
ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

83

UDC 004.453:519.876:519.2 doi: https://doi.org/10.20998/2522-9052.2026.1.10

Sergii Liubarskyi1, Alina Yanko2, Yurii Zdorenko2, Bakhtiyar Khudayarov3

1 Kruty Heroes Military Institute of Telecommunications and Information Technology, Kyiv, Ukraine
2 National University “Yuri Kondratyuk Poltava Polytechnic”, Poltava, Ukraine
3 Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research

University, Tashkent, Uzbekistan

AN ADAPTIVE MODEL FOR SOFTWARE CODE QUALITY ASSESSMENT

IN REFACTORING TASKS BASED ON FUZZY LOGIC

Abstract . The article's objective is to develop a hybrid adaptive model for assessing software code quality based on code

smell characteristics by combining fuzzy logic and machine learning methods to enhance the objectivity and efficiency of

refactoring. The methodology underlying this research is aimed at developing a hybrid adaptive model for software code

quality assessment. It combines fuzzy logic and artificial intelligence methods, specifically an adaptive neuro-fuzzy inference

system (ANFIS). The multi-layered ANFIS implements the Takagi-Sugeno fuzzy inference with the ability to learn using

gradient methods. The methodology is based on a hybrid approach that integrates expert knowledge with the automated

training of the model on real data. Results. The research resulted in the development of a hybrid adaptive model for software

code quality assessment based on fuzzy logic and the ANFIS. This model allows for automated, objective, and flexible code

quality assessment in refactoring tasks. The model uses eight key code smell metrics: WMC, DIT, RFC, LCOM, NOA, NOC,

CBO, and FANOUT. Their normalization and processing are performed using fuzzy logic based on the Takagi-Sugeno

algorithm. This ensures that the uncertainty and subjectivity of expert evaluations are taken into account. The ANFIS

architecture allows the model to learn from real data, with subsequent automated adjustment of the membership function

parameters and rule weights. This enables the model to adapt to various technology stacks and projects. The use of trapezoidal

membership functions increases the accuracy of modeling critical code smell zones, while the hybrid learning algorithm

based on gradient descent ensures high precision in determining code quality, ultimately contributing to improved software

efficiency, maintainability, scalability, and security. The scientific novelty of the research lies in the development of a hybrid

adaptive model for software code quality assessment. Unlike existing models, this one is based on fuzzy logic and an ANFIS,

which combines expert knowledge with automated training on real data to enhance the objectivity and efficiency of the

refactoring process. The proposed ANFIS architecture with trapezoidal membership functions is used to process eight key

code smell metrics (WMC, DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT) within the context of Takagi-Sugeno fuzzy

inference. This provides a flexible, interpretable, and adaptive assessment of code quality with the ability to automatically

tune model parameters based on gradient learning, which significantly increases the accuracy of code quality determination

and the model's suitability for various technology stacks and projects. The practical significance of the research lies in the

direct implementability and integration of the developed hybrid adaptive model for software code quality assessment into

existing static analysis tools and DevOps processes, specifically as plugins for Continuous Integration/Continuous Delivery

(CI/CD) systems. This will enable automated, objective, and adaptive monitoring of code quality in real time. In addition, the

model has significant potential for extension to various programming languages and technology stacks by analyzing large

datasets from open-source repositories, which will enhance its universality and accuracy. A promising direction for future work

is to improve the ANFIS architecture by incorporating deep learning methods, which would allow for the automatic detection of

new code smells and their interdependencies. The development of interpretable mechanisms to explain the model's decisions

will increase developer trust in the system and promote its widespread adoption in both industrial software development and

educational processes in software engineering and cybersecurity.

Keywords: refactoring; code smells; fuzzy logic; ANFIS; software code quality; software cybersecurity; artificial

intelligence; Takagi-Sugeno fuzzy inference.

Introduction

Problem relevance. The rapid development of

information technologies and their global use in various

fields demand higher requirements for ensuring the high

quality of software.

One way to improve software quality is through the

use of comprehensive methods [1]. In today's

environment, methods for formalized assessment of

software product reliability and functional compliance

are becoming particularly relevant, as they allow for the

minimization of risks associated with errors in mission-

critical applications [2], while also considering that

diagnostic errors can directly affect system security [3].

Furthermore, a comprehensive methodology for software

quality management (SQM) involves the application of

mathematical modeling, system analysis, and automated

testing technologies [4].

To effectively solve the tasks of designing,

developing, and maintaining information systems, it is

crucial to integrate software code quality assurance

mechanisms at all stages of the software development

lifecycle.

Undoubtedly, one of the most promising directions

in addressing this challenge is the application of the

software code refactoring process.

Software code refactoring is a process aimed at

making changes to existing code to improve its structure,

readability, and maintainability without altering its

external behavior.

The use of refactoring within the framework of code

optimization can prevent potential attacks on information

systems [5] and reduce their information security risks.

This action is particularly relevant in the context of

growing cyber threats and digital risks to economic

security [6, 7].

© Liubarskyi S., Yanko A., Zdorenko Yu., Khudayarov B., 2026

Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

84

Existing approaches to software code refactoring

are characterized by certain limitations, including:

‒ Subjectivity: The refactoring process depends

on the developer's knowledge, experience, and personal

views, which can lead to incomplete or redundant code

modifications. Each developer may define their own

formal criteria for assessing the need for this process.

‒ Labor-intensiveness: Since manual refactoring

requires significant time and human resources, the

automation of this process is inevitable.

‒ Insufficient scalability: Most existing

refactoring methods are effective only for small systems

or individual modules. Extending these methods to large

systems leads to the complexity of analyzing

interconnections between components.

‒ Lack of adaptability: Traditional refactoring

techniques have a fixed set of rules and patterns that do

not account for the specifics of a particular project.

‒ Lack of deep contextual understanding:

Refactoring systems often fail to consider business logic,

architectural constraints, and code semantics. This can

result in changes that are syntactically correct but

semantically incorrect.

The aforementioned limitations can, to varying

degrees, affect the task of ensuring software code quality

[8–10]. The need for a formalized approach to managing the

refactoring process is evident, as similar methods for

structuring management tasks are successfully applied in

other complex technical systems, such as

telecommunication networks [11]. One promising direction

for code improvement is to account for secondary software

defects that may arise during refactoring [12]. This

problem can be solved by using predictive systems.

General approaches for their implementation are presented

in [13]. However, models that allow for the consideration

of such defects are still in the development stage and

require improvement. In particular, neurocomputers that

operate based on efficient machine arithmetic can be used

to solve similar problems [14].

The application of artificial intelligence (AI)

methods to refactoring tasks can significantly help

overcome these limitations by providing automated,

objective, and adaptive solutions to improve code

quality, security, and maintainability. There are

numerous examples [15, 16] where AI methods have

been effectively applied to synthesize (generate) new

code, analyze existing code, detect vulnerabilities,

programming errors, style violations, architectural flaws,

automate code improvement, and obtain secure and

optimized code based on identified shortcomings. It is

also worth noting that similar approaches to error control

based on mathematical procedures have found

applications in other areas, such as systems with modular

arithmetic [17].

The model MovePerf proposed in [18] focuses on

predicting a program's execution time after a specific

type of refactoring called "Move method". The authors

investigate how moving methods impacts performance

using a hybrid deep learning model that accounts for

feature interaction. However, this process does not

include a comprehensive procedure for evaluating the

overall quality of the source code. This procedure is

crucial for a thorough check to show how effectively the

code's internal organization has been improved without

losing functionality. It is an important part of supporting

the long-term viability of the software. To address this

challenge, fuzzy logic models can be applied, which are

successfully used, for instance, in assessing risks within

information security management [19].

