Ensemble of shallow convolutional neural networks for classification of gender in video stream
Main Article Content
Abstract
Article Details
References
Dehghan, A., Ortiz, E.G., Shu, G. and Masood, S.Z. (2017), DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Networks, available at: https://arxiv.org/pdf/1702. 04280.pdf.
El Khiyari, H., Wechsler, H. (2016), Face Verification Subject to Varying (Age, Ethnicity, and Gender) Demographics Using Deep Learning, DOI: https://doi.org/10.4172/2155-6180.1000323
Levi, G. and Hassner, T. (2015), “Age and Gender Classification Using Convolutional Neural Networks”, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, DOI: https://doi.org/10.1109/cvprw.2015.7301352.
Rothe, R., Timofte, R. and Gool, L.V. (2015), “Dex: Deep expectation of apparent age from a single image”, Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW), DOI: https://doi.org/10.1109/iccvw.2015.41.
Simonyan, K. and Zisserman, A. (2015), Very deep convolutional networks for large-scale image recognition, available at: https://arxiv.org /pdf/1409.1556.pdf.
Ekmekji, A. (2016), Convolutional Neural Networks for Age and Gender Classification, available at:
http://cs231n.stanford.edu/reports/2016/ pdfs/003_Report.pdf.
Gorokhovatskyi, O. (2018), “Shallow Convolutional Neural Networks for Pattern Recognition Problems”, Proceedings of the IEEE International Conference on DataStream Mining & Processing, 23-27 August 2018, Lviv, Ukraine, pp. 459-463, DOI: https://doi.org/10.1109/dsmp.2018.8478540.
Hebda, B. and Kryjak, T. (2016), “A compact deep convolutional neural network architecture for video based age and gender estimation”, Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 787–790.
Hogervorst, J., Okafor, E. and Wiering, M. (2017), Deep Colorization for Facial Gender Recognition, available at: http://www.ai.rug.nl/ ~mwiering/GROUP/ARTICLES/Facial_Gender_Classification.pdf.
Antipov, G., Berrani, S. and Dugelay, J. (2016), “Minimalistic CNN-based ensemble model for gender prediction from face image”, Pattern Recognition Letters, Vol. 70, Issue C, pp. 59-65, DOI: 10.1016/j.patrec.2015.11.011.
Jia, S., Lansdall-Welfare, T. and Cristianin, N. (2016), Gender Classification by Deep Learning on Millions of Weakly Labelled Images, available at: http://www.lansdall-welfare.com/wp-content/uploads/2016/11/deep_gender.pdf.
Selim, M., Sundararajan, S., Pagani, A. and Stricker, D. (2018), Image Quality-Aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild, available at: http://av.dfki.de/ ~pagani/papers/Selim2018_VISAPP.pdf.
Bekios-Calfa, J., Buenaposada, J. M. and Baumela, L. (2011), “Revisiting Linear Discriminant Techniques in Gender Recogni-tion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 4, pp. 858-864, DOI: https://doi.org/10.1109/tpami.2010.208.
Demirkus, M., Toews, M., Clark, J. J. and Arbel, T. (2010), “Gender classification from unconstrained video sequences”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshops. DOI: https://doi.org/10.1109/cvprw.2010.5543829.
Huang, G. B., Mattar, M., Lee, H. and Learned-Miller, E. (2012), “Learning to Align from Scratch”, Advances in Neural In-formation Processing Systems, pp. 764-772.
Huang, G. B., Ramesh, M., Berg, T. and Learned-Miller, E. (2007), Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments, University of Massachusetts, Amherst, Technical Report 07-49.
Viola, P. and Jones, M. (2001), “Rapid object detection using a boosted cascade of simple features”, Proceeding of the Interna-tional Conference on Computer Vision and Pattern Recognition , vol. 1, pp. 511-518.
OpenCV Open Source Computer Vision, available at: https://docs.opencv.org/master/index.html.
Liu, Z., Luo, P., Wang, X. and Tang, X. (2015), “Deep Learning Face Attributes in the Wild”, Proceedings of International Conference on Computer Vision (ICCV), DOI: https://doi.org/10.1109/iccv.2015.425.
Eidinger, E., Enbar, R. and Hassner, T. (2014), “Age and gender estimation of unfiltered faces”, IEEE Transactions on infor-mation forensics and security, Vol. 9, Issue 12, DOI:.1109/tifs.2014.2359646.
Easy Real time gender age prediction from webcam video with Keras (2017), available at:
https://github.com/Tony607/Keras_age_gender.
Zagoruyko, S. and Komodakis, N. (2017), Wide Residual Networks, available at:
https://arxiv.org/pdf/1605.07146.pdf.
Shu, C. and Burn, D. H. (2004), “Artificial neural network ensembles and their application in pooled flood frequency analysis”, Water Resources Research, Vol. 40, W09301, DOI: https://doi.org/10.1029/2003WR002816.
Frazao, X., Alexandre, L. A. (2014), Weighted Convolutional Neural Network Ensemble, available at:
https://www.di.ubi.pt/~lfbaa/ pubs/ciarp2014.pdf.
Jiḿenez, D. (1998), “Dynamically Weighted Ensemble Neural Networks for Classification”, Proceedings of the IEEE Interna-tional Joint Conference on Neural Networks, DOI: https://doi.org/10.1109/ijcnn.1998.682375.
Ju, C., Bibaut, A. and Van der Laan, M.J. (2017), “The Relative Performance of Ensemble Methods with Deep Convolutional Neural Networks for Image Classification”, Journal of Applied Statistics, 45(15), DOI: