signals, Systems & Computers, vol. 2, pp. 1398–402, doi: https://doi.org/10.1109/ACSSC.2003.1292216