ACCELERATION OF BOOLEAN GENE REGULATORY NETWORKS ANALYSIS USING FPGA
Main Article Content
Abstract
Gene expression does not occur arbitrarily and spontaneously, it obeys certain patterns that can be expressed as a connected graph or network. The disclosure of these patterns requires a large amount of experimental research and accumulation of necessary statistical information. Then this information is subjected to mathematical processing, which involves significant computing resources and takes a lot of time. Boolean networks are often used as the basis for building mathematical models in those calculations. Recently, models based on Boolean networks have increasingly grown in size and complexity causing increased demands on traditional software solutions and computing tools. Field-programmable gate arrays (FPGAs) are a powerful and reconfigurable platform for implementing efficient and high-performance computing. The use of FPGA will significantly speed up the process of calculating sequential chains of gene states, both through the use of hardware acceleration in the calculation of logical dependencies, and through the implementation of an array of parallel computing cores, each of which can perform its own individual task. Another solution that can significantly simplify the work of researchers of gene regulation networks is the creation of a universal computing architecture that will allow dynamic reconfiguration of its internal structure when the task or logical dependencies for the current Boolean network change. Such a solution will relieve the researcher of the need to perform the entire set of actions for the technological preparation of a new FPGA configuration, from making changes to the HDL code that describes the network to uploading the updated configuration to the hardware accelerator. The article discusses how to use FPGA for the implementation and modeling of arbitrary Boolean networks, describes the concept of a universal reconfigurable architecture of a logical dependency calculating core for an arbitrary Boolean network and proposes a practical implementation of such a calculating core for modeling gene regulation networks.
Article Details
References
Faure, A., Naldi, A., Chaouiya, C. and Thieffry, D. (2006), “Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle”, Bioinformatics, vol. 22, pp. 124–131, doi: http://doi.org/10.1093/bioinformatics/btl210.
Li, F., Long, T., Lu, Y., Ouyang, Q. and Tang, C. (2004), “The yeast cell-cycle network is robustly designed”, Proc. Nat. Acad. Sci., vol. 101, no. 14, pp. 4781–4786, doi: http://doi.org/10.1073/pnas.0305937101.
Huang, S. (1999), “Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery”, J. Molecular Med., vol. 77, no. 6, pp. 469–480, doi: http://doi.org/10.1007/s001099900023.
Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., and De Micheli, G. (2008), “Synchronous versus asynchronous modeling of gene regulatory networks”, Bioinformatics, vol. 24, no. 17, pp. 1917–1925, doi: http://doi.org/10.1093/bioinformatics/btn336.
Zhang, R., Shah, M. V., Yang, J., Nyland, S. B., Liu, X., Yun, J. K., Albert, R. and Loughran, T. P. (2008), “Network model of survival signaling in large granular lymphocyte leukemia”, Proc. Nat. Acad. Sci., vol. 105, no. 42, 2008, pp. 16308–16313, doi: http://doi.org/10.1073/pnas.0806447105.
Hu, Y., Gu, Y., Wang, H., Huang, Y. and Zou, Y. M. (2015), “Integrated network model provides new insights into castration-resistant prostate cancer,” Sci. Rep., vol. 5, no. April, pp. 1–12, Nov. 2015, doi: https://doi.org/10.1038/srep17280.
Fumia, H. F., and Martins, M. L. (2013), “Boolean network model for cancer pathways: Predicting carcinogenesis and targeted therapy outcomes”, PLoS One, vol. 8, no. 7, Art. no. 11, doi: https://doi.org/10.1371/journal.pone.0069008.
Lu, J., Zeng, H., Liang, Z., Chen, L., Zhang, L., Zhang, H., Liu, H., Jiang, H., Shen, B., Huang, M., Geng, M., Spiegel, S. and Luo, C. (2015), “Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets,” Sci. Rep., vol. 5, 2015, Art. no. 14739, doi: https://doi.org/10.1038/srep14739.
Rodrıguez, A., Sosa, D., Torres, L., Molina, B., Frıas, S. and Mendoza, L. (2012), “A Boolean network model of the FA/BRCA pathway,” Bioinf., vol. 28, no. 6, 2012, pp. 858–866, doi: https://doi.org/10.1093/bioinformatics/bts036.
Glass, L. and Kauffman, S. A. (1973), “The Logical Analysis of Continuous, Non-linear Biochemical Control Networks”, J. Theoretical Biol., vol. 39, 1973, pp. 103–129, doi: https://doi.org/10.1016/0022-5193(73)90208-7.
Melas, N., Chairakaki, A. D., Chatzopoulou, E. I., Messinis, D. E., Katopodi, T., Pliaka, V., Samara, S., Mitsos, A., Dailiana, Z., Kollia, P. and Alexopoulos, L. G. (2014), “Modeling of signaling pathways in chondrocytes based on phosphoproteomic and cytokine release data”, Osteoarthritis Cartilage, vol. 22, no. 3, pp. 509–518, https://doi.org/10.1016/j.joca.2014.01.001.
Chen, H., Wang, G., Simha, R., Du, C. and Zeng, C. (2016), “Boolean models of biological processes explain cascade-like behavior”, Sci. Rep., vol. 6, 2016, Art. no. 20067, doi: https://doi.org/10.1038/srep20067.
Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B. and Thieffry, D. (2013), “Integrative modelling of the influence of MAPK network on cancer cell fate decision”, PLoS Com.put. Biol., vol. 9, no. 10, Sep. 2013, pp. 1–15, doi: doi: https://doi.org/10.1371/journal.pcbi.1003286.
Cohen,D. P., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A. and Calzone, L. (2015), “Mathematical modelling of molecular pathways enabling tumour cell invasion and migration,” PLoS Comput. Biol., vol. 11, no. 11, Sep. 2015, Art. no. e1004571, doi: https://doi.org/10.1371/journal.pcbi.1004571.
Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U. U., Weismantel, R., Gilles, E. D., Klamt, S. and Schraven, B. (2007), “A logical model provides insights into T cell receptor signaling”, PLoS Computational Biology, vol. 3, no. 8, Sep. 2007, pp. 1580–1590, doi: https://doi.org/10.1371/journal.pcbi.0030163.
Dorier, J., Crespo, I., Niknejad, A., Liechti, R., Ebeling, M. and Xenarios, I. (2016), “Boolean regulatory network reconstruction using literature based knowledge with a genetic algorithm optimization method”, BMC Bioinf., vol. 17, no. 1, Art. no. 410, doi: https://doi.org/10.1186/s12859-016-1287-z.
Thomas, R. (1991), “Regulatory networks seen as asynchronous automata: A logical description”, J. Theoretical Biol., vol. 153, no. 1, 1991, pp. 1–23, doi: https://doi.org/10.1016/S0022-5193(05)80350-9.
Purandare, M., Polig, R., and Hagleitner, C. (2017), “Accelerated analysis of Boolean gene regulatory networks,” Proc. 27th Int. Conf. Field Programmable Logic Appl., 2017, pp. 1–6, doi: https://doi.org/10.23919/FPL.2017.8056778.
Albert, I., Thakar, J., Li, S., Zhang, R. and Albert, R. (2008), “Boolean network simulations for life scientists”, Source Code Biol. Med., vol. 3, no. 1, 2008, Art. no. 16, doi: https://doi.org/10.1186/1751-0473-3-16.
Mussel, C, Hopfensitz, M., and Kestler, H. A. (2010), “BoolNet - an R package for generation, reconstruction and analysis of Boolean networks”, Bioinf., vol. 26, no. 10, pp. 1378–1380, doi: http://dx.doi.org/10.1093/bioinformatics/btq124.
Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., Kroemer, G., Barillot, E., and Calzone, L. (2017), “MaBoSS 2.0: An environment for stochastic Boolean modeling”, Bioinf., vol. 33, no. 14, Jul. 2017, pp. 2226–2228, doi: https://doi.org/10.1093/bioinformatics/btx123.
Saadatpour, A., Albert, R., and Reluga, T. C. (2013), “A reduction method for Boolean network models proven to conserve attractors”, SIAM J. Appl. Dynamical Syst., vol. 12, no. 4, pp. 1997–2011, doi: http://dx.doi.org/10.1137/13090537X.
Ay, F., Xu, F. and Kahveci, T. (2009), “Scalable steady state analysis of boolean biological regulatory networks”, PLoS One, vol. 4, no. 12, Dec. 2009, pp. 1–9, doi: http://dx.doi.org/10.1371/journal.pone.0007992.