Therefore, a fuzzy logic-based model for software

code quality assessment is proposed. Fuzzy logic serves as

an effective mathematical tool for solving decision-

making problems [20], particularly under complex

conditions of uncertainty and incomplete input data. In the

proposed model, software code quality is evaluated based

on a set of features (discrepancy characteristics) used as

input. For example, these inputs can be code smell

characteristics [21], such as: the degree of code

duplication, method size, class complexity, number of

variables, comments, and the number of known

vulnerabilities. The use of fuzzy logic for code quality

analysis allows for the effective combination of code

smells and quality metrics into a unified evaluation

system. This approach provides a reasoned, flexible, and

interpretable assessment that can be adapted to specific

projects and technologies.

Literature review. An analysis of publications

[22–24] on fuzzy logic-based models for software code

quality assessment shows that this approach effectively

handles the ambiguity and uncertainty present in code

quality metrics. Unlike sharp threshold values or binary

rules, fuzzy logic considers the degree of membership to

sets, which better reflects real-world software

development practices. Most scientific studies indicate

that the following key features, presented in Table 1, are

used for the fuzzy assessment of software code quality.

Table 1 – Code smell characteristics for fuzzy software

code quality assessment

Feature Description

Degree of code

duplication

Measures the proportion of identical or

similar code in different parts of a software

system. A high level of duplication

increases code interpretability and

maintenance complexity.

Method size

The number of lines of code in a method.

Very long methods are an anti-pattern that

complicates code reading and testing.

Complexity of

user or base

library classes

Metrics that include cyclomatic

complexity, the number of methods/fields,

and the depth of the inheritance tree.

Number of

variables

Many variables in a method can indicate a

suboptimal structure and reduced code

readability.

Number of

comments

The ratio of comments to code. An

insufficient number of comments often

indicates poor code documentation.

Known

vulnerabilities

Security issues found through static

analysis tools (e.g., SonarQube), such as

SQL injection, XSS, etc.

These features form the input space for a fuzzy system,

where each characteristic has a membership function that

determines the degree of "negative consequence" or

"positive influence" on the software code.

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

85

The application of these features using fuzzy logic

for code analysis involves the following steps:

1. Fuzzification. Each feature is converted into a

fuzzy variable using membership functions [23]. For

example:

‒ for lines of code: Low (0–30), Medium (20–60),

High (>50);

‒ for code duplication: None (<5%), Moderate (5–

20%), High (>20%).

2. Fuzzy inference rules. A set of rules is formed

based on expert knowledge, such as:

IF (Code Duplication IS High) AND (Method

Length IS Long) THEN (Code Quality IS Poor)

Such rules can be defined by experts or automatically

generated and trained on data [24].

3. Fuzzy Inference. The Mamdani or Sugeno

algorithm is applied to compute the result – the overall

code quality assessment.

4. Defuzzification. The resulting fuzzy score is

converted into a numerical value, for example, from 0 to 10,

where 0 is the lowest code quality and 10 is the highest.

Eliminating these code smell characteristics from the

software code is a task for subsequent refactoring.

However, the precise definition of fuzzy categories like

"too little," "moderate," "sufficient," or "too much" is quite

subjective. Therefore, the mathematical apparatus of fuzzy

logic [25, 20] can be used to formalize the membership of

code smell characteristics to these fuzzy subsets, and a

fuzzy production rule base can describe the relationship

between code smell features and the output characteristic

– software code quality.

The use of fuzzy system-based models for software

code quality assessment is proposed in [21, 26, 27].

However, they are based on the Mamdani fuzzy inference

algorithm, which does not allow for automated adjustment

of membership function parameters or the generation of

production rules. Therefore, working with them requires

manual, expert-driven parameter definition, which can

lead to incorrect results.

To automate the tasks of parameter tuning and

adaptation, established approaches based on a combination

of artificial neural networks and fuzzy logic can be used. It

is proposed that the values of selected code smell

characteristics be used as input parameters. The output

parameter, the current software code quality value, will be

determined through the fuzzy inference process. This

fuzzy system is proposed to be trained using a hybrid

algorithm based on backpropagation and gradient descent.

Training data can be collected by analyzing code from

open-source repositories (e.g., GitHub). The training of the

created model is proposed to be conducted in the Matlab

environment [28]. Thus, the objective of this research is to

develop a hybrid adaptive model for software code quality

assessment based on code smell discrepancy

characteristics by combining fuzzy logic and machine

learning methods to enhance the objectivity and efficiency

of refactoring.

1 The developed hybrid adaptive model

Architecturally, it is proposed to use a hybrid model

based on the adaptive neuro-fuzzy inference system

(ANFIS) platform. ANFIS is a multi-layered neural

network that performs Takagi-Sugeno fuzzy inference

[27] with the ability to learn using gradient methods.

ANFIS represents an adaptive neuro-fuzzy inference

system. The use of such systems has proven effective for

solving various problems. For example, in [29], such a

system is used for DDoS attack detection. On one hand,

ANFIS is a neural network with a single output and

multiple inputs, which represent fuzzy linguistic variables.

The terms of the input linguistic variables are described by

standard membership functions, while the terms of the

output variable are represented by linear or constant

functions. On the other hand, ANFIS is a fuzzy inference

system in which each of the fuzzy production rules has a

constant weight equal to 1.

The model's architecture structurally involves the

implementation of the following layers:

1. Input layer (Layer 1): This layer handles the

representation of normalized code smell values. Code

smells are indicators of poor structure or design in software

code that suggest the need for refactoring. For the model,

we propose using quantitative characteristics that can be

measured automatically, namely:

‒ WMC (Weighted Methods per Class);

‒ DIT (Depth of Inheritance Tree);

‒ RFC (Response for a Class), the number of

unique methods a class can invoke;

‒ LCOM (Lack of Cohesion in Methods), the

measure of a class's methods not being interconnected;

‒ NOA (Number of Attributes);

‒ NOC (Number of Children);

‒ CBO (Coupling Between Objects);

‒ FANOUT, the number of outgoing dependencies

of the function/method.

Each of these metrics is normalized (Fig. 1) to the

range [0, 1], where 0 is the ideal value (no code smell) and

1 is a critical value (a strong code smell).

WMC normalizer [x1]

DIT normalizer [x2]

RFC normalizer [x3]

LCOM normalizer [x4]

NOA normalizer [x5]

NOC normalizer [x6]

CBO normalizer [x7]

FANOUT normalizer [x8]

 
8

1 2 8, , ..., 0, 1{ } [] x x X x = 

Fig. 1. Normalization process of the model's input layer

To bring the values of the code features to a single

scale, it is proposed to apply linear normalization:

 min

max min

,norm i
i

x x
x

x x

−
=

−
 (1)

where xi is the initial value of the i-th code smell; xmin,

xmax are the minimum and maximum expected values

(extrema) for this metric.

The aforementioned extremum values can be:

theoretical (for example, for DIT: [0, ∞], but in practice

Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

86

[0, 10]); statistical (obtained from a dataset); or expert-

defined.

Thus, after normalization, an input vector { }X is

formed, where each xi is the normalized value of the

corresponding code smell. This vector is fed into the

ANFIS system, where each component is used for

fuzzification (conversion into fuzzy sets), which then

activates specific fuzzy rules and, ultimately, influences

the code quality assessment.

2. Fuzzification layer (Layer 2). The fuzzification

layer of the hybrid ANFIS model is the second layer in

its architecture and is responsible for converting crisp

values into fuzzy values, which is the process of

fuzzification. This is a key step that allows the system to

operate with fuzzy sets, which are used to implement

Takagi-Sugeno fuzzy inference [27].

For each input xi and each fuzzy term Aj the

fuzzification layer calculates:

 (,)
jij A iO x=  (2)

where Oij ‒ the degree of membership of the i-th input to

the j-th term; ()
jA ix ‒ the value of the membership

function for xi.

The conversion of crisp values into fuzzy ones is

performed using membership functions of various types

(e.g., triangular, trapezoidal).

The fuzzification procedure involves the process of

converting a numerical value (for example, a normalized

code smell value) into a degree of membership to fuzzy

sets such as: low, medium, or high. This process shows

how much the numerical code smell value corresponds to

the given linguistic terms.

Each input feature (e.g., WMC, CBO) has its own

group of membership functions that determine how much

the value corresponds to each fuzzy term.

For example, for WMC, the fuzzy terms "Low",

"Medium", or "High" can be defined. Thus, if

WMC = 0.7, the system calculates: μLow(0.7);

μMedium(0.7); μHigh(0.7), where ()х is the corresponding

membership function. In the ANFIS fuzzification layer

(Layer 2), parameterized membership functions are most

commonly used, for example:

‒ triangular membership function (x):

 ()
() ()

() ()

0, ,

, ,
; , ,

, ,

0, ,

x a

x a b a a x b
x a b c

c x c b b x c

x c




− −  
= 

− −  
 

 (3)

where x is the input value of the code smell characteristic;

a is the left boundary of the fuzzy term (degree of

membership  = 0); b is the center of the term (degree of

membership  = 1); c is the right boundary of the term

(degree of membership  = 0).

The parameters a, b, c determine the shape of the

triangular function, which reflects the degree to which

the value of the input feature (e.g., WMC, CBO)

corresponds to a specific linguistic term (Low, Medium,

High). They allow for the clear definition of the

boundaries of fuzzy sets for each feature:

‒ trapezoidal membership function ()х :

 ()
() ()

() ()

0,

,

; , , , ,1,

,

0

x a

x a b a a x b

x a b c d b x c

d x d c c x d

x d




− −  


=  
 − −  




 (4)

where x is the input value of the code smell

characteristic; a is the start of the rising slope of the

membership function; b is the start of the full

membership plateau (1);= c is the end of the full

membership plateau; d is the end of the falling slope of

the membership function.

The trapezoidal membership function ()х differs

from the triangular one by having a plateau of full

membership (1)= between b and c. The trapezoidal

function is also useful for modeling clearer zones of high

impact (e.g., "the class has a critical code smell") and

allows for more flexible description of linguistic terms in

cases where it is necessary to clearly define a high-risk

range.

‒ sigmoid membership function ()х :

 ()
()

1
; , ,

1
a x c

x f c
e
− −

=
+

 (5)

where x is the input value (e.g., a normalized code smell

value);

a ‒ is the slope coefficient that determines the

steepness of the function (the larger ,a the sharper the

transition from 0 to 1);

c ‒ is the shift parameter that defines the point of

intersection with 0.5, i.e., the value of x at which the

degree of membership equals 0.5.

This membership function can be useful in software

code quality assessment tasks, especially when it is

necessary to model the monotonically increasing or

decreasing influence of a particular code smell on the

overall code quality score [30].

In ANFIS, the parameters of these functions (e.g.,

a, b, c, d) are learnable and are optimized using gradient

descent or another learning algorithm.

For assessing software code quality based on code

smell characteristics within the hybrid ANFIS model, the

choice of the membership function has a significant

impact on the accuracy and interpretability of the fuzzy

inference.

The advantages and disadvantages of the presented

membership functions, in accordance with the model's

objective, are provided in Table 2.

Although other types of membership functions exist

(e.g., Gaussian, S-shaped, Z-shaped), their use is not

recommended for this task due to: difficulty of

interpretation (they are less understandable to experts,

making it harder to explain their correlation with code

smells); increased complexity (they complicate the

learning process and increase the risk of overfitting due

to a larger number of parameters). Lack of a clear

connection to linguistic terms [31].

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

87

Table 2 – Advantages and disadvantages of membership functions

Type of function Advantages Disadvantages

Triangular Simplicity, clarity, fast training, interpretability. Lack of a clear high-risk zone.

Trapezoidal
Presence of a full membership zone ( = 1) high flexibility,

well-suited for modeling critical zones.

More complex interpretation, more

parameters.

Sigmoid
Smooth change in the degree of membership, analytical

derivative, well-suited for gradient learning.

Less interpretable, more difficult for

experts, risk of overfitting.

The trapezoidal membership function is considered

optimal for implementing the hybrid adaptive model for

software code quality assessment because it:

‒ best suited for modeling critical code smell

zones, where the feature's value (e.g., WMC, CBO)

reaches a dangerous level. The trapezoidal function

allows for the definition of a plateau of full membership

(1);=

‒ has clear boundaries and is easily explained by

experts, unlike the sigmoid function. This is crucial since

the model combines expert knowledge and machine

learning;

‒ offers flexible configuration due to its four

parameters. This ensures better adaptability to different

code smells and projects. In the hybrid ANFIS model,

these parameters (a, b, c, d) are optimized by gradient

descent, which provides high prediction accuracy;

‒ is suitable for modeling linguistic terms.

It is proposed to choose 3-5 terms for each code

smell characteristic based on Table 3.

Table 3 – Selection of linguistic terms for code smell

characteristics

Terms Details

3 terms Low – Medium – High

(Most commonly used in practice)

4 terms Very Low – Low – Medium – High

5 terms Very Low – Low – Medium – High – Very High

(Used when a detailed analysis is required)

The parameter tuning for the membership functions

should be performed using alternative methods:

‒ based on expert knowledge. Experts indicate

which code smell values correspond to "Low",

"Medium", or "High" levels;

‒ based on data (statistically). Quantiles (e.g.,

25%, 50%, 75%) are calculated for each metric. These

values are used as the intersection points of the

membership functions.

3. The rule layer (Layer 3). This layer calculates

the firing strength of each rule, which is the product of

the membership function values for all sub-conditions of

the rule.

The fuzzy rule layer in the hybrid ANFIS model is

a main element that implements the Takagi-Sugeno fuzzy

inference. This layer provides the model with semantic

interpretability, as each rule can be understood by a

human expert, and it also supports parameter learning

using gradient methods.

The main task of this layer is to compute the firing

strength of each rule based on the degrees of membership

of the inputs to the fuzzy sets.

Each rule has the form:

 1 1 2 2

1 1 2 2

“ , , ... ,

... ”,n

n n

n

If x A x A x A

than y p x p x p x q

   

= + + + +
 (6)

where 1,..., nA A are the fuzzy terms corresponding to the

linguistic variables (e.g., Low, Medium, High);

1 2, , , nx x x are the input code smell features (e.g.,

WMC, CBO, LCOM, DIT, NOC, RFC, CBO, MFA,

etc.); y is the output value (code quality assessment based

on code smell characteristics); 1 2, , , npp p are the

weighting coefficients of the input variables (influence

weights). These parameters determine the influence of

each input feature (e.g., a specific code smell) on the

output value (code quality assessment) within a particular

rule. If ip has a large magnitude, it means that the

corresponding feature ix significantly affects the output

in this rule. If ip is close to zero, the influence of this

feature is minimal; q is the free term (bias). This is a

constant value that is added to the sum of the weighted

input features. It acts as a baseline or offset for a specific

rule (q can reflect a systematic contribution of the rule

that is independent of the input data). This representation

is typical for a first-order Takagi-Sugeno inference

algorithm rule [32].

So, if we have the following input conditions:

‒ number of code smell characteristics: 8 (WMC,

DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT);

‒ number of terms: 4 ("Low", "Medium", "High",

"Critical") corresponding to the trapezoidal membership

function;

‒ number of Takagi-Sugeno rules will be

48 = 65536 (a full combination).

In general, Takagi-Sugeno rules have the following

form:

() ()

()
1 2

8 1

2 8

“ ...

, *

* ... * ”.

If WMC is x and DIT is x and

and FANOUT is x than Quality p WMC

p DIT p FANOUT q

= +

+ + + +

 (7)

A fragment of the rule base range is presented in Table

4. The operation algorithm of this layer assumes that the

degrees of membership from the fuzzification layer for each

input and each term are passed to its input. For each rule, the

logical "AND" (conjunction) of the degrees of membership

of all its antecedents is computed:

 1 1 2 2() () (),i n nA x A x A x =     (8)

where i is the degree of activation (firing strength) of

the i-th fuzzy rule (6); ()j jA x is the degree of

membership of the j-th input jx to the fuzzy term ;jA n

is the number of input features (code smells), for
example: WMC, CBO, LCOM, etc.

Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

88

Table 4 – A fragment of the Takagi-Sugeno rules

Rule # Conditions (8 features)
Influence weights

p1, p2, … , p8
Bias q

Inference formula (1st-order

Takagi-Sugeno)

1

WMC=Low, DIT=Low,

RFC=Low, LCOM=Low,

NOA=Low, NOC=Low,

CBO=Low, FANOUT=Low

Initially, they are

initialized with

small random

values ([0, 1]) or

are set by an

expert. The

[0,1]ip  values

are normalized, but

they can also be

negative (if an

increase in a code

smell improves

quality, although

this is rare).

0.05..0.5q 

depending on

the rules

y = p1*WMC + p2*DIT + p3*RFC +

+ p4*LCOM + p5*NOA + p6*NOC+

+ p7*CBO + p8*FANOUT + q

2

WMC=Medium, DIT=Low,

RFC=Low, LCOM=Low,

NOA=Low, NOC=Low,

CBO=Low, FANOUT=Low

y = p1*WMC + p2*DIT + p3*RFC +

+ p4*LCOM + p5*NOA + p6*NOC

+

+ p7*CBO + p8*FANOUT + q

… … …

65536

WMC=Critical, DIT=Critical,

RFC=Critical,

LCOM=Critical,

NOA=Critical, NOC=Critical,

CBO=Critical,

FANOUT=Critical

y = p1*WMC + p2*DIT + p3*RFC +

+ p4*LCOM + p5*NOA + p6*NOC

+

+ p7*CBO + p8*FANOUT + q

The firing strength (activation) is a number that

shows how strongly a particular rule applies to the

current set of code smells [33].

Therefore, the operation algorithm of the rule layer

can be described mathematically as follows:

Let there be given:

‒  1 2, , ... , nx x x x= is the normalized set of

code smell parameters;

‒ for each ,ix M fuzzy terms are defined;

‒ the number of possible rules is .nR M=

Then, for each rule 1, ,r R= the following holds

true:

1

(),r
i

n

A
i

r ix

=

=  (9)

where ()r
iA ix is the degree of membership of the i-th

input to the j-th term within the r-th rule.

The output of the rule layer is a vector

 1 2, ... , ,, R =   where each element corresponds

to the activation of a separate rule. The layer has high

interpretability due to the clear semantics of the rules,

supports the learning of inference parameters (using

gradient descent), and is the result of combining fuzzy

logic and neural networks.

4. Normalization layer (Layer 4). This layer

ensures the calculation of the normalized firing strength

of each rule. The Normalization Layer of the hybrid

ANFIS model is a key element for the fuzzy inference

stage, which provides the relative weighting of rule

activations before they are used in defuzzification. This

layer allows the system to react more stably to different

input combinations and improves the model's training for

optimizing its parameters using gradient methods.

This layer is aimed at calculating the normalized

firing strengths of the rules. Its task is to determine how

important each rule is relative to the others for the

current set of inputs. This is due to the fact that: the

absolute values of the rule activations i can be large

or small simultaneously; for an accurate output

calculation, it is necessary to consider the relative

weight of each rule.

Based on the vector of rule activations

 1 2, ... , ,, R =   the layer calculates as:

1

,
R

i ii
i=

=    (10)

where i is the degree of activation of the i-th rule; R is

the total number of rules; i is the normalized i-th rule

activation.
This approach guarantees that the sum of all

normalized activations equals 1. The Normalization

Layer is a part of the architecture that ensures learning

stability and increases the accuracy of fuzzy inference.

Normalizing the rule activations prevents rules with a

large number of inputs from having an undue advantage.

This is especially important in a hybrid learning

algorithm, where both the inference parameters (of the

linear rule part) and the membership function parameters

are optimized in a single pass (when using gradient

descent).

Therefore, at the output of the layer, each rule has a

weight that will be used in defuzzification.

5. Defuzzification layer (Layer 5). This layer

calculates the weighted average of the results, taking into

account the rules' activity. The defuzzification layer of

the hybrid ANFIS model is designed for the final

computational stage of fuzzy inference. It provides the

conversion of fuzzy results into a crisp numerical value,

which can be interpreted as a software code quality

assessment, or any other quantitative indicator.

In this layer, the final result of the fuzzy inference

of the proposed system is calculated using the weighted

average of the rule conclusions, taking into account their

normalized activations. This layer uses the results from

the rule layer (Layer 3) and the normalization layer

(Layer 4) and calculates the resulting parameter ‒ the

code quality assessment, Q. At the same time, it supports

gradient learning, and the result of the fuzzy inference

depends on the model's parameters.

Mathematically, this process can be described as

follows. The input data are:

‒ the normalized rule activations :i

  1 2, ... , ;, R =  

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

89

‒ the Takagi-Sugeno rule conclusions:

 

2

1 2

1 1 2 ... ,

, .. , ., .

i n in

R

p x p x p x qf

 f f f f

+ + + +

=

=

The final stage of fuzzy inference (software code

quality assessment) is calculated using the formula:

1

,
R

i i fQ
=

=  (11)

where Q is the final software code quality assessment

 [0 ,1(,]Q  where 0 corresponds to high code quality

and 1 to low code quality); R is the total number of rules;

i is the normalized i-th rule activation; if is the output

value of the i-th rule (a linear combination of the inputs).

The defuzzification layer (Layer 5) in ANFIS

implements the conversion of fuzzy results into a crisp

number, using a weighted average that accounts for rule

activations. It also supports gradient learning and is a key

link in the model optimization process.

6. Output layer (Layer 6). The Output Layer

returns the software code quality assessment in the range

[0, 1]. The quality assessment is formed in the previous

layer based on fuzzy inference. At this step, it is possible

to perform post-processing, such as normalization,

rounding, conversion to a discrete category (e.g., "Low"

quality [0. 1](7 ,Q − refactoring is needed), "Medium"

quality [0.3 0 7(],.Q − refactoring is possible), "High"

quality ([0 ,3](0.Q − no need for refactoring)), or

comparison with a threshold for decision-making.

The architecture of the adaptive model for

software code refactoring based on fuzzy logic is

shown in Fig. 2.

Code smells Signs of bad structure or design of software code that indicate the need for refactoring

Layer 1 Input layer
Formation and presentation of normalized code smell

values.

Linear normalization:

min

max min

.norm i
i

x x
x

x x

−
=

−

 1 2, , ..., 1} [] 0{ ,
i

i x x X x = 

Layer 2 Fuzzification layer
The conversion of crisp values into degrees of

membership to fuzzy sets.

The process that determines

how a numerical code smell

value corresponds to the

provided linguistic terms:

().
jij A iO x= 

ijO ‒ the degree of membership of the i-th input to the j-th term

Layer 3 The rule layer

It provides the model with semantic

interpretability. It computes the firing strength of

each rule based on the degrees of membership of

the inputs to the fuzzy sets.

For each rule, the logical

"AND" (conjunction) of the

degrees of membership of all

its antecedents is calculated:

1 1() ().i n nA x A x =  

 1 2, , ... , R  =  

Layer 4 Normalization layer

It ensures the calculation of the normalized firing

strength of each rule. Normalizing the rule

activations prevents rules with a high degree of

activation from having an undue advantage.

The normalized rule activation:

1

.i
R

i

i

i=


 =



 1 2, , ... , R  =  

Layer 5
The defuzzification

layer

It ensures the conversion of fuzzy results into a

crisp numerical value, which can be interpreted as

a software code quality assessment or any other

quantitative indicator.

Software code quality

assessment:

1

.i i

R

i

fQ

=

 =

Q ‒ final code quality assessment [0, 1]Q 

Layer 6 Output layer

Performing post-processing, for example,

normalization, rounding, conversion to a discrete

category (e.g., "Low", "Medium", "High" quality),

or comparison with a threshold for decision-

making.

Final software code quality assessment.

Fig. 2. Architecture of an adaptive model for software code refactoring based on fuzzy logic

Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

90

2 Hybrid learning algorithm

The hybrid learning algorithm of the adaptive

model for software code refactoring based on fuzzy logic

combines forward pass and backward pass procedures, as

well as the gradient descent algorithm.

The training involves the following stages:

1. Initialization of fuzzy rules. Initial rules are

created based on expert knowledge or analysis of the data

from the subject area of the research.

2. Forward pass procedure. This is the

implementation of the forward computational process

through all the layers of the ANFIS model. Data passes

through all layers to the Defuzzification Layer, and the

expected quality assessment expectedQ is calculated

using formula (11).

3. Calculation of the training error E. This stage

involves comparing the predicted quality value expectedQ

with the actual value actualQ (expert evaluation or prior

refactoring) using the formula:

 ()
2

 2, actual expectedE Q Q= − (12)

where actualQ is the actual, real value of software code

quality that is known at the time of model training. It is the

known value of the output parameter that the model is

trying to predict. It can be determined either based on an

expert evaluation ([0, 1], where 0 is ideal code, and 1 is

code that requires refactoring) or based on an automatic

assessment (using static analysis tools); expectedQ is the

expected code quality value that the model returns after

processing the code smells. The corresponding value is

calculated through the Takagi-Sugeno fuzzy inference

algorithm, depends on the rule activations, their

conclusions, and the model's parameters, and is formed

through defuzzification in ANFIS.

4. Backward pass. This procedure is aimed at

minimizing the error in determining (predicting) the

software code quality by adapting the model's

parameters. That is, the model adjusts its internal

parameters to improve the accuracy of the expectedQ

determination, making it closer to the actual value

.actualQ

In the hybrid ANFIS model, two categories of

parameters are adapted:

‒ membership function parameters (a, b, c in

triangular functions or a, b, c, d in trapezoidal functions)

are updated using gradient descent, as they influence the

nonlinear part of the model;

‒ rule weighting coefficients 1 2, , ..(),. , np pp

which correspond to the linear conclusion of the Takagi-

Sugeno rule, are updated using the least squares method.

This hybrid approach ensures a significant increase

in the efficiency and speed of training.

The backward pass procedure allows the error from

the output of the adaptive model for software code

refactoring to be directed backward toward the model's

inputs. This is done to evaluate how each model

parameter influenced the error and, accordingly, to adjust

these parameters.

The backward pass procedure involves:

‒ performing the forward pass procedure;

‒ calculating the expected code quality value

expectedQ and the training error E;

‒ calculating the gradients. This very process

allows for determining how much each model parameter

influences the prediction error, and accordingly,

adjusting these parameters to improve accuracy.

The gradient is a vector of partial derivatives with

respect to all model parameters:

1 2

, , , ,
n

E E E
E

   
 =  

     
 (13)

where E is the gradient vector (of partial derivatives).

It allows for determining how the parameters should be

changed to reduce the error;

E is the partial derivative of the error with respect to

each individual model parameter .i It demonstrates the

influence of a single parameter on the model's error;

1 2, , ... , n    are the model parameters (for example,

fuzzy rule coefficients, membership function parameters,

neural network weights).

Each derivative is calculated using the chain rule of

differentiation, taking into account the influence of each

parameter through all previous layers (fuzzification and

defuzzification).

5. Execution of the parameter update procedure

using the gradient descent algorithm. The gradient

descent algorithm is aimed at optimizing parameters to

minimize functions (MSE, MAE, etc.) [34].

Parameters are updated using the formula:

 , new old
E

= −


  


 (14)

where θ is the parameter (for example, b in a triangular

function);  is the learning rate;
E


 is the error gradient

(the derivative of the error with respect to this parameter).
The process is repeated over a set of cycles until the

error reaches a predefined level for model convergence.

With a large number of inputs and rules, the training

process can be lengthy. Poor or contradictory data can

lead to inaccurate predictions.

However, the undeniable advantages of the

presented model are: the ability to improve rule settings

based on new data; a proper level of interpretability due

to the fuzzy rules; an organic combination of expert

knowledge and machine learning; the ability to work with

various technologies and languages; and support for

integration into the software development process.

3 Discussion of results

The developed hybrid ANFIS model demonstrates

significant potential for the automated and objective

assessment of software code quality. Unlike existing

approaches, which are often based on static rules or

subjective expert evaluations, our model combines the

interpretability of fuzzy logic with the adaptability of

machine learning. The use of eight key code smell

metrics as input parameters allows for covering a wide

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

91

range of potential problems in code. The proposed

architecture, with its trapezoidal membership functions

and a hybrid learning algorithm, ensures not only high

accuracy but also flexibility, which is critically

important for adapting the model to various

programming languages and technology stacks. This

allows the model to independently optimize its

parameters based on real data, which minimizes the

reliance on manual tuning.

The achieved accuracy in code quality

determination indicates the effectiveness of applying this

hybrid approach to solve complex problems that have

uncertainty and fuzziness in their input data. The model

can be used not only for detecting existing code smells

but also for predicting possible secondary defects that

may arise during refactoring. Implementing this model

into development processes, particularly into CI/CD

tools, will provide developers with valuable, objective,

and fast feedback on code quality, which will ultimately

increase the overall efficiency of development,

maintainability, and security of software.

Conclusions

Based on the results of the conducted research, the

following conclusions were formulated.

A hybrid adaptive model for software code quality

assessment was developed based on fuzzy logic and the

ANFIS architecture, which allows for overcoming the

limitations of classical refactoring approaches, particularly

their subjectivity, labor-intensity, and lack of adaptability.

The proposed model integrates eight key code smell

metrics (WMC, DIT, RFC, LCOM, NOA, NOC, CBO,

FANOUT) using Takagi-Sugeno fuzzy inference. This

ensures a flexible, interpretable, and objective

assessment of code quality.

The choice of trapezoidal membership functions

was justified as optimal for modeling critical code smell

zones. The hybrid learning algorithm, which combines

forward and backward propagation of error, ensures the

automatic tuning of the model's parameters, significantly

increasing assessment accuracy.

The obtained results provide a solid foundation for

further scientific and practical developments. The

prospects for future research lie in the practical

implementation and integration of the developed hybrid

adaptive model into existing static analysis tools and

DevOps processes. Specifically, it can be implemented

as plugins for continuous integration and continuous

delivery (CI/CD) systems, which would provide

automated, objective, and adaptive real-time code quality

monitoring.

Furthermore, future work should focus on improving

and expanding the model. It is worth separately

investigating its potential application for different

programming languages and technology stacks by

collecting and analyzing large datasets from open

repositories. It is also promising to enhance the ANFIS

architecture by introducing deep learning methods or

hybridizing it with other artificial intelligence approaches.

This would allow for the automatic detection of new code

smells and their interrelationships. Additionally, developing

interpretable mechanisms that would explain the model's

decisions will significantly increase developers' trust in the

system and facilitate its widespread adoption in industrial

software development and educational processes for

software engineering and cybersecurity.

Conflicts of interest

The authors declare that they have no conflicts of

interest in relation to the current study, including financial,

personal, authorship, or any other, that could affect the

study, as well as the results reported in this paper.

Use of artificial intelligence

The authors confirm that they did not use artificial

intelligence technologies when creating the current work.

REFERENCES

1. Laktionov, A. (2021), “Improving the methods for determining the index of quality of subsystem element interaction”, Eastern-

European Journal of Enterprise Technologies, vol. 6, no. 3 (114), pp. 72–82, doi: https://doi.org/10.15587/1729-

4061.2021.244929

2. Buriak, A., and Maslii, O. (2025), “Minimization of digital risks and threats to the economic security of the state through the

use of generative artificial intelligence”, Eastern-European Journal of Enterprise Technologies, vol. 4, no. 13 (136), pp. 17–

25, doi: https://doi.org/10.15587/1729-4061.2025.336640

3. Ponochovniy, Y., Bulba, E., Yanko, A. and Hozbenko, E. (2018), “Influence of diagnostics errors on safety: Indicators and

requirements”, 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), 24-

27 May 2018, Kyiv, Ukraine, pp. 53–57, doi: https://doi.org/10.1109/DESSERT.2018.8409098

4. Onyshchenko, S., Zhyvylo, Ye., Hlushko, A., and Bilko, S. (2024), “Cyber risk management technology to strengthen the

information security of the national economy”, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, vol. 5, pp. 136–142,

doi: https://doi.org/10.33271/nvngu/2024-5/136 7

5. Krasnobayev, V., Yanko, A., Hlushko, A., Kruk, O., Gakh, V., Onyshchenko, S., Maslii, O., Kivshyk, O., Potapova, K.,

Nalyvaichuk, M., Meliukh, V., Gurynenko, S., Ostapenko, T., and Hrashchenko I. (2023), Economic And Cyber Security,

Monographs, PC TECHNOLOGY CENTER, doi: https://doi.org/10.15587/978-617-7319-98-5

6. Kudinova, A., Maslii, O., Smokvina, V., and Tsyhanenko, K. (2025), “The impact of digitalization on the financial institutions'

economic security in the face of growing cyber threats”, Financial and Credit Activity Problems of Theory and Practice,

vol. 4(63), pp. 466–483, doi: https://doi.org/10.55643/fcaptp.4.63.2025.4790

7. Maslii, O., Buriak, A., Chaikina, A., and Cherviak, A. (2025), “Improving conceptual approaches to ensuring state economic

security under conditions of digitalization”, Eastern-European Journal of Enterprise Technologies, vol. 1, no. 13 (133),

pp. 35–45, doi: https://doi.org/10.15587/1729-4061.2025.319256

8. Tsantalis, N., Angelopoulos, T., Herraiz, I., Mazinanian D. and Dig D. (2018), “Accurate and efficient refactoring detection in

version histories”, Proceedings of the 40th International Conference on Software Engineering (ICSE), pp. 939–950, doi:

https://doi.org/10.1145/3180155.3180206

https://doi.org/10.15587/1729-4061.2021.244929
https://doi.org/10.15587/1729-4061.2021.244929
https://doi.org/10.15587/1729-4061.2025.336640
https://doi.org/10.1109/DESSERT.2018.8409098
https://doi.org/10.33271/nvngu/2024-5/136
https://doi.org/10.15587/978-617-7319-98-5
https://doi.org/10.55643/fcaptp.4.63.2025.4790
https://doi.org/10.15587/1729-4061.2025.319256
https://dl.acm.org/doi/10.1145/3180155.3180206
https://dl.acm.org/doi/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206

Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

92

9. Amandeep, K., Sushma, J., Shivani, G., and Gaurav, D. (2021), “A Review on Machine-learning Based Code Smell Detection

Techniques in Object-oriented Software System(s)”, Recent Advances in Electrical & Electronic Engineering, vol. 14, is. 3,

pp. 290–303, doi: https://doi.org/10.2174/2352096513999200922125839

10. Manju, B.P.K. (2022), “A Survey of Static and Dynamic Metrics Tools for Object Oriented Environment”, Lecture Notes in

Electrical Engineering, vol. 790 LNEE, pp. 521–530, doi: https://doi.org/10.1007/978-981-16-1342-5_40

11. Samokhvalov, Y., Bovda, E., and Liubarskyi, S. (2024), “Structuring management tasks in the telecommunication network

management system”, 11th International Scientific Conference "Information Technology and Implementation" (IT&I-2024),

20–21 November 2024, Kyiv, Ukraine, CEUR 3909, pp. 375–386, available at: https://ceur-ws.org/Vol-3909/Paper_30.pdf

12. Rudenko, O., Yanko, A., Haitan, O., Zdorenko, Y., and Rudenko, Z. (2025), “Secondary Software Faults Detection Models”,

Lecture Notes in Networks and Systems, vol. 1391 LNNS, pp. 212–221, doi: https://doi.org/10.1007/978-3-031-90735-7_17

13. Romanenkov, Y., Danova, M., Kashcheyeva, V., Bugaienko, O., Volk, M., Karminska-Bielobrova, M., and Lobach, O. (2018),

“Complexification Methods of Interval Forecast Estimates in the Problems on Short-Term Prediction”, Eastern-European Journal

of Enterprise Technologies, vol. 3, no. 3 (93), pp. 50–58, doi: https://doi.org/10.15587/1729-4061.2018.131939

14. Yanko, A., Krasnobayev, V., Hlushko, A., and Goncharenko, S. (2025), “Neurocomputer operating in the residue class system”,

Advanced Information Systems, vol. 9, no. 2, pp. 84–92, doi: https://doi.org/10.20998/2522-9052.2025.2.11

15. Nanadani, H., Saad, M., and Sharma, T. (2023), “Calibrating Deep Learning-Based Code Smell Detection Using Human

Feedback”, 2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM), 2–3

October 2023, Bogotá, Colombia, pp. 37–48, doi: https://doi.org/10.1109/SCAM59687.2023.00015

16. Ayadi, M., Rhazali, Y., and Lahmer, M. (2022), “A Proposed Methodology to Automate the software manufacturing through

Artificial Intelligence (AI)”, Procedia Computer Science, vol. 201, pp. 627–631, doi: https://doi.org/10.1016/j.procs.2022.03.082

17. Krasnobayev, V., Kuznetsov, A., Yanko, A., and Kuznetsova, T. (2020), “The data errors control in the modular number system

based on the nullification procedure”, 3rd Int. Workshop on Computer Modeling and Intelligent Systems (CMIS-2020), 27

April – 1 May 2020, Zaporizhzhia, Ukraine, CEUR 2608, pp. 580–593, doi: https://doi.org/10.32782/cmis/2608-45

18. Yu, Y., Lu, Y., Liang, S., Zhang, X., Zhang, L., Bai, Y., and Zhang, Y. (2025), “Predicting a Program’s Execution Time After

Move Method Refactoring Based on Deep Learning and Feature Interaction”, Applied Sciences, vol. 15(8), art. no. 4270, doi:

https://doi.org/10.3390/app15084270

19. Zdorenko, Y., Yanko, A., Myziura, M., and Fesokha, N. (2025), “Development of a fuzzy risk assessment model for information

security management”, Techn. Audit and Production Reserves, vol. 4(84), doi: https://doi.org/10.15587/2706-5448.2025.334954

20. Levashenko, V., Liashenko, O., and Kuchuk, H. (2020), “Building Decision Support Systems based on Fuzzy Data”, Advanced

Information Systems, vol. 4, no. 4, pp. 48–56, doi: https://doi.org/10.20998/2522-9052.2020.4.07

21. Sehgal, R., Mehrotra, D., and Bala, M. (2018), “Prioritizing the refactoring need for critical component using combined

approach”, Decision Science Letters, vol. 7, pp. 257–272, available at:

https://pdfs.semanticscholar.org/17c5/3ab8eba7114de5ce9ba595c26590f4b99835.pdf

22. Kara, M., Lamouchi, O., and Ramdane-Cherif, A. (2016), “Ontology Software Quality Model for Fuzzy Logic Evaluation

Approach”, Procedia Computer Science, vol. 83, pp. 637–641, doi: https://doi.org/10.1016/j.procs.2016.04.143

23. Ritu and Sangwan O.P. (2021), “Software Quality Prediction Method Using Fuzzy Logic”, Turkish Journal of Computer and

Mathematics Education (TURCOMAT), vol. 12(11), pp. 807–817, doi: https://doi.org/10.17762/turcomat.v12i11.5966

24. Chuan Y.R., Huang, T., Towey, D. and Zhou, L. (2025), “A Median-Based Fuzzy Approach to Software Quality Evaluation”,

Tsinghua science and technology, vol. 30, no. 5, pp. 2146−2168, doi: https://doi.org/10.26599/TST.2024.9010103

25. Qi, R., Tao, G. and Jiang, B. (2019), Fuzzy system identification and adaptive control (1st ed.), Springer Cham, doi:

https://doi.org/10.1007/978-3-030-19882-4

26. Maddeh, M., Al-Otaibi, S., Alyahya, S., Hajjej, F. and Ayouni, S. (2023), “A Comprehensive MCDM-Based Approach for Object-

Oriented Metrics Selection Problems”, Applied Sciences, vol. 13(6), pp. 3411, doi: https://doi.org/10.3390/app13063411

27. Golosovskiy, M.S., Bogomolov, A.V., and Evtushenko, E.V. (2021), “An Algorithm for Setting Sugeno-Type Fuzzy Inference

Systems”, Automatic Documentation and Mathematical Linguistics, vol. 55, pp. 79–88, doi:

https://doi.org/10.3103/S000510552103002X

28. (2024), Fuzzy Logic Toolbox. Design and simulate fuzzy logic systems, available at:

https://www.mathworks.com/help/fuzzy/index.html

29. Onyshchenko, S., Haitan, O., Yanko, A., Zdorenko, Y., and Rudenko, O. (2024), “Method for detection of the modified DDoS

cyber attacks on a web resource of an Information and Telecommunication Network based on the use of intelligent systems”,

6th International Workshop on Modern Data Science Technologies Workshop (MoDaST 2024), Lviv, Ukraine, 31 May – 1

June 2024, CEUR 3723, pp. 219–235, available at: https://ceur-ws.org/Vol-3723/paper12.pdf

30. Puja, R. S., Fatema, T., Akhter, N. and Khatun, A. (2023), “Prediction of Code Smell from Source Code: A Hybrid Approach”,

2023 Int. Conf. on Information and Communication Technology for Sustainable Development (ICICT4SD), 21-23 September

2023, Dhaka, Bangladesh, pp. 315–319, doi: https://doi.org/10.1109/ICICT4SD59951.2023.10303449

31. Lima, J. F., Patiño-León, A., Orellana, M., and Zambrano-Martinez, J. L. (2025), “Evaluating the Impact of Membership

Functions and Defuzzification Methods in a Fuzzy System: Case of Air Quality Levels”, Applied Sciences, vol. 15(4), 1934,

doi: https://doi.org/10.3390/app15041934

32. Coradini, M. F., Felão, L. H. V., Lyra, S. d. S., Teixeira, M. C. M., and Kitano, C. (2025), “Takagi–Sugeno Fuzzy Nonlinear

Control System for Optical Interferometry”, Sensors, vol. 25(6), art. no. 1853, doi: https://doi.org/10.3390/s25061853

33. Pecorelli, F., Lujan, S., Lenarduzzi, V., Palomba, F. and de Lucia, A. (2022), “On the adequacy of static analysis warnings with respect

to code smell prediction”, Empirical Software Eng., vol. 27, art. no. 64, doi: https://doi.org/10.1007/s10664-022-10126-5

34. Dogo, E. M., Afolabi, O. J., Nwulu, N. I., Twala, B., and Aigbavboa, C. O. (2018), “A Comparative Analysis of Gradient

Descent-Based Optimization Algorithms on Convolutional Neural Networks”, 2018 International Conference on

Computational Techniques, Electronics and Mechanical Systems (CTEMS), 21-22 December 2018, Belgaum, India, pp. 92–

99, doi: https://doi.org/10.1109/CTEMS.2018.8769211

Received (Надійшла) 21.10.2025

Accepted for publication (Прийнята до друку) 14.01.2026

https://doi.org/10.2174/2352096513999200922125839
https://doi.org/10.1007/978-981-16-1342-5_40
https://ceur-ws.org/Vol-3909/Paper_30.pdf
https://doi.org/10.1007/978-3-031-90735-7_17
https://doi.org/10.15587/1729-4061.2018.131939
https://doi.org/10.20998/2522-9052.2025.2.11
https://doi.org/10.1109/SCAM59687.2023.00015
https://doi.org/10.1016/j.procs.2022.03.082
https://doi.org/10.32782/cmis/2608-45
https://doi.org/10.3390/app15084270
https://doi.org/10.15587/2706-5448.2025.334954
https://doi.org/10.20998/2522-9052.2020.4.07
https://pdfs.semanticscholar.org/17c5/3ab8eba7114de5ce9ba595c26590f4b99835.pdf
https://doi.org/10.1016/j.procs.2016.04.143
https://doi.org/10.17762/turcomat.v12i11.5966
https://doi.org/10.26599/TST.2024.9010103
https://doi.org/10.1007/978-3-030-19882-4
https://doi.org/10.3390/app13063411
https://doi.org/10.3103/S000510552103002X
https://www.mathworks.com/help/fuzzy/index.html
https://ceur-ws.org/Vol-3723/paper12.pdf
https://doi.org/10.1109/ICICT4SD59951.2023.10303449
https://doi.org/10.3390/app15041934
https://doi.org/10.3390/s25061853
https://link.springer.com/article/10.1007/s10664-022-10126-5#auth-Fabio-Palomba-Aff4
https://link.springer.com/article/10.1007/s10664-022-10126-5#auth-Andrea-Lucia-Aff4
https://doi.org/10.1007/s10664-022-10126-5
https://doi.org/10.1109/CTEMS.2018.8769211

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

93

ABOUT THE AUTHORS / ВІДОМОСТІ ПРО АВТОРІВ

Любарський Сергій Володимирович – кандидат технічних наук, доцент, доцент кафедри, Військовий інститут

телекомунікацій та інформатизації імені Героїв Крут, Київ, Україна;

Sergii Liubarskyi – Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department, Military

Institute of Telecommunications and Informatization Technologies named after Heroes of Kruty; Kyiv, Ukraine;

e-mail: sergii.liubarskyi@viti.edu.ua, ORCID Author ID: https://orcid.org/0000-0001-8068-1106;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=59548693300.

Янко Аліна Сергіївна – кандидат технічних наук, доцент, доцент кафедри комп'ютерних та інформаційних технологій і

систем, Національний університет «Полтавська політехніка імені Юрія Кондратюка», Полтава, Україна;

Alina Yanko – Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Computer and

Information Technologies and Systems, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine;

e-mail: al9_yanko@ukr.net; ORCID Author ID: https://orcid.org/0000-0003-2876-9316;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=57094953000.

Здоренко Юрій Миколайович – кандидат технічних наук, доцент, доцент кафедри комп'ютерних та інформаційних

технологій і систем, Національний університет «Полтавська політехніка імені Юрія Кондратюка», Полтава, Україна;

Yurii Zdorenko – Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Computer

and Information Technologies and Systems, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine;

e-mail: zdorenkoviti@gmail.com; ORCID Author ID: https://orcid.org/0000-0002-5649-771X;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=57188762885&origin=resultslist.

Худаяров Бахтіяр Алімович – доктор технічних наук, професор кафедри вищої математики, Національний дослідницький

університет «Ташкентський інститут інженерів іригації та механізації сільського господарства», Ташкент, Узбекистан;

Bakhtiyar Khudayarov– Doctor of Technical Sciences, Professor of the Department of Higher Mathematics, "Tashkent Institute of

Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan;

e-mail: khudayaroba@gmail.com; ORCID Author ID: https://orcid.org/0000-0002-2876-8447;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=9244185400.

Адаптивна модель оцінки якості програмного коду в задачах рефакторингу

на основі fuzzy-логіки

С. В. Любарський, А. С. Янко, Ю. М. Здоренко, Б. А. Худаяров

Анотація. Мета статті полягає у розробці гібридної адаптивної моделі оцінки якості програмного коду на основі

характеристик невідповідності code smells шляхом поєднання методів fuzzy-логіки та машинного навчання для підвищення

об’єктивності та ефективності рефакторингу. Методологія, що покладена в основу дослідження, спрямована на розробку

гібридної адаптивної моделі оцінки якості програмного коду, поєднує у собі нечітку логіку (fuzzy logic) та методи штучного

інтелекту, зокрема адаптивну систему нейро-нечіткого виведення (ANFIS ‒ Adaptive Neuro-Fuzzy Inference System).

Багатошарова адаптивна система нейро-нечіткого виведення ANFIS реалізує нечітке логічне виведення Такагі-Сугено з

можливістю навчання за допомогою градієнтних методів. Методологія побудована на гібридному підході, що інтегрує

експертні знання з автоматичним навчанням моделі на реальних даних. Результати. За результатами проведеного

дослідження розроблено гібридну адаптивну модель оцінки якості програмного коду на основі нечіткої логіки та адаптивної

нейро-нечіткої системи виведення ANFIS, що дозволяє автоматизовано, об’єктивно та гнучко оцінювати якість програмного

коду в задачах рефакторингу. Модель використовує вісім ключових code smells-метрик (WMC, DIT, RFC, LCOM, NOA, NOC,

CBO, FANOUT). Їх нормалізація та обробка здійснюється за допомогою нечіткої логіки на основі алгоритму Такагі-Сугено.

Це забезпечує врахування невизначеності та суб’єктивності експертних оцінок. Архітектура ANFIS дозволяє моделі

навчатися на реальних даних з подальшим автоматичним налаштуванням параметрів функцій приналежності та вагових

коефіцієнтів правил. Саме це надає змогу адаптуватися до різних технологічних стеків та проєктів. Використання

трапецієподібних функцій приналежності підвищує точність моделювання критичних зон code smells, а гібридний алгоритм

навчання на основі градієнтного спуску забезпечує високу точність визначення якості коду, що в підсумку сприяє

підвищенню ефективності, підтримуваності, розширюваності та безпеки програмного забезпечення. Наукова новизна

дослідження полягає у розробці гібридної адаптивної моделі оцінки якості програмного коду, яка на відміну від існуючих,

здійснена на основі нечіткої логіки та адаптивної системи нейро-нечіткого виведення ANFIS, що поєднує експертні знання з

автоматичним навчанням на реальних даних для підвищення об’єктивності та ефективності процесу рефакторингу.

Запропоновано використання архітектури ANFIS з трапецієподібними функціями приналежності для обробки восьми

ключових метрик code smells (WMC, DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT) у контексті нечіткого логічного

виведення Такагі-Сугено, що забезпечує гнучке, інтерпретоване та адаптивне оцінювання якості коду з можливістю

автоматичного налаштування параметрів моделі на основі градієнтного навчання, що значно підвищує точність визначення

якості коду та придатність моделі для різноманітних технологічних стеків та проєктів. Практичне значення дослідження

полягає у можливості прямої реалізації та інтеграції розробленої гібридної адаптивної моделі оцінки якості програмного коду

в існуючі інструменти статичного аналізу та DevOps-процеси, зокрема у вигляді плагінів для систем безперервної інтеграції

та доставки (CI/CD). Це дозволить забезпечити автоматизований, об'єктивний та адаптивний моніторинг якості коду в

реальному часі. Окрім цього, модель має значний потенціал для розширення на різні мови програмування та технологічні

стеки шляхом аналізу великих масивів даних з відкритих репозиторіїв, що підвищить її універсальність та точність.

Перспективним є також удосконалення архітектури ANFIS через впровадження методів глибокого навчання, що дасть змогу

автоматично виявляти нові code smells та їх взаємозв'язки. Розробка інтерпретованих механізмів пояснення рішень моделі

підвищить довіру розробників до системи та сприятиме її широкому впровадженню як у промислову розробку програмного

забезпечення, так і в навчальні процеси з програмної інженерії та кібербезпеки.

Ключові слова: рефакторинг; code smells; нечітка логіка; ANFIS; якість програмного коду; кібербезпека

програмного забезпечення; штучний інтелект; нечітке логічне виведення Такагі-Сугено.

mailto:sergii.liubarskyi@viti.edu.ua
https://orcid.org/0000-0001-8068-1106
https://www.scopus.com/authid/detail.uri?authorId=59548693300
mailto:al9_yanko@ukr.net
https://orcid.org/0000-0003-2876-9316
https://www.scopus.com/authid/detail.uri?authorId=57094953000
mailto:zdorenkoviti@gmail.com
https://orcid.org/0000-0002-5649-771X
https://www.scopus.com/authid/detail.uri?authorId=57188762885&origin=resultslist
mailto:khudayaroba@gmail.com
https://orcid.org/0000-0002-2876-8447
https://www.scopus.com/authid/detail.uri?authorId=9244185400

