METHODOLOGICAL BASIS OF SOLVING SPHERE PACKING PROBLEM: TRANSFORMATION OF KNAPSACK PROBLEM TO OPEN DIMENSION PROBLEM
Main Article Content
Abstract
Article Details
References
Hifi, M. and M'Hallah, R. (2009), “A literature review on circle and sphere packing problems: models and methodologies”, Advances in Operations Research, Vol. 2009, available at: http://downloads.hindawi.com/journals/aor/2009/150624.pdf DOI: https://doi.org/10.1155/2009/150624
Leary, M., Merli, L., Torti, F., Mazur, M. and Brandt, M. (2014), “Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures”, Materials and Design, Vol. 63, pp. 678–690.
Blyuss, O., Koriashkina, L., Kiseleva, E. and Molchanov, R. (2015), “Optimal Placement of Irradiation Sources in the Planning of Radiotherapy: Mathematical Models and Methods of Solving”, Computational and Mathematical Methods in Medicine, Vol. 2015, p. 8, DOI: https://doi.org/10.1155/2015/142987
Agapie, S.C. and Whitlock, P.A. (2010), “Random packing of hyperspheres and Marsaglia's parking lot test", Monte Carlo Methods and Applications, Vol. 16(3-4), pp.197–209.
Conway, J. H. and Sloane, N.J.A. (2010), Sphere Packings, Lattices, and Groups, New York, Springer-Verlag, 703 p.
Torquato, S. (2006), “Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces”, Physical Review, vol. E 73, 031106.
Waescher, G. and Haussner, H. (2007), “An improved typology of cutting and packing problems”, European Journal of Operational Research, Vol. 183, pp. 1109–1130.
Hifi, M. and Yousef, L. (2015), “A dichotomous search-based heuristic for the three-dimensional packing problem", Cogent Engineering, Vol. 1, pp. 1–15.
Hifi, M. and Yousef, L. (2019), "A local search-based method for sphere packing problems", European Journal of Operational Research, Vol. 274, Issue 2, pp. 482-500.
Birgin, E.G. and Sobral, F.N.C. (2008), “Minimizing the object dimensions in circle and sphere packing problems” Computers & Operations Research, Vol. 35, pp. 2357–2375.
Stoyan, Yu. and Yaskov, G. (2012), "Packing congruent hyperspheres into a hypersphere", Journal of Global Optimization, Vol. 52(4), pp. 855–868.
Yakovlev, S.V., Yaskov, G.N. and Korobchinskiy, K.P. (2017), “O metodah peremennogo radiusa v zadache upakovki sharov v konteynery [About variable radius methods in problems of packing spheres into containers]”, Pytannya prikladnoyi matematyky i matematuchnogo modelyuvannya, DNU, Dnipro, Issue 17, pp. 265–272.
Stoyan, Yu.G., Scheithauer, G. and Yaskov, G.N. (2016), “Packing unequal spheres into various containers”, Cybernetics and Systems Analysis, Vol. 52(3), pp. 419–426.
Yaskov, G.N. (2014), “Packing non-equal hyperspheres into a hypersphere of minimal radius”, Problemy Mashinostroeniya, Vol. 17, No 2, pp. 48–53.
Stoyan, Yu. and Yaskov G. (2014), “Packing unequal circles into a strip of minimal length with a jump algorithm”, Optimization Letters, Vol. 8(3), pp. 949–970.
Chernov, N., Stoyan, Yu., Romanova, T. (2010), “Mathematical model and efficient algorithms for object packing problem”, Computational Geometry, Vol. 43(5), pp. 535–553.
Stoyan, Y., Pankratov, A. and Romanova, T. (2016), “Quasi-phi-functions and optimal packing of ellipses”, Journal of Global Optimization, Vol. 65(2), pp. 283–307.