DEEPFAKE DETECTION USING TRANSFER LEARNING-BASED XCEPTION MODEL

Main Article Content

Velusamy Rajakumareswaran
Surendran Raguvaran
Venkatachalam Chandrasekar
Sugavanam Rajkumar
Vijayakumar Arun

Abstract

Justification of the purpose of the research. In recent times, several approaches for face manipulation in videos have been extensively applied and availed to the public which makes editing faces in video easy for everyone effortlessly with realistic efforts.  While beneficial in various domains, these methods could significantly harm society if employed to spread misinformation. So, it is also vital to properly detect whether a face has been distorted in a video series. To detect this deepfake, convolutional neural networks can be used in past works. However, it needs a greater number of parameters and more computations. So, to overcome these limitations and to accurately detect deepfakes in videos, a transfer learning-based model named the Improved Xception model is suggested. Obtained results. This model is trained using extracted facial landmark features with robust training. Moreover, the improved Xception model's detection accuracy is evaluated alongside ResNet and Inception, considering model loss, accuracy, ROC, training time, and the Precision-Recall curve. The outcomes confirm the success of the proposed model, which employs transfer learning techniques to identify fraudulent videos. Furthermore, the method demonstrates a noteworthy 5% increase in efficiency compared to current systems.

Article Details

How to Cite
Rajakumareswaran , V. ., Raguvaran , S. ., Chandrasekar , V. ., Rajkumar , S. ., & Arun , V. . (2024). DEEPFAKE DETECTION USING TRANSFER LEARNING-BASED XCEPTION MODEL. Advanced Information Systems, 8(2), 89–98. https://doi.org/10.20998/2522-9052.2024.2.10
Section
Intelligent information systems
Author Biographies

Velusamy Rajakumareswaran , Erode Sengunthar Engineering College, Thuduppathi, Tamil Nadu

Ph.D., Assistant Professor, Department of Computer Science and Design

Surendran Raguvaran , SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Chennai, TN, India

Ph.D., Assistant Professor, Department of Computational Intelligence, School of Computing

Venkatachalam Chandrasekar , Jain University, Bangalore

Ph.D., Professor, Faculty of Engineering and Technology

Sugavanam Rajkumar , Sona College of Technology (Autonomous, affiliated to Anna University), Salem

MTech, Assistant Professor

Vijayakumar Arun , School of Engineering, Mohan Babu University, Tirupati

Ph.D., Professor, Department of Electrical and Electronics Engineering

References

Hashmi, M. F., Ashish, B. K. K., Keskar, A. G., Bokde, N. D., Yoon, J. H. and Geem, Z. W. (2020), “An Exploratory Analysis on Visual Counterfeits Using Conv-LSTM Hybrid Architecture”, IEEE Access, vol. 8, pp. 101293–101308, doi: https://doi.org/10.1109/ACCESS.2020.2998330

Guarnera, L., Giudice, O. and Battiato, S. (2020), “Fighting Deepfake by Exposing the Convolutional Traces on Images”, IEEE Access, vol. 8, pp. 165085–165098, doi: http://dx.doi.org/10.1109/ACCESS.2020.3023037

Neves, J. C., Tolosana, R., Vera-Rodriguez, R., Lopes, V., Proença, H. and Fierrez, J. (2020), “GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection”, IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 5, pp. 1038–1048, Aug. 2020, doi: https://doi.org/10.1109/JSTSP.2020.3007250

Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A. and Ortega- Garcia, J. (2020), “DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection”, Information Fusion, doi: https://doi.org/10.1016/j.inffus.2020.06.014

Verdoliva, L. (2001), “Media Forensics and DeepFakes: An Overview”, arXiv preprint, doi:

https://doi.org/10.48550/arXiv.2001.06564

Nguyen, H. H., Yamagishi, J. and Echizen, I. (2018), “Capsule-forensics: Using capsule networks to detect forged images and videos”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1810.11215

Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J. and Nießner, M. (2019), “Faceforensics++: Learning to detect manipulated facial images”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1901.08971

Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M. and Verdoliva, L. (2018), “Forensictransfer:Weakly-supervised domain adaptation for forgery detection”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1812.02510

Li, Y., Chang, M.-C., Farid, H. and Lyu, S. (2018), “In ictu oculi: Exposing ai generated fake face videos by detecting eye blinking,” arXiv preprint, doi: https://doi.org/10.48550/arXiv.1806.02877

Nguyen, H. H., Fang, F., Yamagishi, J. and Echizen, I. (2019), “Multi-task learning for detecting and segmentingmanipulated facial images and videos,” arXiv preprint, doi: https://doi.org/10.48550/arXiv.1906.06876

Ciftci, U. A. and Demir, I. (2019), “Fakecatcher: Detection of synthetic portrait videos using biological signals”, doi: https://doi.org/10.48550/arXiv.1901.02212

Brundage, M. et al. (2018), “The malicious use of artificial intelligence: Forecasting, prevention, and mitigation”, arXiv:1802.07228, available at: http://arxiv.org/abs/1802.07228

Christian, Jon (2018), The Outline: Experts Fear Face Swapping Tech Could Start an International Showdown, available at: https://tinyurl.com/3hbzpw2r

Nasir, J. A., Khan, O. S. and Varlamis, I. (2021), “Fake news detection: A hybrid CNN-RNN based deep learning approach”, International Journal of Information Management Data Insights, vol. 1(1), 100007, doi:

https://doi.org/10.1016/j.jjimei.2020.100007

Jung, T., Kim, S. and Kim, K. (2020), “DeepVision: Deepfakes Detection Using Human Eye Blinking Pattern”, IEEE Access, vol. 8, pp. 83144–83154, doi: https://doi.org/10.1109/ACCESS.2020.2988660

Hsu, C.-C., Zhuang, Y.-X. and Lee, C-Y. (2020), “Deep Fake Image Detection Based on Pairwise Learning”, Applied Sciences, vol. 10(1), 370, doi: https://doi.org/10.3390/app10010370

Korshunov, P. and Marcel, S. (2018), “Deepfakes: a new threat to face recognition? assessment and detection”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1812.08685

Chintha, A., Thai, B., Sohrawardi, S. J., Bhatt, K., Hickerson, A., Wright, M. and Ptucha, R. (2020), “Recurrent Convolutional structures for audio spoof and video Deepfake detection”, IEEE Journal of Selected Topics in Signal Processing, vol. 14(5), pp. 1024–1037, doi: https://doi.org/10.1109/jstsp.2020.2999185

Caldelli, R., Galteri, L., Amerini, I. and Del Bimbo, A. (2021), “Optical flow based CNN for detection of unlearnt DeepFake manipulations”, Pattern Recognition Letters, vol. 146, pp. 31–37, doi: https://doi.org/10.1016/j.patrec.2021.03.005

Wang, R., Ma, L., Juefei-Xu, F., Xie, X., Wang, J. and Liu, Y. (2019), “FakeSpotter: A Simple Baseline for Spotting AI-Synthesized Fake Faces”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1909.06122

McCloskey, S. and Albright, M. (2018), “Detecting GAN-Generated Imagery Using Color Cues”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1812.08247

Nataraj, L., Mohammed, T., Manjunath, B., Chandrasekaran, S., Flenner, A., Bappy, J. and Roy-Chowdhury, A. (2019), “Detecting GAN Generated Fake Images Using Co-Occurrence Matrices”, Electronic Imaging, vol. 5, pp. 1–7, doi: https://doi.org/10.48550/arXiv.1903.06836

(2023), FaceForensics++. (n.d.). Kaggle: Your Machine Learning and Data Science Community, available at: https://www.kaggle.com/sorokin/faceforensics

Popat, K., Mukherjee, S., Yates, A. and Weikum, G. (2018), “Declare: Debunking fake news and false claims using evidence-aware deep learning”, arXiv:1809.06416, doi: https://doi.org/10.48550/arXiv.1809.06416

Thangaraj, R., Anandamurugan, S. and Kaliappan, V.K. (2020), “Automated tomato leaf disease classification using transfer learning-based deep convolution neural network”, Journal of Plant Diseases and Protection, vol. 128, pp. 73–86, doi: https://doi.org/10.1007/s41348-020-00403-0

Chollet, F. (2017), “Xception: Deep learning with Depthwise separable convolutions”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, doi: https://doi.org/10.1109/cvpr.2017.195

Garcia Cordero, C., Hauke, S., Muhlhauser, M. and Fischer, M. (2016), “Analyzing flow-based anomaly intrusion detection using Replicator neural networks”, 2016 14th Annual Conference on Privacy, Security, and Trust (PST), doi: https://doi.org/10.1109/pst.2016.7906980

(2023), Ondyari/FaceForensics: Github of the FaceForensics dataset. (n.d.), GitHub, available at:

https://github.com/ondyari/FaceForensics?tab=readme-ov-file