THE METHOD OF SELF-ORGANIZATION OF INFORMATION NETWORKS IN THE CONDITIONS OF THE COMPLEX INFLUENCE OF DESTABILIZING FACTORS
Main Article Content
Abstract
The experience of modern military conflicts of the past decades and the experience of the Russian-Ukrainian war, requires a fundamental revision of approaches regarding the order of organizing the interaction of information networks and their individual components. Traditional approaches to organization require significant time to organize the interaction of information network elements and also depend significantly on the experience and personal qualities of administrators who operate them. That is why, in this research, the authors proposed a method of organizing information networks under the influence of destabilizing factors. The method of self-organization of information networks consists of the following sequence of actions: input of initial data, display of individuals of the combined flock on the search area, numbering of individuals in the flock of the combined algorithm; determination of the initial speed of individuals of the flock of the combined algorithm; preliminary assessment of the search (feeding) area by individuals of the combined flock; classification of food sources for agents of a combined flock; procedure for optimizing a flock of hawk agents; implementation of the coot herd optimization algorithm; combining individual optimization algorithms into a mixed one; checking the presence of predator agents of the combined flock; escape and fight with predators of combined pack agents; checking the stop criterion; training of knowledge bases of combined swarm agents, determination of the amount of necessary computing resources, intelligent decision making support system. The work of the specified method was modeled on the example of the self-organization of the information network of the operational group of troops (forces). The specified example showed an increase in the efficiency of data processing at the level of 12-17% due to the use of additional improved procedures of adding correction factors for uncertainty and noise of data, selection of combined swarm agents, crossing of different types of swarm optimization approaches, as well as training of combined swarm agents.
Article Details
References
Dudnyk, V., Sinenko, Yu., Matsyk, M., Demchenko, Ye., Zhyvotovskyi, R., Repilo, Iu., Zabolotnyi, O., Simonenko, A., Pozdniakov, P., Shyshatskyi, A (2020), “Development of a method for training artificial neural networks for intelligent decision support systems”, Eastern-European Journal of Enterprise Technologies, vol. 3, no. 2 (105), pp. 37–47, doi: https://doi.org/10.15587/1729-4061.2020.203301
Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O. and Hrokholskyi, Y. (2021), “Development of a method for assessment and forecasting of the radio electronic environment”, EUREKA: Physics and Engineering, vol. 4, pp. 30–40, doi: https://doi.org/10.21303/2461-4262.2021.001940
Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., and Shyshatskyi , A. (2020), “Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation”, EUREKA: Physics and Engineering, vol. 4, pp. 78−89, doi: https://doi.org/10.21303/2461-4262.2020.001353
Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O., Adamenko, M., Shyshatskyi, A., Neroznak, Y. and Velychko, V. (2020), “Development of complex methodology of processing heterogeneous data in intelligent decision support systems”, Eastern-European Journal of Enterprise Technologies, vol. 4, no. 9 (106), pp. 14‒23, doi: https://doi.org/10.15587/1729-4061.2020.208554
Kuchuk, N., Mohammed, A.S., Shyshatskyi, A. and Nalapko, O. (2019), “The Method of Improving the Efficiency of Routes Selection in Networks of Connection with the Possibility of Self-Organization”, International Journal of Advanced Trends in Computer Science and Engineering, vol. 8,. no. 1.2., pp. 1–6, doi: https://doi.org/10.30534/ijatcse/2019/0181.22019
Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O. and Neroznak, Ye. (2020), “Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System”, International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 4, pp. 5583‒5590, doi: https://doi.org/10.30534/ijatcse/2020/206942020.
Pozna, C., Precup, R.-E., Horváth, E. and Petriu, E.M. (2022), “Hybrid Particle Filter–Particle Swarm Optimization Algorithm and Application to Fuzzy Controlled Servo Systems”, IEEE Transactions on Fuzzy Systems, vol. 30, no. 10, pp. 4286−4297, Oct. 2022, doi: https://doi.org/10.1109/TFUZZ.2022.3146986
Yang X.S. and Deb. S (2014), “Cuckoo search: recent advances and applications”, Neural Computing and Applications, vol. 24, pp. 169–174, doi: https://doi.org/10.1007/s00521-013-1367-1
Mirjalili, S. (2015), “The ant lion optimizer”, Advances in Engineering Software, vol. 83, pp. 80–98, doi: https://doi.org/10.1016/j.advengsoft.2015.01.010.
