DEVELOPMENT OF MATHEMATICAL SUPPORT FOR ADAPTIVE CONTROL FOR THE INTELLIGENT GRIPPER OF THE COLLABORATIVE ROBOT MANIPULATOR
Main Article Content
Abstract
The relevance of this study is due to the growing demands for intelligent robotic systems capable of safe interaction with humans in a collaborative work environment. It is especially important to provide adaptive control of grippers, which allows manipulators to accurately and delicately grasp objects of various shapes, masses, and stiffness. The subject of the research is the process of controlling a gripper as part of a collaborative robot manipulator, and the topic is the development of effective mathematical software for adapting control parameters in real time. The aim of the work is to improve the accuracy, reliability, and flexibility of the intelligent gripper by integrating Sensor Fusion and Neuro-PID control methods. In the course of the study, methods of mathematical modeling, sensor information processing, and numerical error analysis based on experimental data were used. The developed model takes into account the symmetry of the applied forces and ensures stable control of the gripping force, as evidenced by the results of experiments on controlling the asymmetric error and the control signal. The analysis showed that the deviations of the gripping error remain within ±0.2 N, and the control signal has smoothed dynamics without sharp impulses, which provides an adaptive response to external changes. The conclusions confirm the feasibility of the proposed approach to improve the control efficiency of robotic grippers. The scope of the results includes industrial collaborative robots, automated warehousing systems, manipulation of delicate objects, and biomedical robotic systems where high accuracy and adaptability of interaction is required.
Article Details
References
Leng, J., Guo, J., Xie, J., Zhou, X., Liu, A., Gu, X., Mourtzis D., Qi Q., Liu Q., Shen W. and Wang, L. (2025), “Review of manufacturing system design in the interplay of Industry 4.0 and Industry 5.0 (Part II): Design processes and enablers”, Journal of Manufacturing Systems, vol. 79, pp. 528–562, doi: https://doi.org/10.1016/j.jmsy.2025.02.005
Nevliudov, I., Yevsieiev, V., Maksymova, S. and Filippenko, I. (2020), “Development of an architecturallogical model to automate the management of the process of creating complex cyberphysical industrial systems”, Eastern-European Journal of Enterprise Technologies, vol. 4(3, 106), pp. 44–52, doi: https://doi.org/10.15587/1729-4061.2020.210761
Xu, J., Sun, Q., Han, Q. L., and Tang, Y. (2025), “When embodied AI meets industry 5.0: human-centered smart manufacturing”, IEEE/CAA Journal of Automatica Sinica, vol. 12(3), pp. 485–501, doi: https://doi.org/10.1109/JAS.2025.125327
Liu, J., Yap, H. J., and Khairuddin, A. S. M. (2025), “Path Planning for the Robotic Manipulator in Dynamic Environments Based on a Deep Reinforcement Learning Method”, Journal of Intelligent and Robotic Systems, vol. 111(1), pp. 1–15, doi: https://doi.org/10.1007/s10846-024-02205-0
Al-Sharo, Y., Abu-Jassar, A., Lyashenko, V., Yevsieiev, V., and Maksymova, S. (2023), “A Robo-hand prototype design gripping device within the framework of sustainable development”, Indian Journal of Engineering, vol. 20, e37ije1673, doi: https://doi.org/10.54905/disssi.v20i54.e37ije1673
Schuengel, V., Braunstein, B., Goell, F., Braun, D., Reißner, N., Safronov, K., Weiser C., Heieis J. and Albracht, K. (2025). “Integrative biomechanics of a human-robot carrying task: implications for future collaborative work”, Autonomous Robots, vol. 49(1), 2, doi: https://doi.org/10.1007/s10514-024-10184-2
