USAGE OF CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL IMAGE PROCESSING APPLIED TO THE PROBLEM OF DETECTING FIRE HAZARDOUS FOREST AREAS
Main Article Content
Abstract
Article Details
References
Nahar, K. (2012), "Artificial neural network", COMPUSOFT, An international journal of advanced computer technology, Vol. 1, No. 2, pp. 25-27, available at: https://ijact.in/index.php/ijact/article/view/421/366 (last accessed December 9, 2018).
McCulloch, W. S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", The bulletin of mathematical biophysics, Vol. 5, No. 5, pp. 115-133, available at: www.fao.org/docrep/article/wfc/xii/0829-b3.htm (last accessed December 12, 2018).
Moore, P., Hardesty, J., Kelleher, S., Maginnis, S. and Myers, R. (2003), "Forests and wildfires: fixing the future by avoiding the past", XII World Forestry Congress, Quebec, Canada, available at: https://doi.org/10.1007/BF02478259 (last accessed December 11, 2018).
The Departmant of Forestry and Fire Protection of California: Top 20 Largest California Wildfires (2017), available at: https://www.fire.ca.gov/communications/downloads/fact_sheets/Top20_Acres.pdf (last accessed December 15, 2018).
Hoover, K. (2018), Wildfire Statistics Congressional Research Service, available at: https://fas.org/sgp/crs/misc/IF10244.pdf (last accessed December 10, 2018).
Insurance Information Institute: Facts & Statistics: Wildfires: Wildfire Losses In The United States (2017), available at: https://www.iii.org/fact-statistic/facts-statistics-wildfires (last accessed December 9, 2018).
Department of the Interior. U.S. Geological Survey. LANDSAT 8 (L8) DATA USERS HANDBOOK, (2018), available at: https://landsat.usgs.gov/sites/default/files/documents/LSDS-1574_L8_Data_Users_Handbook.pdf (last accessed December 10, 2018).
U.S. GeologicalSurvey (2018), available at: https://earthexplorer.usgs.gov (last accessed December 10, 2018).
The Departmant of Forestry and Fire Protection of California: Public Information Map, (2018), available at: http://cdfdata.fire.ca.gov/pub/cdf/images/incidentfile2277_4287.pdf (last accessed December 11, 2018).
Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B. and Rakitin, V. Y. (1999) 'Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening', Physiologia plantarum, Vol. 106, pp. 135-141, available at: https://doi.org/10.1034/j.1399-3054.1999.106119.x (last accessed December 12, 2018).
Bardysh, B. and Burshtynskaya, Kh. (2014), "Using vegetation indices to identify objects on the earth surface", Modern achievements in geodetic science and production, No. 2, pp. 82-88, available at: http://nbuv.gov.ua/UJRN/sdgn_2014_2_21 (last accessed December 9, 2018).
Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P. and Hunt, E. R. (2004), "Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans", Remote Sensing of Environment, Vol. 92, No. 4, pp. 475-482, available at: https://doi.org/10.1016/j.rse.2003.10.021 (last accessed December 11, 2018).
Mosavi, A. and Varkonyi-Koczy, A. R. (2017), "Integration of machine learning and optimization for robot learning", Recent Global Research and Education: Technological Challenges: Springer, pp. 349-355, available at: https://doi.org/10.1007/978-3-319-46490-9_47 (last accessed December 11, 2018).
Bengio, Y. (2009), "Learning deep architectures for AI", Foundations and trends in Machine Learning, Vol. 2, No. 1, pp. 1-127, available at: https://doi.org/10.1561/2200000006 (last accessed December 10, 2018).
Vargas, R., Mosavi, A. and Ruiz, R. (2018), "Deep learning: a review", Advances in Intelligent Systems and Computing, available at: https://doi.org/10.20944/preprints201810.0218.v1 (last accessed December 12, 2018).
Lee, T. S. and Mumford, D. (2003), "Hierarchical Bayesian inference in the visual cortex", Journal of the Optical Society of America A, Vol. 20, No. 7, pp. 1434-1448, available at: https://doi.org/10.1364/JOSAA.20.001434 (last accessed December 10, 2018).
LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, No. 521 (7553), pp. 436-444, available at: https://doi.org/10.1038/nature14539 (last accessed December 9, 2018).
Hubel, D. H. and Wiesel, T. N. (1962), "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex", The Journal of physiology, Vol. 160, No. 1, pp. 106-154, available at:
https://doi.org/10.1113/jphysiol.1962.sp006837 (last accessed December 11, 2018).
Hlavcheva, D. and Yaloveha, V. (2018), "Capsule neural networks", Control, Navigation and Communication Systems, Vol. 5, No. 51, pp. 132-135, available at: https://doi.org/10.26906/SUNZ.2018.5.132 (last accessed December 12, 2018).
Liubchenko, N., Podorozhniak, A. and Bondarchuk, V. (2017), "Neural network method of intellectual processing of multispectral images", Advanced information System, Vol. 1, No. 2, pp. 39-44, available at: https://doi.org/10.20998/2522-9052.2017.2.07 (last accessed December 9, 2018).
Podorozhniak, A., Lubchenko, N., Balenko, O. and Zhuikov, D. (2018), "Neural network approach for multispectral image processing". Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET-2018), 14th International Conference on: IEEE, pp. 978-981, available at: http://dx.doi.org/10.1109/TCSET.2018.8336357 (last accessed December 10, 2018).
Hlavcheva, D. and Yaloveha, V. (2018), "CapsNet versus ConvNet", Computer sciences, control and artificial intelligence, 5th International Conference, Kharkiv, Ukraine, pp. 22-23, available at: http://pim.net.ua/arch_f/tez_iyii_2018.pdf (last accessed December 10, 2018).