DOI: https://doi.org/10.20998/2522-9052.2020.3.16

Темпоральне представлення каузальності при конструюванні пояснень в інтелектуальних системах

Serhii Chalyi, Volodymyr Leshchynskyi

Анотація


Предметом вивчення в статті є процеси побудови пояснень в інтелектуальних системах. Метою є розробка темпорального представлення каузальності для того, щоб забезпечити побудову опису процесу роботи інтелектуальної системи у складі пояснення з урахуванням темпорального аспекту. Як наслідок, це дає можливість підвищити довіру користувачів до результатів роботи інтелектуальної системи. Завдання: структуризація каузальних залежностей з урахуванням відмінностей процесу прийняття рішень в інтелектуальній системі та її стану; розробка темпоральної моделі каузальності для пояснень в інтелектуальній системі. Використовуваними підходами є: підходи до опису каузальності між елементами системи на основі причинно-наслідкових зв'язків, на основі імовірнісних залежностей, а також на основі фізичної взаємодії її елементів. Отримані наступні результати. Виконано структуризацію каузальних залежностей для побудови пояснень з виділенням причинно-наслідкових, імовірнісних зв'язків, а також залежностей між станом інтелектуальної  системи та отриманими в цій системі рекомендаціями. Запропоновано модель каузальних залежностей в інтелектуальній системі для побудови пояснень щодо пропозицій цієї системи. Висновки. Наукова новизна отриманих результатів полягає в наступному. Запропоновано модель каузальних залежностей, що призначені для побудови пояснення в інтелектуальній системі. Таке пояснення складається з ланцюжка каузальних залежностей, що відображають послідовність прийняття рішення у часі. Модель охоплює обмеження та умови формування результату інтелектуальної системи. Обмеження представлені причинно-наслідковими залежностями між ключовими діями з досягнення результату. Обмеження мають бути істинними для всіх пояснень, де вони використовуються. Умови визначають ймовірні залежності між такими діями в інтелектуальній системі. У моделі враховується вплив ключових параметрів стану інтелектуальної системи на досягнення результату. Представлена модель забезпечує побудову пояснення з різним ступенем деталізації на основі визначення темпоральної послідовності дій, а також з врахуванням зміни станів інтелектуальної системи.

Ключові слова


інтелектуальна система; пояснення; процес формування пояснень; каузальна залежність; темпоральна залежність

Повний текст:

PDF (English)

Посилання


Miller, T. (2019), “Explanation in artificial intelligence: Insights from the social sciences”, Artificial Intelligence, vol. 267, pp.1-38, DOI: https://doi.org/10.1016/j.artint.2018.07.007.

Chalyi, S., Leshchynskyi, V. and Leshchynska, I. (2019), “The concept of designing explanations in the recommender systems based on the white box”, Control, navigation and communication systems, Vol. 3 (55). pp. 156-160. DOI: https://doi.org/10.26906/SUNZ.2019.3.156.

Chalyi, S., Leshchynskyi, V. and Leshchynska, I. (2019), “Designing explanations in the recommender systems based on the principle of a black box”, Advanced information systems, Vol. 3, No 2, pp. 47-51, DOI: https://doi.org/10.20998/2522-9052.2019.2.08.

Goodman, B. and Flaxman, S. (2017), “European Union regulations on algorithmic decision making and a “Right to explanation”, AI Magazine, Vol. 38 (3), pp. 50–57.

Tjoa, E. and Guan, C. (2019), “A survey on explainable artificial intelligence (XAI): Towards medical XAI”, Explainable Artificial Intelligence, pp. 1-22.

Castelvecchi, D. (2016), “Can we open the black box of AI?”, Nature, Vol. 538 (7623), pp. 20-23.

Arrieta, B., Rodriguez, N. and Del Ser, J. (2020), “Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI”, Information Fusion, Vol. 58, pp. 82-115. DOI: https://doi.org/10.1016/j.inffus.2019.12.012.

Lou, Y., Caruana, R. and Gehrke, J. (2012), “Intelligible models for classification and regression”, Proc. of the 18th ACM SIGKDD int. conf. on Knowledge discovery and data mining, pp. 150–158. DOI: https://doi.org/10.1145/2339530.2339556.

Halpern, J.Y. and Pearl, J. (2005), “Causes and explanations: A structural-model approach. Part I: Causes”, The British Journal for the Philosophy of Science, Vol. 56 (4), pp. 843-887.

Menzies, P. and Price, H. (1993), “Causation as a secondary quality”, The British Journal for the Philosophy of Science, Vol.44 (2), pp. 187-203.

Fair, D. (1979), “Causation and the flow of energy”, Erkenntnis, Vol. 14, pp. 219–250. DOI: https://doi.org/10.1007/BF00174894.

Chalyi, S., Leshchynskyi, V. and Leshchynska, I. (2019), “Modeling explanations for the recommended list of items based on the temporal dimension of user choice”, Control, navigation and communication systems, Vol. 6 (58), pp. 97-101. DOI: https://doi.org/10.26906/SUNZ.2019.6.097.

Levykin, V. and Chala, O. (2018), “Development of a method for the probabilistic inference of sequences of a business process activities to support the business process management”, Eastern-European Journal of Eenterprise Technologies, Vol. 5/3(95), pp. 16-24. DOI: https://doi.org/10.15587/1729-4061.2018.142664.

Chalyi, S. and Pribylnova, I. (2019), “The method of constructing recommendations online on the temporal dynamics of user interests using multilayer graph”, EUREKA: Physics and Engineering, 2019, Vol. 3, pp. 13-19.




Copyright (c) 2020 Serhii Chalyi, Volodymyr Leshchynskyi