IMAGE CLASSIFIER FOR FAST SEARCH IN LARGE DATABASES
Main Article Content
Abstract
Relevance. The avalanche-like growth in the amount of information on the Internet necessitates the development of effective methods for quickly processing such information in information systems. Clustering of news information is carried out by taking into account both the morphological analysis of texts and graphic content. Thus, an urgent task is the clustering of images accompanying textual information on various web resources, including news portals. The subject of study is an image classifier that exhibits low sensitivity to increased information in databases. The purpose of the article is to enhance the efficiency of searching for identical images in databases experiencing a daily influx of 10-12 thousand images, by developing an image classifier. Methods used: mathematical modeling, content-based image retrieval, two-dimensional discrete cosine transform, image processing methods, decision-making methods. The following results were obtained. An image classifier has been developed with low sensitivity to increased database information. The properties of the developed classifier have been analyzed. The experiments demonstrated that clustering information based on images using the developed classifier proved to be sufficiently fast and cost-effective in terms of information volumes and computational power requirements.
Article Details
References
Amons, O. A., Yanov, Yu. O. and Bezpalyi, I. O. (2008), “Clustering of documents based on statistical proximity of terms”, Visnyk NTUU «KPI» Informatyka, upravlinnia ta obchysliuvalna tekhnika, No 49, pp. 55–62, available at: https://ela.kpi.ua/handle/123456789/6114
Veres, O. M., Kis, Ya. P., Kuhivchak, V. A. and Rishniak I. V. (2018), “Choose methods to find new or similar images”, Visnyk Natsionalnoho universytetu "Lvivska politekhnika", Seriia: Informatsiini systemy ta merezhi, No 887, p. 43–50, available at: http://nbuv.gov.ua/UJRN/VNULPICM_2018_887_8
Smeliakov, K. S., Chupryna, A. S., Sandrkin, D. L., Vakulik, Ye. V. and Drob, Ye. M. (2021), “Development of an invariant digital image model for quick search of data collections”, Zbirnyk naukovykh prats Kharkivskoho natsionalnoho universytetu Povitrianykh Syl, No 2(68), pp. 108–115, doi: https://doi.org/10.30748/zhups.2021.68.14
Smeliakov, K. S., Sandrkin, D. L., Tovchyrechko, D. O., Vakulik, Ye. V. and Drob, Ye. M. (2021), “Exploration of the method of quick search of digital images in the collections of data”, Systemy obrobky informatsii, No 2(165), pp. 54–63, doi: https://doi.org/10.30748/soi.2021.165.07
Ali, F. and Hashem, A. (2020), “Content Based Image Retrieval (CBIR) by statistical methods”, Baghdad Science Journal, vol. 17(2 SI), pp. 694–700, DOI: http://dx.doi.org/10.21123/bsj.2020.17.2(SI).0694
Salih, F.A.A. and Abdulla, A.A. (2021), “An Efficient Two-layer based Technique for Content-based Image Retrieval”, UHD Journal of Science and Technology, vol. 5(1), pp. 28–40, doi: https://doi.org/10.21928/uhdjst.v5n1y2021.pp28-40
Xiaoqing, Li, Jiansheng, Yang and Jinwen, Ma (2021), “Recent developments of content-based image retrieval (CBIR)”, Neurocomputing, vol. 452, pp. 675–689, doi: https://doi.org/10.1016/j.neucom.2020.07.139
Salih, S.F. and Abdulla, A.A. (2021), “An Improved Content Based Image Retrieval Technique by Exploiting Bi-layer Concept”, UHD Journal of Science and Technology, vol. 5(1), pp. 1–12, doi: https://doi.org/10.21928/uhdjst.v5n1y2021.pp1-12
Kashif, M., Raja, G. and Shaukat, F. (2020), “An efficient content-based image retrieval system for the diagnosis of lung diseases”, Journal of Digital Imaging, vol. 33, pp. 971–987, doi: https://doi.org/10.1007/s10278-020-00338-w
Garg, M. and Dhiman, G. (2021), “A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants”, Neural Computing and Applications, vol. 33, pp. 1311–1328, doi: https://doi.org/10.1007/s00521-020-05017-z
Ashraf, R., Ahmed, M., Jabbar, S., Khalid, S., Ahmad, A., Din, S. and Jeon, G. (2018), “Content based image retrieval by using color descriptor and discrete wavelet transform”, JMS, vol. 42, pp. 1–12, doi: https://doi.org/10.1007/s10916-017-0880-7
Kenchappa, Y.D. and Kwadiki, K. (2022), “Content-based image retrieval using integrated features and multi-subspace randomization and collaboration”, International Journal of System Assurance Engineering and Management, vol. 13, pp. 2540–2550, doi: https://doi.org/10.1007/s13198-022-01663-9