Yu, J..J.Q and Li, V.O.K. (2015), “A social spider algorithm for global optimization”, Applied Soft Computing, vol. 30, pp. 614–627, doi: https://doi.org/10.1016/j.asoc.2015.02.014
Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), “Grey Wolf Optimizer”, Advances in Engineering Software, vol. 69, pp. 46–61, doi: https://doi.org/10.1016/j.advengsoft.2013.12.007
Koval, V., Nechyporuk, O., Shyshatskyi, A., Nalapko, O., Shknai, O., Zhyvylo, Y., Yerko, V., Kreminskyi, B., Kovbasiuk, O. and Bychkov, A. (2023), “Improvement of the optimization method based on the cat pack algorithm”, Eastern-European Journal of Enterprise Technologies, vol. 1, no. 9 (121), pp. 41–48, doi: https://doi.org/10.15587/1729-4061.2023.273786
Gupta, E. and Saxena, A. (2015), “Robust generation control strategy based on Grey Wolf Optimizer”, Journal of Electrical Systems, vol. 11, pp. 174–188, available at: https://journal.esrgroups.org/jes/article/view/387
Chaman-Motlagh, A. (2015), “Superdefect Photonic Crystal Filter Optimization Using Grey Wolf Optimizer”, IEEE Photonics Technology Letters, vol. 27, no. 22, pp. 2355−2358, doi: https://doi.org/10.1109/LPT.2015.2464332
Nuaekaew, K., Artrit, P., Pholdee, N. and Bureerat, S. (2017), “Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer”. Expert Systems with Applications. vol. 87, pp. 79–89, doi: https://doi.org/10.1016/j.eswa.2017.06.009
Koval M., Sova O., Shyshatskyi A., Orlov O., Artabaiev Yu., Shknai O., Veretnov A., Koshlan O., Zhyvylo Ye. and Zhyvylo I. (2022), “Improvement of complex resource management of special-purpose communication systems”, Eastern-european journal of enterprise technologies, vol. 5, no. 9 (119), рр. 34−44, doi: https://doi.org/10.15587/1729-4061.2022.266009
Ali, M., El-Hameed, M.A. and Farahat, M.A. (2017) “Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer”. Renewable Energy. vol. 111, pp. 455–462, doi: https://doi.org/10.1016/j.renene.2017.04.036
Zhang, S. and Zhou, Y (2017), “Template matching using grey wolf optimizer with lateral inhibition”, Optik, vol. 130, pp. 1229–1243, doi: https://doi.org/10.1016/j.ijleo.2016.11.173
Khouni, S.E., Menacer, T. (2024), “Nizar optimization algorithm: a novel metaheuristic algorithm for global optimization and engineering applications”, The Journal of Supercomputing, vol. 80, pp. 3229–3281, doi: https://doi.org/10.1007/s11227-023-05579-4
Saremi, S, Mirjalili, S. and Lewis, A (2017), “Grasshopper optimisation algorithm: theory and application”, Advances in Engineering Software, vol. 105, pp. 30–47, doi: https://doi.org/10.1016/j.advengsoft.2017.01.004
Braik, M.S (2021), “Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems”, Expert Systems with Applications, vol. 174, 114685, doi: https://doi.org/10.1016/j.eswa.2021.114685
Thamer, K. A., Sova, O., Shaposhnikova, O., Yashchenok, V., Stanovska, I., Shostak, S., Rudenko, O., Petruk, S., Matsyi, O., and Kashkevich, S. (2024), “Development of a solution search method using a combined bio-inspired algorithm”, Eastern-European Journal of Enterprise Technologies, vol. 1, no. 4 (127), pp. 6–13, doi: https://doi.org/10.15587/1729-4061.2024.298205.
Yapici, H. and Cetinkaya, N. (2019), “A new meta-heuristic optimizer: Pathfinder algorithm”, Applied Soft Computing, vol. 78, pp. 545–568, doi: https://doi.org/10.1016/j.asoc.2019.03.012
Duan, H. and Qiao, P. (2014), “Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning”, International Journal of Intelligent Computing and Cybernetics, vol. 7, iss. 1, pp. 24–37, doi: https://doi.org/10.1108/IJICC-02-2014-0005
Shyshatskyi, A., Romanov, O., Shknai, O., Babenko, V., Koshlan, O., Pluhina, T., Biletska, A., Stasiuk, T., Kashkevich, S., and Kryvosheiev, V. (2023), “Development of a solution search method using the improved emperor penguin algorithm”. Eastern-European Journal of Enterprise Technologies, vol. 6, no. 4 (126), pp. 6–13, doi: https://doi.org/10.15587/1729-4061.2023.291008
Yang, X.S (2012), “Flower pollination algorithm for global optimization”, Unconventional computing and natural computation, pp. 240–249, doi: https://doi.org/10.1007/978-3-642-32894-7_27.
Gomes, G.F, da Cunha, S.S. and Ancelotti, A.C (2019), “A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates”, Engineering with Computers, vol. 35, iss. 2, pp. 619–626, doi: https://doi.org/10.1007/s00366-018-0620-8.
Mehrabian, A.R. and Lucas, C (2006), “A novel numerical optimization algorithm inspired from weed colonization”, Ecological Informatics. vol. 1, Iss. 4, pp. 355–366, doi: https://doi.org/10.1016/j.ecoinf.2006.07.003
Qi, X., Zhu, Y., Chen, H. and Niu B. (2013), “An idea based on plant root growth for numerical optimization”, Intelligent Computing Theories and Technology, Berlin, Heidelberg, pp. 571–578, doi:
https://doi.org/10.1007/978-3-642-39482-9_66
Bezuhlyi, V., Oliynyk, V., Romanenko І., Zhuk, O., Kuzavkov, V., Borysov, O., Korobchenko, S., Ostapchuk, E., Davydenko, T., and Shyshatskyi, A. (2021), “Development of object state estimation method in intelligent decision support systems”, Eastern-European Journal of Enterprise Technologies, vol. 5, no. 3 (113), pp. 54–64, doi: https://doi.org/10.15587/1729-4061.2021.239854
Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian ,V., Lazuta, R., Kravchenko, S., Protas, N. and Momit, A.(2021), “Development of estimation and forecasting method in intelligent decision support systems”. Eastern-European Journal of Enterprise Technologies, vol. 3, no. 9(111), pp. 51–62, doi: https://doi.org/10.15587/1729-4061.2021.232718.
Sova, O., Radzivilov, H., Shyshatskyi, A., Shevchenko, D., Molodetskyi, B., Stryhun, V., Yivzhenko, Yu., Stepanenko, Ye., Protas, N. and Nalapko, O. (2022), “Development of the method of increasing the efficiency of information transfer in the special purpose networks”, Eastern-european Journal of Enterprise Technologies, vol. 3, no. 4 (117)), pp. 6–14, doi: https://doi.org/10.15587/1729-4061.2022.259727
Zhang, H, Zhu, Y, and Chen, H (2014), “Root growth model: a novel approach to numerical function optimization and simulation of plant root system”. Soft Computing, vol. 18, iss. 3, pp. 521–537, doi: https://doi.org/10.1007/s00500-013-1073-z
Labbi, Y, Attous, D.B., Gabbar, H.A Mahdad, B. and Zidan, A. (2016), “A new rooted tree optimization algorithm for economic dispatch with valve-point effect”, International Journal of Electrical Power & Energy Systems, vol. 79, pp. 298–311, doi: https://doi.org/10.1016/j.ijepes.2016.01.028
Murase, H (2000), “Finite element inverse analysis using a photosynthetic algorithm”, Computers and Electronics in Agriculture, vol. 29, iss.1–2, pp. 115–123, doi: https://doi.org/10.1016/S0168-1699(00)00139-3
Zhao, S, Zhang, T, Ma, S and Chen, M. (2022), “Dandelion optimizer: a nature−inspired metaheuristic algorithm for engineering applications”, Engineering Applications of Artificial Intelligence, vol. 114, 105075, doi: https://doi.org/10.1016/j.engappai.2022.105075
Paliwal, N., Srivastava, L. and Pandit, M. (2022), “Application of grey wolf optimization algorithm for load frequency control in multi-source single area power system”, Evolutionary Intelligence, vol. 15, pp. 563–584, doi: https://doi.org/10.1007/s12065-020-00530-5
Kovalenko, A. and Kuchuk, H. (2022), “Methods to Manage Data in Self-healing Systems”, Studies in Systems, Decision and Control, vol. 425, pp. 113–171, doi: https://doi.org/10.1007/978-3-030-96546-4_3
Dorigo, M. and Blum, C. (2005), “Ant colony optimization theory: a survey”, Theoretical Computer Science, vol. 344, pp. 243–278, doi: https://doi.org/10.1016/j.tcs.2005.05.020
Poli, R, Kennedy, J and Blackwell, T. (2007), “Particle swarm optimization: an overview”, Swarm Intelligence, vol. 1, pp. 33–57, doi: https://doi.org/10.1007/s11721-007-0002-0
