Main Article Content

Valerii Filatov
Anna Filatova
Anatolii Povoroznyuk
Shakhin Omarov


Relevance. The avalanche-like growth in the amount of information on the Internet necessitates the development of effective methods for quickly processing such information in information systems. Clustering of news information is carried out by taking into account both the morphological analysis of texts and graphic content. Thus, an urgent task is the clustering of images accompanying textual information on various web resources, including news portals. The subject of study is an image classifier that exhibits low sensitivity to increased information in databases. The purpose of the article is to enhance the efficiency of searching for identical images in databases experiencing a daily influx of 10-12 thousand images, by developing an image classifier. Methods used: mathematical modeling, content-based image retrieval, two-dimensional discrete cosine transform, image processing methods, decision-making methods. The following results were obtained. An image classifier has been developed with low sensitivity to increased database information. The properties of the developed classifier have been analyzed. The experiments demonstrated that clustering information based on images using the developed classifier proved to be sufficiently fast and cost-effective in terms of information volumes and computational power requirements.

Article Details

How to Cite
Filatov , V. ., Filatova , A. ., Povoroznyuk , A. ., & Omarov , S. . (2024). IMAGE CLASSIFIER FOR FAST SEARCH IN LARGE DATABASES. Advanced Information Systems, 8(2), 12–19.
Identification problems in information systems
Author Biographies

Valerii Filatov , National Technical University “Kharkiv Polytechnic Institute”, Kharkiv

PhD Student of Computer Engineering and Programming Department

Anna Filatova , National Technical University “Kharkiv Polytechnic Institute”, Kharkiv

Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming Department

Anatolii Povoroznyuk , National Technical University "Kharkiv Polytechnic Institute", Kharkiv

Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming Department

Shakhin Omarov , Kharkiv National University of Radio Electronics, Kharkiv

Doctor of Economic Sciences, Associate Professor, Professor of Computer-Integrated Technologies, Automation and Robotics Department


Amons, O. A., Yanov, Yu. O. and Bezpalyi, I. O. (2008), “Clustering of documents based on statistical proximity of terms”, Visnyk NTUU «KPI» Informatyka, upravlinnia ta obchysliuvalna tekhnika, No 49, pp. 55–62, available at:

Veres, O. M., Kis, Ya. P., Kuhivchak, V. A. and Rishniak I. V. (2018), “Choose methods to find new or similar images”, Visnyk Natsionalnoho universytetu "Lvivska politekhnika", Seriia: Informatsiini systemy ta merezhi, No 887, p. 43–50, available at:

Smeliakov, K. S., Chupryna, A. S., Sandrkin, D. L., Vakulik, Ye. V. and Drob, Ye. M. (2021), “Development of an invariant digital image model for quick search of data collections”, Zbirnyk naukovykh prats Kharkivskoho natsionalnoho universytetu Povitrianykh Syl, No 2(68), pp. 108–115, doi:

Smeliakov, K. S., Sandrkin, D. L., Tovchyrechko, D. O., Vakulik, Ye. V. and Drob, Ye. M. (2021), “Exploration of the method of quick search of digital images in the collections of data”, Systemy obrobky informatsii, No 2(165), pp. 54–63, doi:

Ali, F. and Hashem, A. (2020), “Content Based Image Retrieval (CBIR) by statistical methods”, Baghdad Science Journal, vol. 17(2 SI), pp. 694–700, DOI:

Salih, F.A.A. and Abdulla, A.A. (2021), “An Efficient Two-layer based Technique for Content-based Image Retrieval”, UHD Journal of Science and Technology, vol. 5(1), pp. 28–40, doi:

Xiaoqing, Li, Jiansheng, Yang and Jinwen, Ma (2021), “Recent developments of content-based image retrieval (CBIR)”, Neurocomputing, vol. 452, pp. 675–689, doi:

Salih, S.F. and Abdulla, A.A. (2021), “An Improved Content Based Image Retrieval Technique by Exploiting Bi-layer Concept”, UHD Journal of Science and Technology, vol. 5(1), pp. 1–12, doi:

Kashif, M., Raja, G. and Shaukat, F. (2020), “An efficient content-based image retrieval system for the diagnosis of lung diseases”, Journal of Digital Imaging, vol. 33, pp. 971–987, doi:

Garg, M. and Dhiman, G. (2021), “A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants”, Neural Computing and Applications, vol. 33, pp. 1311–1328, doi:

Ashraf, R., Ahmed, M., Jabbar, S., Khalid, S., Ahmad, A., Din, S. and Jeon, G. (2018), “Content based image retrieval by using color descriptor and discrete wavelet transform”, JMS, vol. 42, pp. 1–12, doi:

Kenchappa, Y.D. and Kwadiki, K. (2022), “Content-based image retrieval using integrated features and multi-subspace randomization and collaboration”, International Journal of System Assurance Engineering and Management, vol. 13, pp. 2540–2550, doi:

Mistry, Y., Ingole, D.T. and Ingole, M.D. (2018), “Content based image retrieval using hybrid features and various distance metric”, Journal of Electrical Systems and Information Technology, vol. 5(3), pp. 874–888, doi:

Lee, K., Lee, Y., Ko, H.-H. and Kang, M. (2022), “A Study on the Channel Expansion VAE for Content-Based Image Retrieval”, Applied Sciences, vol. 12(18), 9160, doi:

Bu, H.H., Kim, N.C. and Kim, S.H. (2023), “Content-based image retrieval using a fusion of global and local features”, ETRI Journal, vol. 45(3), pp. 505–518, doi:

Abdullah, Sura Mahmood and Jaber, Mustafa Musa (2023), “Deep learning for content-based image retrieval in FHE algorithms”, Journal of Intelligent Systems, vol. 32(1), 20220222, doi:

Datta, R., Joshi, D., Li, J. and Wang, J. Z. (2008), “Image retrieval”, ACM Computing Surveys, 40(2), pp. 1–60, doi:

Zalevska, O., Miroshnychenko, I., Smakovskyi, D., Haharin, O. and Palamar, I. (2023). “Improvement of the image clustering method”, Suchasni problemy modeliuvannia, vol. 24, pp. 79–86, DOI:

Halawani, A.H., Teynor, A., Setia, L., Brunner, G. and Retrieval, C.I. (2006), “Fundamentals and Applications of Image Retrieval: An Overview”, Datenbank-Spektrum, vol. 18, pp. 14–23, available at:

Bansal, M., Kumar, M. and Kumar, M. (2020), “2D object recognition techniques: State-of-the-art work”, Archives of Computational Methods in Engineering, vol. 28(3), pp. 1147–1161, doi:

Ibtihaal, M. Hameed, Sadiq, H. Abdulhussain and Basheera, M. Mahmmod (2021), “Content-based image retrieval: A review of recent trends”, Cogent Engineering, vol. 8, 1927469, doi:

Sikandar, S., Mahum, R. and Alsalman, A. (2023), “A Novel Hybrid Approach for a Content-Based Image Retrieval Using Feature Fusion”, Applied Sciences, vol. 13(7), 4581, doi:

Tzelepi, M. and Tefas, A. (2018), “Deep convolutional learning for content based image retrieval”, Neurocomputing, vol. 275, pp. 2467–2478, doi:

Sezavar, A., Farsi, H. and Mohamadzadeh, S. (2019), “Content-based image retrieval by combining convolutional neural networks and sparse representation”, Multimedia Tools and Applications, vol. 78(15), pp. 20895–20912, doi:

Phadikar, B.S., Phadikar, A. and Maity, G.K. (2018), “Content-based image retrieval in DCT compressed domain with MPEG-7 edge descriptor and genetic algorithm”, Pattern Analysis and Applications, vol. 21(2), pp. 469–489, DOI:

Alsmadi, M.K. (2020), “Content-based image retrieval using color, shape and texture descriptors and features”, Arabian Journal for Science and Engineering, vol. 45(4), pp. 3317–3330, doi:

Rusovych, S.Y. and Ponomarenko, N.N. (2012), “Study of the effectiveness of clustering methods in the formation of codebooks in digital image processing problems”, Radioelektronni i kompiuterni systemy, No 3, pp. 122–125, available at:

Sampathila, N. and Martis, R.J. (2022), “Computational approach for content-based image retrieval of K-similar images from brain MR image database”, Expert Systems, vol. 39(7), e12652, doi:

Monowar, M.M., Hamid, M.A., Ohi, A.Q., Alassafi, M.O. and Mridha, M.F. (2022), “A Self-Supervised Spatial Recurrent Network for Content-Based Image Retrieval”, Sensors, vol. 22(6), 2188, doi:

Junjie, Cai, Qiong, Liu, Francine, Chen, Dhiraj, Joshi and Qi, Tian (2014), “Scalable Image Search with Multiple Index Tables”, Proceedings of International Conference on Multimedia Retrieval (ICMR '14), Association for Computing Machinery, New York, NY, USA, pp. 407–410, doi:

Cheng, S., Wang, L. and Du A. (2019), “An Adaptive and Asymmetric Residual Hash for Fast Image Retrieval”, IEEE Access, vol. 7, pp. 78942–78953, doi: