DEEPFAKE DETECTION USING TRANSFER LEARNING-BASED XCEPTION MODEL
Main Article Content
Abstract
Justification of the purpose of the research. In recent times, several approaches for face manipulation in videos have been extensively applied and availed to the public which makes editing faces in video easy for everyone effortlessly with realistic efforts. While beneficial in various domains, these methods could significantly harm society if employed to spread misinformation. So, it is also vital to properly detect whether a face has been distorted in a video series. To detect this deepfake, convolutional neural networks can be used in past works. However, it needs a greater number of parameters and more computations. So, to overcome these limitations and to accurately detect deepfakes in videos, a transfer learning-based model named the Improved Xception model is suggested. Obtained results. This model is trained using extracted facial landmark features with robust training. Moreover, the improved Xception model's detection accuracy is evaluated alongside ResNet and Inception, considering model loss, accuracy, ROC, training time, and the Precision-Recall curve. The outcomes confirm the success of the proposed model, which employs transfer learning techniques to identify fraudulent videos. Furthermore, the method demonstrates a noteworthy 5% increase in efficiency compared to current systems.
Article Details
References
Hashmi, M. F., Ashish, B. K. K., Keskar, A. G., Bokde, N. D., Yoon, J. H. and Geem, Z. W. (2020), “An Exploratory Analysis on Visual Counterfeits Using Conv-LSTM Hybrid Architecture”, IEEE Access, vol. 8, pp. 101293–101308, doi: https://doi.org/10.1109/ACCESS.2020.2998330
Guarnera, L., Giudice, O. and Battiato, S. (2020), “Fighting Deepfake by Exposing the Convolutional Traces on Images”, IEEE Access, vol. 8, pp. 165085–165098, doi: http://dx.doi.org/10.1109/ACCESS.2020.3023037
Neves, J. C., Tolosana, R., Vera-Rodriguez, R., Lopes, V., Proença, H. and Fierrez, J. (2020), “GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection”, IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 5, pp. 1038–1048, Aug. 2020, doi: https://doi.org/10.1109/JSTSP.2020.3007250
Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A. and Ortega- Garcia, J. (2020), “DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection”, Information Fusion, doi: https://doi.org/10.1016/j.inffus.2020.06.014
Verdoliva, L. (2001), “Media Forensics and DeepFakes: An Overview”, arXiv preprint, doi:
https://doi.org/10.48550/arXiv.2001.06564
Nguyen, H. H., Yamagishi, J. and Echizen, I. (2018), “Capsule-forensics: Using capsule networks to detect forged images and videos”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1810.11215
Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J. and Nießner, M. (2019), “Faceforensics++: Learning to detect manipulated facial images”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1901.08971
Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M. and Verdoliva, L. (2018), “Forensictransfer:Weakly-supervised domain adaptation for forgery detection”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1812.02510
Li, Y., Chang, M.-C., Farid, H. and Lyu, S. (2018), “In ictu oculi: Exposing ai generated fake face videos by detecting eye blinking,” arXiv preprint, doi: https://doi.org/10.48550/arXiv.1806.02877
Nguyen, H. H., Fang, F., Yamagishi, J. and Echizen, I. (2019), “Multi-task learning for detecting and segmentingmanipulated facial images and videos,” arXiv preprint, doi: https://doi.org/10.48550/arXiv.1906.06876
Ciftci, U. A. and Demir, I. (2019), “Fakecatcher: Detection of synthetic portrait videos using biological signals”, doi: https://doi.org/10.48550/arXiv.1901.02212
Brundage, M. et al. (2018), “The malicious use of artificial intelligence: Forecasting, prevention, and mitigation”, arXiv:1802.07228, available at: http://arxiv.org/abs/1802.07228
Christian, Jon (2018), The Outline: Experts Fear Face Swapping Tech Could Start an International Showdown, available at: https://tinyurl.com/3hbzpw2r
Nasir, J. A., Khan, O. S. and Varlamis, I. (2021), “Fake news detection: A hybrid CNN-RNN based deep learning approach”, International Journal of Information Management Data Insights, vol. 1(1), 100007, doi:
https://doi.org/10.1016/j.jjimei.2020.100007
Jung, T., Kim, S. and Kim, K. (2020), “DeepVision: Deepfakes Detection Using Human Eye Blinking Pattern”, IEEE Access, vol. 8, pp. 83144–83154, doi: https://doi.org/10.1109/ACCESS.2020.2988660
Hsu, C.-C., Zhuang, Y.-X. and Lee, C-Y. (2020), “Deep Fake Image Detection Based on Pairwise Learning”, Applied Sciences, vol. 10(1), 370, doi: https://doi.org/10.3390/app10010370
Korshunov, P. and Marcel, S. (2018), “Deepfakes: a new threat to face recognition? assessment and detection”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1812.08685
Chintha, A., Thai, B., Sohrawardi, S. J., Bhatt, K., Hickerson, A., Wright, M. and Ptucha, R. (2020), “Recurrent Convolutional structures for audio spoof and video Deepfake detection”, IEEE Journal of Selected Topics in Signal Processing, vol. 14(5), pp. 1024–1037, doi: https://doi.org/10.1109/jstsp.2020.2999185
Caldelli, R., Galteri, L., Amerini, I. and Del Bimbo, A. (2021), “Optical flow based CNN for detection of unlearnt DeepFake manipulations”, Pattern Recognition Letters, vol. 146, pp. 31–37, doi: https://doi.org/10.1016/j.patrec.2021.03.005
Wang, R., Ma, L., Juefei-Xu, F., Xie, X., Wang, J. and Liu, Y. (2019), “FakeSpotter: A Simple Baseline for Spotting AI-Synthesized Fake Faces”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1909.06122
McCloskey, S. and Albright, M. (2018), “Detecting GAN-Generated Imagery Using Color Cues”, arXiv preprint, doi: https://doi.org/10.48550/arXiv.1812.08247
Nataraj, L., Mohammed, T., Manjunath, B., Chandrasekaran, S., Flenner, A., Bappy, J. and Roy-Chowdhury, A. (2019), “Detecting GAN Generated Fake Images Using Co-Occurrence Matrices”, Electronic Imaging, vol. 5, pp. 1–7, doi: https://doi.org/10.48550/arXiv.1903.06836
(2023), FaceForensics++. (n.d.). Kaggle: Your Machine Learning and Data Science Community, available at: https://www.kaggle.com/sorokin/faceforensics
Popat, K., Mukherjee, S., Yates, A. and Weikum, G. (2018), “Declare: Debunking fake news and false claims using evidence-aware deep learning”, arXiv:1809.06416, doi: https://doi.org/10.48550/arXiv.1809.06416
Thangaraj, R., Anandamurugan, S. and Kaliappan, V.K. (2020), “Automated tomato leaf disease classification using transfer learning-based deep convolution neural network”, Journal of Plant Diseases and Protection, vol. 128, pp. 73–86, doi: https://doi.org/10.1007/s41348-020-00403-0
Chollet, F. (2017), “Xception: Deep learning with Depthwise separable convolutions”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, doi: https://doi.org/10.1109/cvpr.2017.195
Garcia Cordero, C., Hauke, S., Muhlhauser, M. and Fischer, M. (2016), “Analyzing flow-based anomaly intrusion detection using Replicator neural networks”, 2016 14th Annual Conference on Privacy, Security, and Trust (PST), doi: https://doi.org/10.1109/pst.2016.7906980
(2023), Ondyari/FaceForensics: Github of the FaceForensics dataset. (n.d.), GitHub, available at: