Development and research of the parameters control system of the artificial ecosystem environment by the fuzzy-logic system

Main Article Content

Ihor Hryhorenko
Serhii Kondrashov
Svіtlana Hryhorenko

Abstract

The paper considers the solution of scientific and practical problem of development and research of control system of parameters of environment of artificial ecosystem, creation of structural and basic electric scheme of system, drawing up of algorithm of its work. The study consists of statistical processing of the results of direct repeated measurements of soluble oxygen level, pH, temperature in the aquarium of the artificial ecosystem, analysis of errors and total standard uncertainty of measurement results, construction of a system with fuzzy logic to determine the impact of aquatic parameters on aquarium water quality. The system makes it possible to measure illuminance up to 45,000 lux, air temperature in the range from 12 to 42 0C, water temperature in the range from 15 to 28 0C, pH level from 5 to 9, dissolved oxygen level from 5 to 10 mg / l, has a proximity sensor , has the ability to turn on, if necessary, heating, water aeration, additional light sources. The measurement error on each of the channels does not exceed 2.5%. The need to create a control system arose due to the fact that there is a need to ensure the natural development of plants and fish in an artificial ecosystem that mimics the environment as close as possible to the natural one. In order for the ecosystem to perform its functions, it is necessary to timely control these parameters and respond quickly to the parameters exceeding the critical values. This task can be accomplished only by creating a control system. In order to bring people closer to the wildlife of exotic countries of the world, you can create corners of wildlife at school, enterprise, institution. An artificial ecosystem, which is a clear and versatile example of wildlife, will help students in the formation of a new culture of relationships with nature, the environment, and allow workers to relax morally by observing wildlife. Such a fruitful rest affects the recovery of people. The artificial ecosystem helps to involve children with talent in research work, in designing projects, performing works related to creativity.

Article Details

How to Cite
Hryhorenko, I., Kondrashov, S., & Hryhorenko, S. (2021). Development and research of the parameters control system of the artificial ecosystem environment by the fuzzy-logic system. Advanced Information Systems, 5(4), 49–54. https://doi.org/10.20998/2522-9052.2021.4.07
Section
Information systems research
Author Biographies

Ihor Hryhorenko, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

Candidate of Technical Sciences, Associate Professor Department of Information and Measuring Technologies and Systems

Serhii Kondrashov, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

Doctor of Technical Sciences, Professor, Department of Information and Measuring Technologies and Systems

Svіtlana Hryhorenko, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

Candidate of Technical Sciences, Associate Professor Department of Computer and Radio-Electronic Control Systems and Diagnostics

References

Григоренко І. В. Розробка системи контролю параметрів середовища в акваріумі [Development of a system for monitoring the parameters of the environment in the aquarium]. Метрологія та прилади [Metrologіya ta priladi]. Харків, 2019. №1 (75). С. 66-71.

Григоренко І. В. Системи контролю параметрів середовища у шкільному живому куточку [Control systems of environment parameters in school living space]. ХХVІІI Міжнар. наук. – практ. конф.: Інформаційні технології: наука, техніка, технологія, освіта, здоров’я. Том 2. Харків: НТУ «ХПІ», 2020. С. 12.

Zadeh L. A. Fuzzy logic – computing with words. IEEE Transactions on Fuzzy Systems. 1996. Vol. 4, Issue 2. Р. 103-111.

Larsen H.L., Yager R.R. A framework for fuzzy recognition technology. IEEE Transactions on Systems, Man and Cybernetics. Part C (Applications and Reviews). 2000. Vol. 30, Issue 1. Р. 65-76.

Sankar Ganesh S., Bhargav Reddy N., Arulmozhivarman P. Forecasting air quality index based on Mamdani fuzzy inference system. 2017 International Conference on Trends in Electronics and Informatics (ICEI), 11–12 May 2017, Tirunelveli, India.

Ціделко В. Інформаційні технології на базі нечіткої логіки (FUZZY LOGIC) [Information technologies based on fuzzy logic (FUZZY LOGIC)]. Вимірювальна техніка та метрологія: Зб. наук. праць НУ «Львівська політехніка». Львів, 2001. № 58. С. 3–15.

Hrihorenko I. Application of user interface Fuzzy Logic Toolbox for quality control of products and services. Сучасні інформаційні системи [Advanced information system]. Vol. 3, No. 4. P. 118–125. DOI: https://doi.org/10.20998/2522-9052.2019.4.18

Arduino Nano 3.0. URL: https://store.arduino.cc/arduino-nano.

ДСТУ ISO/TS 21749:2013 (ISO/TS 21749:2005,IDТ) Національний стандарт України. Невизначеність вимірювання в метрологічній практиці. Повторні вимірювання та ієрархічні експерименти. URL:

http://online.budstandart.com/ua/catalog/doc-page?id_doc=62233

Захаров И. П. Неопределённость измерений для чайников и начальников [Measurement uncertainty for dummies and bosses]: учеб. Пособие. Харьков, 2015. 52 с.