Kuchuk, G., Kovalenko, A., Komari, I.E., Svyrydov, A. and Kharchenko, V. (2019), “Improving Big Data Centers Energy Efficiency: Traffic Based Model and Method”, Kharchenko V., Kondratenko Y., Kacprzyk J. (eds) Green IT Engineering: Social, Business and Industrial Applications, Studies in Systems, Decision and Control, vol 171, Springer, Cham, doi: https://doi.org/10.1007/978-3-030-00253-4_8
Bansal, J.C., Sharma, H., Jadon, S.S. and Clerc, M. (2014), “Spider Monkey Optimization algorithm for numerical optimization”, Memetic Computing, vol. 6, pp. 31–47, doi: https://doi.org/10.1007/s12293-013-0128-0
Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V., Kuzavkov, V., Babeliuk, O., Derevianko, M. and. Kovalov, H. (2021), “The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment”, International Journal of Emerging Technology and Advanced Engineering, vol. 11, no. 05, pp. 37‒41, doi: https://doi.org/10.46338/ijetae0521_05
Maccarone, A.D., Brzorad, J.N. and Stone, H.M. (2008), “Characteristics and Energetics Of Great Egret And Snowy Egret Foraging Flights”, Waterbirds, vol. 31, no. 4, pp. 541‒549, available at: https://www.jstor.org/stable/40212108
Ramaji, I. J. and Memari, A. M. (2018),. “Interpretation of structural analytical models from the coordination view in building information models”, Automation in Construction, no. 90, pp. 117–133, doi: https://doi.org/10.1016/j.autcon.2018.02.025
Mukhin, V., Kuchuk, N., Kosenko, N., Kuchuk, H. and Kosenko, V. (2020),”Decomposition Method for Synthesizing the Computer System Architecture , Advances in Intelligent Systems and Computing”, AISC, vol. 938, pp 289–300, doi: https://doi.org/10.1007/978-3-030-16621-2_27
Pérez-González, C. J., Colebrook, M., Roda-García, J. L. and Rosa-Remedios, C. B. (2019), “Developing a data analytics platform to support decision making in emergency and security management”,. Expert Systems with Applications, no. 120, pp. 167–184, doi: https://doi.org/10.1016/j.eswa.2018.11.023
Chen, H. (2018), “Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process”, Procedia Computer Science, no. 131, pp. 952–958, doi: https://doi.org/10.1016/j.procs.2018.04.233
Mozhaev, O., Kuchuk, H., Kuchuk, N., Mykhailo, M. and Lohvynenko, M. (2017), “Multiservice network security metric”, 2nd International Conference on Advanced Information and Communication Technologies, AICT 2017 – Proceedings, pp. 133–136, doi: https://doi.org/10.1109/AIACT.2017.8020083
Chan, H. K., Sun, X. and Chung, S.-H. (2019), “When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process?”, Decision Support Systems. pp. 1–37, doi: https://doi.org/10.1016/j.dss.2019.113114
Petrovska, I. and Kuchuk, H. (2023), “Adaptive resource allocation method for data processing and security in cloud environment”, Advanced Information Systems, vol. 7(3), pp. 67–73, doi: https://doi.org/10.20998/2522-9052.2023.3.10
Osman, A. M. S., (2019), “A novel big data analytics framework for smart cities”, Future Generation Computer Systems, vol. 91., pp. 620–633, doi: https://doi.org/10.1016/j.future.2018.06.046.
Nechyporuk, O., Sova, O., Shyshatskyi, A., Kravchenko, S., Nalapko, O., Shknai, O., Klimovych, S., Kravchenko, O., Kovbasiuk, O. and Bychkov, A. (2023), “Development of a method of complex analysis and multidimensional forecasting of the state of intelligence objects”, Eastern-European Journal of Enterprise Technologies, vol. 2, no. 4 (122), pp. 31–41, doi: https://doi.org/10.15587/1729-4061.2023.276168.
Merrikh-Bayat F, (2015), “The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature”, Applied Soft Computing, vol. 33, pp. 292–303, doi: https://doi.org/10.1016/j.asoc.2015.04.048
Poliarus, O., Krepych, S., and Spivak, I. (2023), “Hybrid approach for data filtering and machine learning inside content management system”, Advanced Information Systems, vol. 7, no. 4, pp. 70–74, doi: https://doi.org/10.20998/2522-9052.2023.4.09
Kuchuk, N., Mozhaiev, O., Semenov, S., Haichenko, A., Kuchuk, H., Tiulieniev, S., Mozhaiev, M., Davydov, V., Brusakova, O. and Gnusov, Y. (2023), “Devising a method for balancing the load on a territorially distributed foggy environment”, Eastern-European Journal of Enterprise Technologies, vol. 1(4 (121), pp. 48–55, doi: https://doi.org/10.15587/1729-4061.2023.274177
Balochian, S and Baloochian, H. (2019), “Social mimic optimization algorithm and engineering applications”, Expert Systems with Applications, vol. 134, pp. 178–191, doi: https://doi.org/10.1016/j.eswa.2019.05.035
Melvix, J. L (2014), “Greedy politics optimization. Metaheuristic inspired by political strategies adopted during state assembly elections”, International advance computing conference (IACC), IEEE, pp. 1157–1162, doi: https://doi.org/10.1109/IAdCC.2014.6779490.
Moosavian, N. and Roodsari, B.K. (2013), “Soccer league competition algorithm, a new method for solving systems of nonlinear equations,. International Journal of Intelligence Science. vol. 4, no. 1, pp. 7–16, doi: https://doi.org/10.4236/ijis.2014.41002
Hayyolalam, V, Kazem, A.A.P (2020), “Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems”, Engineering Applications of AI, vol. 87, doi: https://doi.org/10.1016/j.engappai.2019.103249
Abualigah, L., Yousri D., Elaziz M.A. and Gandomi A.H. (2021), “Aquila optimizer: a novel meta-heuristic optimization algorithm”, Computers & Industrial Engineeringvol, 157, 107250, doi: https://doi.org/10.1016/j.cie.2021.107250
Hodlevskyi, M., and Burlakov, G. (2023), “Information technology of quality improvement planning of process subsets of the spice model”, Advanced Information Systems, vol. 7, no. 4, pp. 52–59, doi: https://doi.org/10.20998/2522-9052.2023.4.06
Askari, Q., Younas, I. and Saeed, M. (2020), “Political optimizer: A novel socio-inspired meta-heuristic for global optimization”, Knowledge-Based Systems, vol. 195, 105709, doi: https://doi.org/10.1016/j.knosys.2020.105709
Kovalenko, A., Kuchuk, H., Kuchuk, N. and Kostolny, J. (2021), “Horizontal scaling method for a hyperconverged network”, 2021 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, doi: https://doi.org/10.1109/IDT52577.2021.9497534
Mohamed, A.W, Hadi, A.A and Mohamed, A.K (2020), “Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm”. International Journal of Machine Learning and Cybernetics. vol. 11, іss. 7, pp. 1501–1529, doi: https://doi.org/10.1007/s13042-019-01053-x
Gödri, I., Kardos, C., Pfeiffer, A. and Váncza, J. (2019), “Data analytics-based decision support workflow for high-mix low-volume production systems”, CIRP Annals, vol. 68, no.1, pp. 471–474, doi: https://doi.org/10.1016/j.cirp.2019.04.001
Harding, J. L. (2013), “Data quality in the integration and analysis of data from multiple sources: some research challenges”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, pp. 59–63, doi: https://doi.org/10.5194/isprsarchives-XL-2-W1-59-2013
Dotsenko, N., Chumachenko, I., Galkin, A., Kuchuk, H. and Chumachenko, D. (2023), “Modeling the Transformation of Configuration Management Processes in a Multi-Project Environment”, Sustainability (Switzerland), vol. 15(19), 14308, doi: https://doi.org/10.3390/su151914308
Orouskhani, M., Orouskhani, Y., Mansouri, M. and Teshnehlab, M. (2013), “A novel cat swarm optimization algorithm for unconstrained optimization problems”, International Journal “Information Technology and Computer Science”, no. 11, pp. 32−41, doi: https://doi.org/10.5815/ijitcs.2013.11.04
Karaboga, D. and Basturk B. (2007), “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm”, Journal of Global Optimization. vol. 39, pp. 459–471, doi: https://doi.org/10.1007/s10898-007-9149-x
Fister, I., Yang X.S. and Brest J. (2013), “A comprehensive review of firefly algorithms”. Swarm and Evolutionary Computation, vol. 13, pp. 34–46, doi: https://doi.org/10.1016/j.swevo.2013.06.001
Sova, O., Radzivilov, H., Shyshatskyi, A., Shvets, P., Tkachenko, V., Nevhad, S., Zhuk, O., Kravchenko, S., Molodetskyi, B. and Miahkykh, H. (2022). “Development of a method to improve the reliability of assessing the condition of the monitoring object in special-purpose information systems”. Eastern-european Journal of Enterprise Technologies, vol. 2, no. 3 (116), pp. 6–14, doi: https://doi.org/10.15587/1729-4061.2022.254122.
Khudov, H., Khizhnyak , I., Glukhov, S.., Shamrai, N., and Pavlii, V. (2024), “The method for objects detection on satellite imagery based on the firefly algorithm”, Advanced Information Systems, vol. 8, no. 1, pp. 5–11, doi: https://doi.org/10.20998/2522-9052.2024.1.01
Owaid, S. R., Zhuravskyi, Y., Lytvynenko, O., Veretnov, A., Sokolovskyi, D., Plekhova, G., Hrinkov, V., Pluhina, T., Neronov, S., and Dovbenko, O. (2024), “Development of a method of increasing the efficiency of decision-making in organizational and technical systems”, Eastern-European Journal of Enterprise Technologies, vol. 1, no. 4 (127), pp. 14–22, doi: https://doi.org/10.15587/1729-4061.2024.298568
Kuchuk, G., Nechausov, S. and Kharchenko, V. (2015), “Two-stage optimization of resource allocation for hybrid cloud data store”, International Conference on Information and Digital Technologies, Zilina, pp. 266–271, doi: http://dx.doi.org/10.1109/DT.2015.7222982
Tyurin, V., Bieliakov, R., Odarushchenko, E., Yashchenok, V., Shaposhnikova, O., Lyashenko, A., Stanovskyi, O., Melnyk, B., Sus, S., and Dvorskyi, M. (2023). “Development of a solution search method using an improved locust swarm algorithm”, Eastern-European Journal of Enterprise Technologies, vol. 5, no. 4 (125), pp. 25–33, doi: https://doi.org/10.15587/1729-4061.2023.287316
Hunko, M., Tkachov, V., Kuchuk, H. and Kovalenko, A. (2023), “Advantages of Fog Computing: A Comparative Analysis with Cloud Computing for Enhanced Edge Computing Capabilities”, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPI Week 2023 - Conference Proceedings, code 194480, doi: https://doi.org/10.1109/KhPIWeek61412.2023.10312948
Yakymiak, S., Vdovytskyi, Y., Artabaiev, Y., Degtyareva, L., Vakulenko, Y., Nevhad, S., Andronov, V., Lazuta, R., Shapoval, P., and Artamonov, Y. (2023), “Development of the solution search method using the population algorithm of global search optimization”, Eastern-European Journal of Enterprise Technologies, vol. 3, no. 4 (123), pp. 39–46, doi: https://doi.org/10.15587/1729-4061.2023.281007
Petrovska, I., Kuchuk, H., Mozhaiev, M. (2022), Features of the distribution of computing resources in cloud systems, 2022 IEEE 4th KhPI Week on Advanced Technology, KhPI Week 2022 - Conference Proceedings, 03-07 October 2022, Code 183771, doi: https://doi.org/10.1109/KhPIWeek57572.2022.9916459
Mohammed, B. A., Zhuk, O., Vozniak, R., Borysov, I., Petrozhalko, V., Davydov, I., Borysov, O., Yefymenko, O., Protas, N., and Kashkevich, S. (2023), “Improvement of the solution search method based on the cuckoo algorithm”, Eastern-European Journal of Enterprise Technologies, vol. 2, no. 4 (122), pp. 23–30, doi: https://doi.org/10.15587/1729-4061.2023.277608.
Arora S.and Singh, S (2019), “Butterfly optimization algorithm: a novel approach for global optimization”, Soft Computing, vol. 3, pp. 715–734, doi: https://doi.org/10.1007/s00500-018-3102-4