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MACHINE LEARNING BASED CLOUD COMPUTING INTRUSION DETECTION

Abstract. Based on today’s technologically networked world, a sophisticated networking technology known as Software-
Defined Networking (SDN) is utilized in cloud computing environments to improve the effectiveness of network
management. However, SDN’s centralized nature makes it vulnerable to DDoS attacks. This study introduces a technique
for detecting DDoS attacks within a cloud computing setting. The research seeks to apply an ensemble machine learning
approach for statistically identifying DDoS attacks in cloud network traffic, categorizing them as either harmful or harmless.
Various machine learning algorithms, including K-Nearest Neighbors, Random Forest (RF), and Decision Tree, were utilized
as foundational classifiers in the suggested ensemble machine learning model. A dataset of SDN-DDoS attacks was utilized
to assess the efficacy of the base classifiers. The classifiers were trained using 80% of the dataset and evaluated on 20%. The
results of the experiment indicated that the Random Forest and Random Forest classifiers attained 100% accuracy, whereas
the K-Nearest Neighbor classifier achieved an accuracy of 98.21%. The ensemble machine learning model employed a
majority voting technique for final prediction and achieved an accuracy of 100% on the test set, ranking as the best compared

to benchmark models.

Keywords: Cloud Computing; Attack Classification; Machine Learning; Threat Detection; laaS; PaaS; SaaS, Intrusion
Detection System; Artificial Intelligence; Deep Learning; Feature Selection; Classification Algorithms; Anomaly Detection.

Introduction

An Intrusion Detection System (IDS) serves as a
vital security tool aimed at detecting and addressing
different cyber threats. These systems are essential for
detecting suspicious activities at both the host and
network levels. Recently, Machine Learning (ML)
methods have greatly improved IDS performance,
offering high precision and efficient identification of new
cyber-attacks.

The primary research challenge tackled in this
article involves creating a dependable and versatile
intrusion detection algorithm designed specifically for
identifying Distributed Denial of Service (DDoS) attacks
within Software-Defined Networking (SDN)
environments. SDN is gaining traction in contemporary
networking infrastructures owing to its centralized
control and programmability, which offer significant
flexibility —and  scalability.  Nevertheless, this
centralization renders SDN especially susceptible to
focused DDoS attacks, capable of incapacitating the
entire network by inundating the SDN controller.

Conventional Intrusion Detection Systems (IDS)
frequently find it challenging to adapt to the distinct
features and fluid nature of Software-Defined
Networking (SDN) environments. Current
methodologies may fall short in effectively tackling the
particular difficulties presented by Distributed Denial of
Service (DDoS) attacks within SDN, including the
capacity to identify and counteract these threats while
minimizing false positives in real-time.

Given the critical role of SDN in cloud computing
and other modern network infrastructures, there is an
urgent need for advanced detection methods that can
reliably and accurately identify DDoS attacks within SDN.
This research focuses on leveraging the SDN-DDoS attack
dataset to develop and evaluate a machine learning-based
Network-Based Intrusion Detection System (NIDS) that is
specifically optimized for SDN environments. The
proposed system aims to enhance detection accuracy,

reduce false alarms, and improve the overall security
posture of SDN networks against DDoS attacks.

1. Literature Review

Recently, the significance of intrusion detection has
escalated due to the increasing prevalence of
cyberattacks [1]. Various methods have been employed
by researchers in experiments to provide solutions to
issues related to cyberattacks. One notable method is the
stacked ensemble learning technique discussed in [2],
which utilized gradient boosting and Random Forest as
foundational classifiers, resulting in an accuracy of
91.06% when assessed using the NSL-KDD dataset.
Additionally, another method presented an optimal
Support  Vector Machine (OSVM) for Intrusion
Detection Systems (IDS) in Wireless Sensor Networks
(WSN), achieving an accuracy of 94.09% and a detection
rate of 95.02% when tested on the NSL KDDC up
99 dataset [3].

In [4], the researchers sought to minimize both
false-positive and false-negative rates in intrusion
detection systems specifically designed for web-based
attacks. The experimental findings indicated that, out of
the three algorithms tested, the J48 decision tree
algorithm yielded the highest True Positive rate (94.5%),
94.7% of Precision, and 94.5% Recall rate when assessed
on the meticulously refined CSIC 2010 HTTP dataset.
An evaluation of twelve machine learning algorithms
(Logistic ~ Regression, Naive Bayes, K-Nearest
Neighbour (KNN), Decision Tree (DT), AdaBoost,
Random Forest, Convolutional Neural Network, CNN-
LSTM, LSTM, GRU, Simple RNN, and DNN) was
carried out in [5].This evaluation utilized three publicly
accessible datasets: CICIDS-2017, UNSW-NB15, and
the Industrial Control System (ICS) cyberattack datasets.
The results of this evaluation confirm that the Random
Forest (RF) algorithm  demonstrates  superior
performance in terms of accuracy, precision, recall,
F1-score, and Receiver Operating Characteristic (ROC)
curves across all datasets analyzed.
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In reference [6], the authors developed a MultiTree
algorithm that utilized a decision tree,kNN, random
forest, and DNN as foundational classifiers to create an
ensemble adaptive voting algorithm, which achieved an
accuracy of 85.2% when tested on the NSL-KDD dataset.

The technique presented in [7] is constructed using
a DT classifier, a RF classifier, and support vector
machines, applying recursive feature elimination (RFE)
technique to remove irrelevant features from the
benchmark dataset, NSL-KDD. The results indicated that
the Random Forest algorithm performed optimally with
the chosen features for intrusion detection systems (IDS).
To minimize the misclassification rate in detecting DDoS
attacks, [8] utilized Mutual Information (MI) and
Random Forest Feature Importance (RFFI) methods to
identify the most pertinent features, which were then
applied to Random Forest (RF), Gradient Boosting (GB),
Weighted Voting Ensemble (WVE), K-Nearest
Neighbour (KNN), and Logistic Regression (LR). The
overall prediction accuracy of RF with 16 features
reached 0.99993, and with 19 features, it improved to
0.999977, outperforming other methodologies.

In [9], the authors proposed an innovative intrusion
detection system that integrates a fuzzy c-means
clustering (FCM) algorithm with a support vector
machine (SVM) to enhance the accuracy of anomaly
detection within a cloud computing environment,
achieving a relatively low false alarm rate compared to
existing methods. Through performance evaluation and
comparative analysis, the proposed approach attained a
false negative rate of 0.003%, an accuracy of 97.37%,
and a true positive rate of 97.90%

A hybrid intrusion detection system was presented
in [10], which integrates SVM and genetic algorithm
(GA) methodologies, complemented by a novel fitness
function designed to assess system accuracy. This system
was tested on two datasets, CIDS2017 and KDDCUP99,
achieving a remarkable accuracy rate of 99.3%,
surpassing previous benchmarked studies.

In [11], an ensemble-based machine learning
strategy was employed, utilizing four classifiers—
Boosted Tree, Bagged Tree, Subspace Discriminant, and
RUSBoost—along with a voting mechanism to create an
intrusion detection model, which was assessed on the
CICIDS2017 dataset.

The results indicated an improved accuracy of
97.24% with a reduced number of false alarms compared
to leading-edge methodologies.

An intrusion detection algorithm based on an
ensemble support vector machine with bag representation
is established in [12]. The bag representation aggregates
the related samples into a bag, which can be represented
as a feature matrix. Experimental findings reveal that
intrusion detection utilizing bag representation yields
superior precision and recall rates for ongoing attacks
compared to individual data flows. A framework to
assess the performance of Random Forest and XGBoost
in classifying and predicting DDoS attack types was
proposed in [13]. The evaluation on the UNWS-NP-15
dataset showed that Random Forest and XGBoost
achieved an average accuracy of 89% and 90%,
respectively.

The authors in [14] adopted a hybrid methodology
by integrating k-means with the RF algorithm for binary
classification, alongside CNN, LSTM, and various other
deep learning techniques to further categorize abnormal
events into distinct attack types. The experimental
outcomes indicate that the proposed model exhibits
superior true positive rates (TPR) for the majority of
attack events, enhanced data pre-processing speed, and
potentially reduced training duration.

Navigating through the sphere of Software-Defined
Networking (SDN), the authors referenced in [15]
assessed several significant feature selection techniques
for machine learning in the context of DDoS detection.
The findings indicate that the RF classifier is capable of
training a model with an impressive accuracy of 99.97%
when utilizing feature subsets selected through the
Recursive Feature Elimination (RFE) method.

In [16], novel features pertinent to DDoS attacks
were identified and recorded in a CSV file to construct the
dataset. A hybrid machine learning model that integrates a
Support Vector Classifier with Random Forest was
employed for classification, resulting in a testing accuracy
of 98.8% alongside a notably low false alarm rate.

A deep learning approach is explored in [17], which
utilizes a CNN to identify various attacks within a
Software-Defined Network (SDN). The results of the
experiment demonstrate that the proposed model
achieves a remarkable 100% accuracy, with a minimal
degradation rate of 2.3% in throughput and 1.8% in
latency when implemented in a larger system.

Conversely, in [18], a detection model based on
CNN is introduced with the aim of tackling the
challenges posed by DDoS attacks. The evaluation of this
experiment focused on accuracy, sensitivity, and
specificity, yielding results of 99.72%, 99.69%, and
99.71%, respectively.

In [19], a linear SVN model is trained using a kernel
radial basis function on features extracted from traffic
flow data and statistics. Various algorithm, including
Naive Bayes, KNN, DT and RF, were employed and
compared against the SVM model to enhance detection
performance. The experimental outcomes confirm that
the system effectively identifies attacks with a low rate
of false alarms and high accuracy in comparison to other
related methodologies. Additionally, an ensemble
machine learning technique is implemented in [14],
utilizing K-means++ for the grouping of training data and
Random Forest as the foundational classifier, achieving
a detection accuracy of 100%.

2. Purpose and Objectives of the study

The aim of the article istodevelop a machine
learning-based cloud computing intrusion detection. An
Intrusion Detection System (IDS) is a critical security
mechanism designed to identify and mitigate various cyber
threats. These systems are essential for detecting
suspicious activities at both the host and network levels. In
recent years, the application of ML techniques has greatly
improved the efficacy of IDS, offering high accuracy and
effective identification of new cyber-attacks.

The research challenge addressed in this article is
the development of a reliable and adaptable intrusion
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detection algorithm specifically tailored for detecting
Distributed Denial of Service (DDoS) attacks in Software-
Defined Networking (SDN) environments. SDN, with its
centralized control and programmability, is increasingly
adopted in modern networking infrastructures due to its
flexibility and scalability. However, this centralization
also makes SDN particularly vulnerable to targeted DDoS
attacks, which can disrupt the entire network by
overwhelming the SDN controller.

Traditional Intrusion Detection System (IDS)
solutions frequently encounter difficulties in adapting to
the distinct characteristics and dynamic nature of
Software-Defined Networking (SDN) environments.
Current methodologies may fall short in effectively
tackling the specific challenges presented by Distributed
Denial of Service (DDoS) attacks within SDN,
particularly in terms of real-time detection and mitigation
while minimizing false positives.

Given the critical role of SDN in cloud computing
and other modern network infrastructures, there is an
urgent need for advanced detection methods that can
reliably and accurately identify DDoS attacks within
SDN. This study concentrates on utilizing the SDN-
DDoS attack dataset to create and assess a ML-driven
Network-Based Intrusion Detection System (NIDS) that
is tailored specifically for SDN environments. The
proposed system aims to enhance detection accuracy,
reduce false alarms, and improve the overall security
posture of SDN networks against DDoS attacks.

3. Research materials and methods

The work presented employs ML methods, such
as KNN, SVM, and RF. This research concentrates on the
subsequent attacks in DDoS:

1. TCP-SYN Flood Attack.

2. UDP Flood Attack.

3. ICMP Flood Attack.

3.1 Machine Learning (ML). This represents a
rapidly advancing methodology for forecasting and
mitigating security risks and threats. ML is a branch of
Actificial Intelligence dedicated to creating computational
frameworks and statistical models derived from existing
datasets, commonly known as "Training Data" [20].

The methodology employed in this study involves
utilizing ML techniques to identify DDoS attacks in
SDN. The dataset used for both training and testing the
algorithms is the SDN-DDoS (ICMP, TCP, UDP) attack
dataset. Preprocessing steps have been carried out on the
dataset, including face selection, label encoding, and data
normalization. This data has been split into training and
testing sets to train and evaluate the ML algorithms in the
model. The machine learning models utilized in this
study for identifying DDoS attacks include:

1. K-Nearest Neighbor (KNN).

2. Random Forest.

3. Decision Tree.

3.2 Material and Method. This discusses the steps
of the methodology for developing a machine learning-
based cloud computing intrusion detection system (Fig. 1).
The proposed method involves the following main steps:

1. Dataset Selection: Choosing the appropriate
dataset for utilization.

2. Selection of Tools and Language: Identifying
the tools and programming languages used for
implementation.

3. Data Preprocessing: Utilizing methods to
manage extraneous data. Data standardization and
scaling were conducted using the Standard Scaler from
Scikit-Learn.

4. Application of Machine Learning
Techniques: Implementing ML models to classify
attacks.

5. Data Splitting: Segmenting the dataset into
training and testing subsets. During this phase, the
proposed model is constructed and trained.

6. Model Evaluation: Evaluating the efficacy of
the model on the SDN-DDoS attack dataset.

SDN Dataset
v
Dataset Preparation
(Label Encoding, Feature Scaling)

¥

v v
Training Set (80%) Testing Set (20%)
| |
. . v
KNN Decision Tree Random Forest
(Model) (Model) (Model)

Majority Voting

(Combine Individual Model Prediction)

Final Prediction

Fig. 1. Systematic diagram for the implementation
of Machine learning-based Cloud computing
intrusion detection

3.3 Dataset. According to this research paper, we
utilized a highly reputable and extensively curated
dataset from the Digital Commons Data Repository,
widely recognized for the integrity and authenticity of the
data deposited. The dataset selected for this study
consists of DDoS attacks in SDN, including ICMP, TCP,
and UDP floods (Fig. 2). It has been rigorously vetted and
widely referenced in various scholarly publications [21].

Digital Commons Data serves as an institutional
repository for researchers, administrators, and data
curators to store, manage, publish, and preserve research
datasets. Researchers worldwide depend on this
repository due to its strict data collection and validation
protocols, along with the open access it offers to the
scientific community, thereby ensuring transparency and
reproducibility in research. Digital Commons Data is a
turnkey, cloud-hosted, and fully supported module that
delivers all the necessary functionality to achieve an
institutional research data management program without
additional  technical investment. All  software
maintenance, configuration, and implementation are
managed by Elsevier teams, saving users valuable time
and reducing the need for local IT support.
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Fig. 2. Classification of attack in the dataset

Digital Commons Data is a comprehensive, cloud-
based module that is fully supported and provides all

essential functionalities required for establishing an
institutional research data management program without
necessitating further technical investment. All aspects of
software maintenance, configuration, and implementation
are overseen by Elsevier teams, which conserves valuable
time for users and diminishes the reliance on local IT
support. This dataset is produced using the Mininet
emulator and is tailored for traffic classification utilizing
machine learning and deep learning methodologies. Some
of the important columns are:

e ‘dt’ (timestamp);

e ‘src’ (source IP);

e ‘dst’ (destination IP);

e ‘pktcount’ (number of packets);

e ‘bytecount’ (number of bytes);

e ‘label’ (traffic type).

3.4 Preprocessing. This involves transforming raw
data into a format that is useful. The categorical class label
is transformed into a discrete representation (0,1) through
the application of label encoding, with 0 indicating benign
traffic and 1 indicating an attack based on DDoS.

3.5 Data Analysis. Fig. 3 depicts the relationship
among numerous features within the dataset. The analysis
of the correlation matrix reveals several notable
relationships between variables. A strong positive
correlation exists between ‘dt’ and ‘Pairflow’ (72%),
suggesting that as ‘dt’ increases, ‘Pairflow’ also tends to
increase. Similarly, there is a notable positive correlation
between “pktcount’ and ‘bytecount’ (68%), indicating that
higher packet counts are associated with higher byte counts.
The very strong correlation between ‘pktperflow’ and
‘byteperflow’ (81%) suggests that they measure similar
aspects of network traffic. Additionally, ‘totkbps’ and
‘rxkbps’ (76%) show a strong correlation, implying that
most of the traffic migrates in a predictable manner.
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3.6 Data Segmentation and Normalization. The
dataset was first divided into an 80% training set and a
20% testing set for the purpose of machine learning
models. Before training, an essential preprocessing step
was carried out to standardize and scale the data using the
Standard Scaler from Scikit-Learn. This standardization
process was crucial to ensure compatibility with the
machine learning models and to prevent issues like bias,
overfitting, or underfitting

3.7 Classification. The subsequent subsections
provide an overview of the classification models that
have been utilized.

K-Nearest Neighbor (KNNKNN represents a
classification methodology that categorizes test data
observations by assessing their closeness to the nearest
class neighbors. This method is applied as a semi-
supervised learning technique and is utilized to determine
the nearest neighbors [22]. It operates on a non-parametric
basis to classify samples. The distance between distinct
points on the input vector is calculated, and the unlabeled
point is subsequently assigned to the neighboring class K.
The parameter K is crucial in KNN classification. A larger
K results in a prolonged prediction process, which can
impact accuracy [23]. KNN is straightforward to
comprehend when working with a limited number of
predictor variables. For models involving standard data
types (such as text), KNN is frequently employed.

Decision Tree (DT): A Decision Tree employs a tree
structure, where each leaf node represents a potential
solution to a class label based on specific conditions [24].
While decision tree algorithms are mainly utilized for
classification tasks, they are also applicable to regression
issues. The framework comprises a root node, leaf nodes,
and intermediate nodes. At the outset, the algorithm begins
at the root node, representing the entire dataset. During tree
construction, an attribute selection measure is used to
identify the most suitable attribute within the dataset [25].

Random Forest (RF): This is a supervised learning
algorithm which constructs and randomizes a forest made
up of several DT. The training process utilizes an
ensemble technique known as the bagging method. The
bagging method combines multiple learning models to

enhance overall accuracy and provide better results. In
this context, RF generates numerous decision trees (DTs)
and combines them to achieve precise predictions.
Random Forests can be applied to both classification and
regression tasks [26]. The algorithm extracts bootstrap
samples from the provided dataset. For each of these
samples, an unpruned classification [27] or regression
tree is developed. Rather than choosing the optimal split
from all predictors, randomly selected samples are
utilized to ascertain the best split. The subsequent phase
involves predicting new data by aggregating the
predictions from various trees, leading to an approximate
error prediction. Important factors to consider include
refraining from making predictions based on bootstrap
samples and calculating the error rate following model
evaluation.

Results of the development
of machine-based intrusion detection

A variety of ML algorithms were utilized, including
K-Nearest Neighbours (KNN), Random Forest (RF), and
Decision Tree (DT) algorithms. Various classification
metrics were calculated to guarantee the optimal
functioning of these models, such as accuracy, precision,
recall, F1-score, and ROC curve/values. Moreover, an
analysis of feature importance using SHAP (SHapley
Additive explanations) was conducted to thoroughly
investigate how each feature impacts the decision-
making process of the model in making predictions. This
extensive assessment allowed us to pinpoint the most
effective model and the significant features affecting its
performance, thus improving the accuracy and
dependability of our intrusion detection system.

4.1 K-Nearest Neighbors (KNN) Model Analysis.
The SHAP feature importance analysis for the KNN
model (Fig. 4) reveals that network throughput metrics
overwhelmingly dominate the predictions of the model,
with tx_kbps and rx_kbps each contributing the highest
average impact of +0.19, followed closely by tot_kbps at
+0.11, indicating that overall traffic volume and
directional bandwidth are the primary drivers of the
model's decisions.

tx_kbps
rx_kbps
tot_kbps
pktrate
src
Protocol
port_no
byteperflow
pktperflow
flows

dst
dur_nsec
dt

Pairflow

+0.01

Sum of 8 other features

+0:19

+0.19

0.000  0.025  0.050

0.075

0.loo o0.25 0150 0.175 0.200

SHAP value

Fig. 4. SHAP bar plot for KNN model feature importance
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Packet rate (pktrate) shows a moderate influence
(+0.04), while features such as source address (src),
protocol, port number, byteperflow, pktperflow, flows, and
destination (dst) provide only minimal contributions
(ranging from +0.01 to +0.02), and several others—
including flow duration (dur_nsec), dt, and Pairflow exhibit
essentially negligible effects (+0). Collectively, the
remaining eight low-impact features add just +0.01,
underscoring that the performance of the KNN model relies
heavily on a small subset of bandwidth-related features and
suggesting that focusing feature selection on tx_kbps,
rx_kbps, tot_kbps, and pktrate could substantially simplify
the model, reduce complexity, and potentially improve
efficiency without significant loss in predictive accuracy.

The K-Nearest Neighbors (KNN) model
demonstrates high performance, achieving (Table 1):

e Accuracy: 98.21%.

e Precision: 98.16%.

e Recall: 98.10%.

e Fl-score: 98.1%.

The ROC curve, exhibiting an AUC of 1.000,
signifies  outstanding  discriminative  capability,
demonstrating the model’s proficiency in differentiating
between classes. The confusion matrix illustrates the
model’s performance, which includes (Table 2):

e 8,028 true positives.

e 12,469 true negatives.

o 170 false positives.

e 202 false negatives.

Additional metrics include:

e True Positive Rate (TPR): 0.9754.

o False Positive Rate (FPR): 0.0134.

o False Negative Rate (FNR): 0.0245.

e True Negative Rate (TNR): 0.9865.

These findings further underscore the model’s
strength in accurately classifying benign and malicious
traffic, as depicted in the accompanying ROC curve and
confusion matrix visualizations (Fig. 5, 6).
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Table2 — Confusion matrix for KNN
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Fig. 6. K-Nearest Neighbour ROC Curve

4.2 Decision Tree (DT) Analysis. The SHAP
feature importance results for the decision tree model
(Fig. 7) shows that its predictions are dominated by a
small set of packet- and flow-level features. In particular,
packetins (mean SHAP =+0.24) and byteperflow
(+0.19) are the most influential drivers of the model’s
decisions, with protocol contributing moderately
(+0.07). All other features exhibit negligible importance,
indicating minimal impact on prediction. Overall, the
model relies heavily on a few key aggregation features
while largely ignoring traffic volume, duration, and
address-related variables, suggesting that focused feature
selection around these dominant features could improve
interpretability, reduce complexity, and maintain
predictive performance.

Fig. 5. K-Nearest Neighbors confusion matrix

Tablel — Experimental results for KNN
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Fig. 7. SHAP bar plot
for Decision Tree model feature importance
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The Decision Tree Classifier model demonstrates
flawless performance metrics, achieving (Table 3):

e Recall: 1.0.

e Fl-score: 1.0.

e ROCAUC: 1.0.

e Accuracy: 1.0.

e Precision: 1.0.

The confusion matrix corroborates this with (Table 4):

e 8,230 true positives.

e 12,639 true negatives.

o 0 false positives.

o 0 false negatives.

Additional metrics include:

o False Positive Rate (FPR): 0.

o False Negative Rate (FNR): 0.

e True Positive Rate (TPR): 1.0.

e True Negative Rate (TNR): 1.0.

These metrics highlight the model’s exceptional
performance on the test set, withno indication of data
leakage (Fig. 8, 9). However, the perfect scores suggest a
need to ensure the test set is representative to avoid
potential overfitting concerns.

Table 3 — Experimental results for DT

F1-Score
1.0000

ROC
1.0000

Recall
1.0000

Precision
1.0000

Model| Accuracy
DT 1.0000

Table 4 — Confusion matrix for DT

Model TPR FPR
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Fig. 8. Decision Tree confusion matrix

Fig. 9. Decision Tree ROC Curve

4.3 Random Forest (RF) Analysis. The SHAP bar
plot (Fig. 10), shows that bytecount is the most influential
feature (mean SHAP =~ +0.11), followed by byteperflow
(+0.08) and pktcount (+0.07). pktperflow, tot dur, and
packetins contribute moderately, each with mean SHAP
values around +0.05. Features such as pktrate and protocol
have lower influence (= +0.03), while pairflow and dt
show minimal impact (= +0.02). Address- and duration-
related features (src, flows, dur, dur_nsec) and the
remaining features collectively contribute negligibly (=
+0.01). Overall, the RF model relies mainly on traffic
volume and flow-level features, with many features having
little to no effect on predictions.

bytecount

’.3 = byteperflow

6.3 = pktcount
1592.45 pktperflow
3244500000 tot_dur
5 = packetins

2.5 = pktrate

0.6 = Protocol

Pairflow

422.9 = dur
50000 = dur_nsec

Sum of 8 other features

+0.11

0.00 0.02

0.04 0.06 0.08 0.10 0.12

SHAP value

Fig. 10. SHAP bar plot for Random Forest model feature importance
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Overall, while ‘packetins’ stands out as the key
feature, a significant number of features have little to no
impact on the model.

The Random Forest Classifier model exhibits
perfect performance metrics, achieving (Table 5):

e Accuracy: 1.0000.

Precision: 1.0000.
Recall: 1.0000.
F1-score: 1.0000.
ROCAUC: 1.0000.

The confusion matrix confirms this (Table 6), with:

e 8,230 true positives.

e 12,639 true negatives.

o 0 false positives.

o 0 false negatives.

Additional metrics include:

e True Positive Rate (TPR):[0, 1].

e True Negative Rate (TNR):[0, 1].

o False Positive Rate (FPR):[0, 1].

o False Negative Rate (FNR): [1, 0].

These metrics suggest the model might be
memorizing the training data rather than generalizing
well, as reflected in the attached ROC curve and
confusion matrix charts (Fig. 11, 12).
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Fig. 11. Random Forest confusion matrix
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Fig. 12. Random Forest ROC Curve

Table 5 — Experimental results for RF

Model| Accuracy | Precision | Recall | F1-Score | ROC
RF 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000
Table 6 — Confusion matrix for RF
Model TPR FPR FNR TNR
RF 0.9998 0.0001 0.0001 0.9998

4.4 Comparative Analysis: In Table 7 (Final —
Final Prediction (Ensemble Majority Voting)), the KNN
model demonstrates strong performance, achieving:

e Accuracy: 0.9821.

e Precision: 0.9816.

o Recall: 0.9810.

e Fl-score: 0.9813.

¢ ROC AUC: 1.0000.

These metrics indicate that KNN effectively
identifies both true positives and true negatives.
However, the confusion matrix reveals a:

e True Positive Rate (TPR): 0.9754.

e True Negative Rate (TNR): 0.9865.

Table 7 — Performance comparison
of the different models used

Model | Acc |Precision| Recall | F1-Score | ROC
DT 1.0000 | 1.0000 | 1.0000 1.0000 |1.0000
RF 1.0000 | 1.0000 | 1.0000 1.0000 |1.0000
KNN | 0.9821 | 0.9816 | 0.9810 0.9813 |1.0000
Final | 1.0000 | 1.0000 | 1.0000 1.0000 N/A

While both rates are high, indicating strong

performance, the TPR is slightly lower, suggesting a
minor underperformance in predicting positive cases
compared to negative ones (Fig. 13, Tabl. 8).
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70 -
g 60 -
3
E 50 -
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0
TPR TNR FPR FNR
=RF 98,9 999 0 0
DT 98.9 999 0 33.2
KNN 9754 9E.65 1.34 2.45

Fig. 13. Accuracy measurement of algorithms
used in this work

The Random Forest Classifier achieves seamless
scores across all metrics, including:

e Accuracy, Precision, Recall, F1-score, and ROC
AUC: 1.0
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¢ Confusion Matrix TPR: 0.9998.
e Confusion Matrix TNR: 0.9998.

Table 8 — Accuracy measurement of algorithms
used in this work

Model TPR FPR FNR TNR

KNN 0.9754 0.0134 0.0245 0.9865
DT 0.9998 0.0001 0.0001 0.9998
RF 0.9998 0.0001 0.0001 0.9998

The Random Forest Classifier achieves seamless
scores across all metrics, including:

e Accuracy, Precision, Recall, F1-score, and ROC
AUC: 1.0

e Confusion Matrix TPR: 0.9998.

e Confusion Matrix TNR: 0.9998.

This indicates the test set flawless classification
demonstrating the model's ability to generalize well and
perfectly predict both classes. Similarly, the Decision
Tree Classifier achieves perfect scores:

e Accuracy, Precision, Recall, F1-score, and ROC
AUC: 1.0000.

e TPR and TNR values identical to the Random
Forest Classifier.

This reflects the Decision Tree’s ability to handle
the classification task without errors on the test set. In
summary (Fig. 14):

o All models exhibit excellent performance, with
Random Forest and Decision Tree classifiers achieving
perfect predictions on the test set.

e The KNN model also performs exceptionally
well, though it has a slight imbalance in class predictions.
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W KNN 98.25 98.16 981 98.13 100
oT 100 100 100 100 100

Fig. 14. Comparison of different machine learning
algorithms used

o All models demonstrate strong generalization to
the test data.

45 Comparison. This section presents a
comparative analysis of the proposed method alongside
other recent advancements in machine learning for
detecting attacks in cloud networks, as illustrated in
Table 9. The accuracy evaluation metric serves as the
basis for comparison (Fig. 15).

Conclusions

1. This study seeks to forecast the likelihood of a
Distributed Denial of Service (DDoS) attack within a
Software-Defined Network (SDN) operating in a cloud
computing context. The methodology proposed is
depicted in Fig. 1.

Table 9 — Work comparison of the proposed model against other close rivals

Research Work Dataset

Model Average Accuracy Score (%)

[16] Self-generated

SVC and RF 98.8

[17] INSDN

CNN 96.43

[19] Self-generated

RF, DT, ND, K-NN, and SVM

99.88

Proposed Model SDN-DDoS

KNN, DT, and RF 100

101

100

a9

88

a7

Percentage

86

85

84

{Ahujaet
al., 2021)

{lanabi et
al., 2022)

(Gadallah et
al., 2021)

Proposed
work

|IAccurac1,r Q8.8 96.43 99.88 100

Fig. 15. Detection rate comparison of different methods

2. Our ensemble machine learning framework,
which includes RF, KNN, and DT, attained a perfect
accuracy rate of 100% on the test dataset. Both the DT
and RF algorithms exhibited comparable performance,
each achieving 100% accuracy and significantly
surpassing the KNN algorithm.

3. The performance results of Random Forest
align with the findings of [28], reinforcing the suitability
of Random Forest for the classification of DDoS attack
events in a system. The K-Nearest Neighbor algorithm
also demonstrated commendable performance, reaching
an accuracy of 98.21% in detecting DDoS attacks.

4. Nonetheless, as shown in Table 9, the
proposed ensemble machine learning model for DDoS
attack detection has been evaluated against leading
models in the literature and has been ranked as the
most accurate.

5. The findings from this research demonstrate
that machine learning (ML) models that applies ensemble
techniques can potentially enhance the accuracy of
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intrusion detection in cloud environments. We can find
the application of the findings in cloud service providers
(CSPs), enterprises, and security teams that integrate
ML-driven detection modules.

6. The tech ecosystem stands to benefit from those
findings as when it is applied in cloud environment such
as AWS SageMaker, the respective enterprise experience
reduced financial losses from cyberattacks, greater trust
in cloud services and more secure digital infrastructure
supporting internet services and products.

7. However, there is a concern about the privacy
of dataset information. Future research could explore

intrusion detection and the use of reinforcement learning
for autonomous threat response.
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MaiHHe HABYaHHSI /151 BUSIBJIEHHSI BTOPTHEHb Y XMAPHUX 00YHCJIEHHAX
A. Iconr, b. ¥Y.-A. CriBen, @. Acykgo, Y. H. Iremepese, 1. O. Enanr

AHoTanisi. B ymoBax Cy4acHOro TEXHOJIOTIYHO TOEIHAHOTO CBITY Yy XMapHHX OOYHCIIOBAIBHHUX CEpeOBHIIAX
BHKOPHCTOBYETHCS MEPEIoBA MEPEKeBa TEXHOJIOTIsS, BifioMa sK mporpaMHo-koHpiryposani mepexi (SDN), mo6 migBuimnTi
e(eKTUBHICTh yNpaBIiHHA Mepexero. OnHak meHTpaiizoBaHa npupona SDN pobuts i Bpazmmoio 10 DDoS-atak. ¥V mpomy
JIOCTI/PKEHH] IPeJICTaBIeHO METOA Uil BUsiBiIeHHs: DDoS-aTak y cepeJoBHILi XMapHUX 004HCIIeHb. JIOCiIKeHHs ClIpsIMOBaHe Ha
3aCTOCYBaHHSI aHCaMOJICBOTO MiJXOAy MAIIMHHOTO HaBYaHHS [UIsl CTAaTHCTUYHOTO po3mi3HaBaHHA DDoS-atak y XMapHOMY
MepexxeBoMy Tpadiky, KIacH(IKyIOUH iX fK MKIIHBI a00 HEKiAauBi. Pi3HI alropuTMH MAIllWHHOTO HABYAHHS, BKIFOYAFOUH
K-6mmxunx cyciniB, Bunaakosuii mic (RF) ta mepeso pimens (DT), Oyam Buxopucrani sk 0a3oBi KiacuikaTopu B
3anpoOIOHOBaHiil aHcaMOJeBiii Mopeni MalIMHHOrO HaBuaHHs. J[ns omiHku edexTHBHOCTI 0a30BHX KiacudikatopiB Oyio
BHKopHucTaHo Habip nannx SDN-DDoS-arak. Knacudikaropu 0ymu HaBueHi Ha 80% maHux i nportecToBani Ha 20%. Pesynbsratn
eKCIepUMEHTY ToKa3an, mo kiaacudikaropu RF ta DT pocsrim Tounocti 100%, Toai six kiacudikarop K-Gumxuux cyciznis
3abe3neunB TO4HICTh 98,21%. AHCamMOIeBa MO/IeTh MAIlIMHHOTO HAaBYAHHS 3aCTOCYBasia METO OUIBIIOCTI TOJIOCIB IS (hiHAIBHOTO
IIPOTHO3Y Ta gocsiria TouHocti 100% Ha TecToBOMy HaOOpi, CTABIIM HAWKPAIOIO ITOPIBHSIHO 3 €TAJIOHHUMH MOIEISIMH.

KawuoBi cioBa: xmapHi oburcienns; knacudikaiis atak; MallliHHE HaBYaHHs, BUSBICHHs 3arpo3; laaS; PaaS; SaaS;
cHcTeMa BUSIBJICHHS BTOPTHEHbB; INTYYHHU 1HTENEKT; IJIMOOKEe HaBYaHHS, BifOIp O3HAK; alrOpuUTMH Kiacu(ikarlil, BUSIBICHHS
aHOMAaiH.
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