Mistry, Y., Ingole, D.T. and Ingole, M.D. (2018), “Content based image retrieval using hybrid features and various distance metric”, Journal of Electrical Systems and Information Technology, vol. 5(3), pp. 874–888, doi:
https://doi.org/10.1016/j.jesit.2016.12.009
Lee, K., Lee, Y., Ko, H.-H. and Kang, M. (2022), “A Study on the Channel Expansion VAE for Content-Based Image Retrieval”, Applied Sciences, vol. 12(18), 9160, doi: https://doi.org/10.3390/app12189160
Bu, H.H., Kim, N.C. and Kim, S.H. (2023), “Content-based image retrieval using a fusion of global and local features”, ETRI Journal, vol. 45(3), pp. 505–518, doi: https://doi.org/10.4218/etrij.2022-0071
Abdullah, Sura Mahmood and Jaber, Mustafa Musa (2023), “Deep learning for content-based image retrieval in FHE algorithms”, Journal of Intelligent Systems, vol. 32(1), 20220222, doi: https://doi.org/10.1515/jisys-2022-0222
Datta, R., Joshi, D., Li, J. and Wang, J. Z. (2008), “Image retrieval”, ACM Computing Surveys, 40(2), pp. 1–60, doi: https://doi.org/10.1145/1348246.1348248
Zalevska, O., Miroshnychenko, I., Smakovskyi, D., Haharin, O. and Palamar, I. (2023). “Improvement of the image clustering method”, Suchasni problemy modeliuvannia, vol. 24, pp. 79–86, DOI: https://doi.org/10.33842/2313-125X-2022-24-79-86
Halawani, A.H., Teynor, A., Setia, L., Brunner, G. and Retrieval, C.I. (2006), “Fundamentals and Applications of Image Retrieval: An Overview”, Datenbank-Spektrum, vol. 18, pp. 14–23, available at: https://api.semanticscholar.org/CorpusID:45584192
Bansal, M., Kumar, M. and Kumar, M. (2020), “2D object recognition techniques: State-of-the-art work”, Archives of Computational Methods in Engineering, vol. 28(3), pp. 1147–1161, doi: https://doi.org/10.1007/s11831-020-09409-1
Ibtihaal, M. Hameed, Sadiq, H. Abdulhussain and Basheera, M. Mahmmod (2021), “Content-based image retrieval: A review of recent trends”, Cogent Engineering, vol. 8, 1927469, doi: https://doi.org/10.1080/23311916.2021.1927469
Sikandar, S., Mahum, R. and Alsalman, A. (2023), “A Novel Hybrid Approach for a Content-Based Image Retrieval Using Feature Fusion”, Applied Sciences, vol. 13(7), 4581, doi: https://doi.org/10.3390/app13074581
Tzelepi, M. and Tefas, A. (2018), “Deep convolutional learning for content based image retrieval”, Neurocomputing, vol. 275, pp. 2467–2478, doi: https://doi.org/10.1016/j.neucom.2017.11.022
Sezavar, A., Farsi, H. and Mohamadzadeh, S. (2019), “Content-based image retrieval by combining convolutional neural networks and sparse representation”, Multimedia Tools and Applications, vol. 78(15), pp. 20895–20912, doi: https://doi.org/10.1007/s11042-019-7321-1
Phadikar, B.S., Phadikar, A. and Maity, G.K. (2018), “Content-based image retrieval in DCT compressed domain with MPEG-7 edge descriptor and genetic algorithm”, Pattern Analysis and Applications, vol. 21(2), pp. 469–489, DOI: https://doi.org/10.1007/s10044-016-0589-0
Alsmadi, M.K. (2020), “Content-based image retrieval using color, shape and texture descriptors and features”, Arabian Journal for Science and Engineering, vol. 45(4), pp. 3317–3330, doi: https://doi.org/10.1007/s13369-020-04384-y
Rusovych, S.Y. and Ponomarenko, N.N. (2012), “Study of the effectiveness of clustering methods in the formation of codebooks in digital image processing problems”, Radioelektronni i kompiuterni systemy, No 3, pp. 122–125, available at: http://nbuv.gov.ua/UJRN/recs_2012_3_20
Sampathila, N. and Martis, R.J. (2022), “Computational approach for content-based image retrieval of K-similar images from brain MR image database”, Expert Systems, vol. 39(7), e12652, doi: https://doi.org/10.1111/exsy.12652
Monowar, M.M., Hamid, M.A., Ohi, A.Q., Alassafi, M.O. and Mridha, M.F. (2022), “A Self-Supervised Spatial Recurrent Network for Content-Based Image Retrieval”, Sensors, vol. 22(6), 2188, doi: https://doi.org/10.3390/s22062188
Junjie, Cai, Qiong, Liu, Francine, Chen, Dhiraj, Joshi and Qi, Tian (2014), “Scalable Image Search with Multiple Index Tables”, Proceedings of International Conference on Multimedia Retrieval (ICMR '14), Association for Computing Machinery, New York, NY, USA, pp. 407–410, doi: https://doi.org/10.1145/2578726.2578780
Cheng, S., Wang, L. and Du A. (2019), “An Adaptive and Asymmetric Residual Hash for Fast Image Retrieval”, IEEE Access, vol. 7, pp. 78942–78953, doi: https://doi.org/10.1109/ACCESS.2019.2922738