Berntenis, N. and Ebeling, M. (2013), “Detection of attractors of large Boolean networks via exhaustive enumeration of appropriate subspaces of the state space”, BMC Bioinf., vol. 14, no. 1, doi: https://doi.org/10.1186/1471-2105-14-361.
Mendes, D., Henriques, R., Remy, E., Carneiro, J., Monteiro, P. T. and Chaouiya, C. (2018), “Estimating attractor reachability in asynchronous logical models”, Frontiers Physiology, vol. 9, 2018, Art. no. 1161, doi: https://doi.org/10.3389/fphys.2018.01161.
Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F. and He, L. (2013), “An efficient algorithm for computing attractors of synchronous and asynchronous boolean networks”, PLoS One, vol. 8, no. 4, Apr. 2013, pp. 1–7, doi: http://dx.doi.org/10.1371/journal.pone.0060593.
Garg, A., Di Cara, A., Xenarios, I., Mendoza, L. and De Micheli, G. (2008), “Synchronous versus asynchronous modeling of gene regulatory networks,” Bioinf., vol. 24, no. 17, pp. 1917–1925, doi: http://dx.doi.org/10.1093/bioinformatics/btn336.
Mizera, A., Pang, J., Qu, H. and Yuan, Q. (2019), “Taming asynchrony for attractor detection in large boolean networks”, IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 1, pp. 31–42, doi: http://dx.doi.org/10.1109/TCBB.2018.2850901.
Arellano, G., Argil, J., Azpeitia, E., Benıtez, M., Carrillo, M., Gongora, P., Rosenblueth, D. Aand Alvarez-Buylla, E. R. (2011), ““Antelope”: A hybrid-logic model checker for branching-time Boolean GRN analysis,” BMC Bioinf., vol. 12, no. 1, Art. no. 490, doi: https://doi.org/10.1186/1471-2105-12-490.
Zerarka, M., David, J. and Aboulhamid, E. M. (2004), “High speed emulation of gene regulatory networks using FPGAs”, Proc. 47th Midwest Symp. Circuits Syst., Aug. 2004, pp. I–545, doi: http://dx.doi.org/10.1109/MWSCAS.2004.1354048.
Pournara, I., Bouganis, C. and Constantinides, G. A. (2005), “FPGA-accelerated Bayesian learning for reconstruction of gene regulatory networks”, Proc. Int. Conf. Field Programmable Logic Appl., Sep. 2005, pp. 323–328, doi: http://dx.doi.org/10.1109/FPL.2005.1515742.
Ferreira, R. and Vendramini, J. C. G. (2010), “FPGA-accelerated attractor computation of scale free gene regulatory networks”, Proc. Int. Conf. Field Program. Logic Appl., pp. 550–555, DOI: http://dx.doi.org/10.1109/FPL.2010.108.
Salwinski, L. and Eisenberg, D. (2004), “In silico simulation of biological network dynamics”, Nature Biotechnology, vol. 22, no. 8, Aug. 2004, pp. 1017–1019, doi: http://dx.doi.org/10.1038/nbt991.
Keane, F., Bradley, C. and Ebeling, C. (2004), “A compiled accelerator for biological cell signaling simulations”, FPGA '04: Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays, Art. no. 233, pp. 233–241, doi: https://doi.org/10.1145/968280.968313.
Whitesitt, J.E. (2012), Boolean Algebra and Its Applications, Courier Corporation, 192 p., available at: https://www.scribd.com/book/365215162/Boolean-Algebra-and-Its-Applications.
Meurer, A., Smith, C. P., Paprocki, M. and Čertík, O. (2017), “SymPy: symbolic computing in Python”, PeerJ Comput. Sci., 3:e103, doi: https://doi.org/10.7717/peerj-cs.103.
Vasylchenkov, O. G., Salnikov, D. V. and Karaman, D. G. (2022), “Hardware model for boolean network attractors search,” Proc. of 22 Intl. scient. and pract. conf. Problems of informatics and modeling (PIM–2022), Kharkiv – Odesa, 2022, p. 20, available at: https://repository.kpi.kharkov.ua/handle/KhPI-Press/59901.
Vasylchenkov, O. G., Salnikov, D. V. and Karaman, D. G. (2022), “Hardware computational infrastructure for boolean network attractors search”, Proc. of Intl. scient. and tech. conf. Automation, electronics, information and measurement technologies: education, science, practice, Kharkiv, Dec. 01-02, 2022, pp. 13–14, available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/60498.