Sun, J., Zhang, Q., Lu, Y., Huang, B., and Li, Q. (2025), “A Review of Touching-Based Underwater Robotic Perception and Manipulation, Machines, vol. 13(1), 41, doi: https://doi.org/10.3390/machines13010041
Attar, H., Abu-Jassar, A. T., Amer, A., Lyashenko, V., Yevsieiev, V., and Khosravi, M. R. (2022), “Control system development and implementation of a CNC laser engraver for environmental use with remote imaging”, Computational intelligence and neuroscience, vol. 2022(1), 9140156, doi: https://doi.org/10.1155/2022/9140156
Yotheringhay, D., Kirkland, A., Kirkbride, H., and Whitesteeple, J. (2025), “Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation”, arXiv preprint arXiv:2501.14119, doi: https://doi.org/10.48550/arXiv.2501.14119
Lyashenko, V., Abu-Jassar, A. T., Yevsieiev, V., and Maksymova, S. (2023), “Automated Monitoring and Visualization System in Production”, International Research Journal of Multidisciplinary Technovation, vol. 5(6), pp. 9–18, doi: https://doi.org/10.54392/irjmt2362
Yin, J., Bi, T., and Zhang, W. (2025), “SPARK Hand: Scooping-Pinching Adaptive Robotic Hand with Kempe Mechanism for Vertical Passive Grasp in Environmental Constraints”, arXiv preprint arXiv:2504.20506, doi: https://doi.org/10.48550/arXiv.2504.20506
Nevliudov, I., Yevsieiev, V., Baker, J. H., Ahmad, M. A., and Lyashenko, V. (2020), “Development of a cyber design modeling declarative Language for cyber physical production systems”, J. Math. Comput. Sci., vol. 11(1), pp. 520–542, doi: https://doi.org/10.28919/jmcs/5152
Hao, Y., Zhou, P., Zhou, W., Zeng, T., Liu, Z., Ren, Z., and Zhang, J. (2025), “Adjusting the Interdigital Space and Hybrid Fingers of an Adaptive Gripper Utilizing a Single Motor”, IEEE/ASME Transactions on Mechatronics, doi: https://doi.org/10.1109/TMECH.2025.3549270
Attar, H., Abu-Jassar, A. T., Yevsieiev, V., Lyashenko, V., Nevliudov, I. and Luhach, A. K. (2022), “Zoomorphic mobile robot development for vertical movement based on the geometrical family caterpillar”, Comput. Intell. Neurosci., vol. 2022, 3046116, 19 p., doi: https://doi.org/10.1155/2022/3046116
Tiwari, R., Srinivaas, A., and Velamati, R. K. (2025), “Adaptive Navigation in Collaborative Robots: A Reinforcement Learning and Sensor Fusion Approach”,. Applied System Innovation, vol. 8(1), 9, doi: https://doi.org/10.3390/asi8010009
Wang, Z., Li, P., Zhang, Q., Zhu, L., and Tian, W. (2025), “A LiDAR-depth camera information fusion method for human robot collaboration environment”, Information Fusion, vol. 114, 102717, doi: https://doi.org/10.1016/j.inffus.2024.102717
Abu-Jassar, A. T., Attar, H., Amer, A., Lyashenko, V., Yevsieiev, V., and Solyman, A. (2025), “Development and Investigation of Vision System for a Small-Sized Mobile Humanoid Robot in a Smart Environment”, International Journal of Crowd Science, vol. 9(1), pp. 29–43, doi: https://doi.org/10.26599/IJCS.2023.9100018
Masalskyi, V., Dzedzickis, A., Korobiichuk, I., and Bučinskas, V. (2025), “Hybrid Mode Sensor Fusion for Accurate Robot Positioning”, Sensors, vol. 25(10), 3008, doi: https://doi.org/10.3390/s25103008
Pan, Y. J., Buchanan, S., Chen, Q., Wan, L., Chen, N., Forbrigger, S., and Smith, S. (2025), “Survey on recent advances in planning and control for collaborative robotics”, IEEJ Journal of Industry Applications, vol. 14(2), pp. 139–151, doi: https://doi.org/10.1541/ieejjia.24005652
Gao, J., Tan, Z., Li, L., Jia, G., and Liu, P. X. (2025), “A novel finite-time non-singular robust control for robotic manipulators”, Chaos, Solitons and Fractals, vol. 194, 116266, doi: https://doi.org/10.1016/j.chaos.2025.116266
Saka, I., Unver, S., Selim, E., Tatlicioglu, E., Zergeroglu, E., and Dogan, K. M. (2025), “A Robust Observer Based End-Effector Trajectory Tracking Control of Collaborative Robotic Manipulators Actuated by Brushless DC Motors”, AIAA SCITECH 2025 Forum (p. 0103), doi: https://doi.org/10.2514/6.2025-0103
Elmogy, A., Alhemaly, N., El-Ghaish, H., and Elawady, W. (2025), “An enhanced neuro-adaptive PID sliding mode control for robot manipulators: promoting sustainable automation”, Neural Computing and Applications, pp. 1–22, doi: https://doi.org/10.1007/s00521-025-10980-6
Saxena, A., Kumar, J., and Deolia, V. K. (2025), “Comparison Of Traditional Thermal And Intelligent Controllers In Fusion With Neural Networks For Regulation Of Robotic Manipulator”, Cuestiones de Fisioterapia, vol. 54(3), pp. 3198–3205, doi: https://doi.org/10.48047/s6vyjp85
Kumar, S., and Dwivedy, S. K. (2025), “Model-based PD neural network control for pipe crack sealing manipulator”, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 239(3), pp. 476-489, doi: https://doi.org/10.1177/09596518241280221
Saleem, Z., Gustafsson, F., Furey, E., McAfee, M., and Huq, S. (2025), “A review of external sensors for human detection in a human robot collaborative environment”, Journal of Intelligent Manufacturing, vol. 36(4), pp. 2255–2279, doi: https://doi.org/10.1007/s10845-024-02341-2
Pratap, S., Ito, K., and Hazarika, S. M. (2025), “Synergistic grasp analysis: A cross-sectional exploration using a multi-sensory data glove”, Wearable Technologies, vol. 6, e2, doi: https://doi.org/10.1017/wtc.2024.25
Zhang, T., Wang, H., Lv, P., Pan, X. A., Wang, D., Yuan, B., and Yu, H. (2025), “Real-Time Motion Generation for Robot Manipulators in Complex Dynamic Environments”, Advanced Intelligent Systems, doi: https://doi.org/10.1002/aisy.202400738
Zhao, B., Wu, Y., Wu, C., and Sun, R. (2025), “Deep reinforcement learning trajectory planning for robotic manipulator based on simulation-efficient training”, Scientific Reports, vol. 15(1), 8286, doi: https://doi.org/10.1038/s41598-025-93175-2
Qian, L., Hao, L., Cui, S., Gao, X., Zhao, X., and Li, Y. (2025), “Research on Motion Trajectory Planning and Impedance Control for Dual-Arm Collaborative Robot Grinding Tasks”, Applied Sciences, vol. 15(2), doi: https://doi.org/10.3390/app15020819
Dashevsky, Y., and Gal-Katziri, M. (2025). Shape Estimation and Pattern Correction of Flexible Phased Arrays Using Local Curvature Measurements”, IEEE Microwave and Wireless Technology Letters, doi: https://doi.org/10.1109/LMWT.2025.3556860
Anbarasu, B., and Luhitha, M. (2025), “Integration of LIDAR and Ultrasonic sensor for MAV collision avoidance. In 2025 International Conference on Emerging Systems and Intelligent Computing (ESIC) (pp. 832-836). IEEE, doi: https://doi.org/10.1109/ESIC64052.2025.10962656
Nevliudov, I., Yevsieiev, V., Maksymova, S., Demska, N., Kolesnyk, K., and Miliutina, O. (2023), “Mobile Robot Navigation System Based on Ultrasonic Sensors”, 2023 IEEE XXVIII Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, vol. 1, pp. 247–251, doi: https://doi.org/10.1109/DIPED59408.2023.10269500
Putri, A. Z., Susanti, H., Barri, M. H., Haq, A. I., and Fillah, F. F. (2023), “Implementation of nema-17 stepper motor and SG-90 servo motor as mechanical drivers on spinal needle positioning test equipment”, 2023 IEEE Int. Biomedical Instrumentation and Technology Conference (IBITeC) pp. 52–57, IEEE, doi: https://doi.org/10.1109/IBITeC59006.2023.10390937
Ling, S., Chen, X., Miao, L., Yin, J., Jian, J., and Jin, Q. (2024), “A Novel Semiconductor Piezoresistive Thin-film Strain Gauge with High-sensitivity”, IEEE Sensors Journal, doi: https://doi.org/10.1109/JSEN.2024.3373635
Wang, Z., and Yan, J. (2024), “Multi-sensor fusion based industrial action recognition method under the environment of intelligent manufacturing”, Journal of Manufacturing Systems, vol. 74, pp. 575–586, doi: https://doi.org/10.1016/j.jmsy.2024.04.019
Kuchuk, G., Kharchenko, V., Kovalenko, A. and Ruchkov, E. (2016), “Approaches to selection of combinatorial algorithm for optimization in network traffic control of safety-critical systems”, Proceedings of 2016 IEEE East-West Design and Test Symposium, EWDTS 2016, 7807655, doi: doi: https://doi.org/10.1109/EWDTS.2016.7807655
Hasan, M. W., Mohammed, A. S., and Noaman, S. F. (2024), “An adaptive neuro-fuzzy with nonlinear PID controller design for electric vehicles”, IFAC Journal of Systems and Control, vol. 27, 100238, doi: https://doi.org/10.1016/j.ifacsc.2023.100238
Laib, A., and Gharib, M. (2024), “Design of an Intelligent Cascade Control Scheme Using a Hybrid Adaptive Neuro-Fuzzy PID Controller for the Suppression of Drill String Torsional Vibration”, Applied Sciences, vol. 14(12), 5225, doi: https://doi.org/10.3390/app14125225
Kuchuk, H., Husieva, Y., Novoselov, S., Lysytsia, D., Krykhovetskyi, H. (2025), “Load Balancing of the layers Iot Fog-Cloud support network”, Advanced Information Systems, vol. 9, no. 1, pp. 91–98, doi: https://doi.org/10.20998/2522-9052.2025.1.11
Razzaq, Z., Brahimi, N., Rehman, H. Z. U., and Khan, Z. H. (2024), “Intelligent Control System for Brain-Controlled Mobile Robot Using Self-Learning Neuro-Fuzzy Approach”, Sensors, vol. 24(18), 5875, doi: https://doi.org/10.3390/s24185875
Petrovska, I., Kuchuk, H., Kuchuk, N., Mozhaiev, O., Pochebut, M. and Onishchenko, Yu. (2023), “Sequential Series-Based Prediction Model in Adaptive Cloud Resource Allocation for Data Processing and Security”, 2023 13th International Conference on Dependable Systems, Services and Technologies, DESSERT 2023, 13–15 October, Athens, Greece, code 197136, doi: https://doi.org/10.1109/DESSERT61349.2023.10416496
Xu, N., Liu, X., Li, Y., Zong, G., Zhao, X., and Wang, H. (2024), “Dynamic event-triggered control for a class of uncertain strict-feedback systems via an improved adaptive neural networks backstepping approach”, IEEE Transactions on Automation Science and Engineering, doi: https://doi.org/10.1109/TASE.2024.3374522
Cao, L., Pan, Y., Liang, H., and Ahn, C. K. (2024), “Event-based adaptive neural network control for large-scale systems with nonconstant control gains and unknown measurement sensitivity”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, https://doi.org/10.1109/TSMC.2024.3444007
Zhang, L., Zhao, Z., Ma, Z., and Zhao, N. (2024), “Prescribed performance adaptive neural event-triggered control for switched nonlinear cyber-physical systems under deception attacks”, Neural Networks, vol. 179, number 106586, doi: https://doi.org/10.1016/j.neunet.2024.106586
Mustafa, S.K., Yevsieiev, V., Nevliudov, I., and Lyashenko, V. (2022), “HMI Development Automation with GUI Elements for Object-Oriented Programming Languages Implementation”, SSRG International Journal of Engineering Trends and Technology, vol. 70(1), pp. 139–145, doi: https://ijettjournal.org/archive/ijett-v70i1p215
Subasi, A., Mian Qaisar, S., Kumar Bhoi, A., and Naga Srinivasu, P. (2025), Artificial Intelligence Applications for Brain-Computer Interfaces, doi: https://doi.org/10.1016/C2023-0-51682-9
Meza Ibarra, J. R., Martınez Ulloa, J., Moreno Pacheco, L. A., and Rodrıguez Cortes, H. (2024), “Altitude Controller Based on Artificial Neural Network-Genetic Algorithm for a Quadcopter MAV”, International Journal of Robotics and Control Systems, vol. 4(4), doi: https://doi.org/10.31763/ijrcs.v4i4.1582