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AN ADAPTIVE MODEL FOR SOFTWARE CODE QUALITY ASSESSMENT
IN REFACTORING TASKS BASED ON FUZZY LOGIC

Abstract. The article's objective is to develop a hybrid adaptive model for assessing software code quality based on code
smell characteristics by combining fuzzy logic and machine learning methods to enhance the objectivity and efficiency of
refactoring. The methodology underlying this research is aimed at developing a hybrid adaptive model for software code
quality assessment. It combines fuzzy logic and artificial intelligence methods, specifically an adaptive neuro-fuzzy inference
system (ANFIS). The multi-layered ANFIS implements the Takagi-Sugeno fuzzy inference with the ability to learn using
gradient methods. The methodology is based on a hybrid approach that integrates expert knowledge with the automated
training of the model on real data. Results. The research resulted in the development of a hybrid adaptive model for software
code quality assessment based on fuzzy logic and the ANFIS. This model allows for automated, objective, and flexible code
quality assessment in refactoring tasks. The model uses eight key code smell metrics: WMC, DIT, RFC, LCOM, NOA, NOC,
CBO, and FANOUT. Their normalization and processing are performed using fuzzy logic based on the Takagi-Sugeno
algorithm. This ensures that the uncertainty and subjectivity of expert evaluations are taken into account. The ANFIS
architecture allows the model to learn from real data, with subsequent automated adjustment of the membership function
parameters and rule weights. This enables the model to adapt to various technology stacks and projects. The use of trapezoidal
membership functions increases the accuracy of modeling critical code smell zones, while the hybrid learning algorithm
based on gradient descent ensures high precision in determining code quality, ultimately contributing to improved software
efficiency, maintainability, scalability, and security. The scientific novelty of the research lies in the development of a hybrid
adaptive model for software code quality assessment. Unlike existing models, this one is based on fuzzy logic and an ANFIS,
which combines expert knowledge with automated training on real data to enhance the objectivity and efficiency of the
refactoring process. The proposed ANFIS architecture with trapezoidal membership functions is used to process eight key
code smell metrics (WMC, DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT) within the context of Takagi-Sugeno fuzzy
inference. This provides a flexible, interpretable, and adaptive assessment of code quality with the ability to automatically
tune model parameters based on gradient learning, which significantly increases the accuracy of code quality determination
and the model's suitability for various technology stacks and projects. The practical significance of the research lies in the
direct implementability and integration of the developed hybrid adaptive model for software code quality assessment into
existing static analysis tools and DevOps processes, specifically as plugins for Continuous Integration/Continuous Delivery
(CI/CD) systems. This will enable automated, objective, and adaptive monitoring of code quality in real time. In addition, the
model has significant potential for extension to various programming languages and technology stacks by analyzing large
datasets from open-source repositories, which will enhance its universality and accuracy. A promising direction for future work
is to improve the ANFIS architecture by incorporating deep learning methods, which would allow for the automatic detection of
new code smells and their interdependencies. The development of interpretable mechanisms to explain the model's decisions
will increase developer trust in the system and promote its widespread adoption in both industrial software development and
educational processes in software engineering and cybersecurity.

Keywords: refactoring; code smells; fuzzy logic; ANFIS; software code quality; software cybersecurity; artificial
intelligence; Takagi-Sugeno fuzzy inference.

To effectively solve the tasks of designing,

Introduction developing, and maintaining information systems, it is

Problem relevance. The rapid development of
information technologies and their global use in various
fields demand higher requirements for ensuring the high
quality of software.

One way to improve software quality is through the
use of comprehensive methods [1]. In today's
environment, methods for formalized assessment of
software product reliability and functional compliance
are becoming particularly relevant, as they allow for the
minimization of risks associated with errors in mission-
critical applications [2], while also considering that
diagnostic errors can directly affect system security [3].
Furthermore, a comprehensive methodology for software
quality management (SQM) involves the application of
mathematical modeling, system analysis, and automated
testing technologies [4].

crucial to integrate software code quality assurance
mechanisms at all stages of the software development
lifecycle.

Undoubtedly, one of the most promising directions
in addressing this challenge is the application of the
software code refactoring process.

Software code refactoring is a process aimed at
making changes to existing code to improve its structure,
readability, and maintainability without altering its
external behavior.

The use of refactoring within the framework of code
optimization can prevent potential attacks on information
systems [5] and reduce their information security risks.
This action is particularly relevant in the context of
growing cyber threats and digital risks to economic
security [6, 7].
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Existing approaches to software code refactoring
are characterized by certain limitations, including:

— Subjectivity: The refactoring process depends
on the developer's knowledge, experience, and personal
views, which can lead to incomplete or redundant code
modifications. Each developer may define their own
formal criteria for assessing the need for this process.

— Labor-intensiveness: Since manual refactoring
requires significant time and human resources, the
automation of this process is inevitable.

— Insufficient  scalability: ~ Most  existing
refactoring methods are effective only for small systems
or individual modules. Extending these methods to large
systems leads to the complexity of analyzing
interconnections between components.

— Lack of adaptability: Traditional refactoring
techniques have a fixed set of rules and patterns that do
not account for the specifics of a particular project.

— Lack of deep contextual understanding:
Refactoring systems often fail to consider business logic,
architectural constraints, and code semantics. This can
result in changes that are syntactically correct but
semantically incorrect.

The aforementioned limitations can, to varying
degrees, affect the task of ensuring software code quality
[8-10]. The need for a formalized approach to managing the
refactoring process is evident, as similar methods for
structuring management tasks are successfully applied in
other ~ complex  technical  systems, such as
telecommunication networks [11]. One promising direction
for code improvement is to account for secondary software
defects that may arise during refactoring [12]. This
problem can be solved by using predictive systems.
General approaches for their implementation are presented
in [13]. However, models that allow for the consideration
of such defects are still in the development stage and
require improvement. In particular, neurocomputers that
operate based on efficient machine arithmetic can be used
to solve similar problems [14].

The application of artificial intelligence (Al)
methods to refactoring tasks can significantly help
overcome these limitations by providing automated,
objective, and adaptive solutions to improve code
quality, security, and maintainability. There are
numerous examples [15, 16] where Al methods have
been effectively applied to synthesize (generate) new
code, analyze existing code, detect vulnerabilities,
programming errors, style violations, architectural flaws,
automate code improvement, and obtain secure and
optimized code based on identified shortcomings. It is
also worth noting that similar approaches to error control
based on mathematical procedures have found
applications in other areas, such as systems with modular
arithmetic [17].

The model MovePerf proposed in [18] focuses on
predicting a program's execution time after a specific
type of refactoring called "Move method". The authors
investigate how moving methods impacts performance
using a hybrid deep learning model that accounts for
feature interaction. However, this process does not
include a comprehensive procedure for evaluating the
overall quality of the source code. This procedure is

crucial for a thorough check to show how effectively the
code's internal organization has been improved without
losing functionality. It is an important part of supporting
the long-term viability of the software. To address this
challenge, fuzzy logic models can be applied, which are
successfully used, for instance, in assessing risks within
information security management [19].

Therefore, a fuzzy logic-based model for software
code quality assessment is proposed. Fuzzy logic serves as
an effective mathematical tool for solving decision-
making problems [20], particularly under complex
conditions of uncertainty and incomplete input data. In the
proposed model, software code quality is evaluated based
on a set of features (discrepancy characteristics) used as
input. For example, these inputs can be code smell
characteristics [21], such as: the degree of code
duplication, method size, class complexity, number of
variables, comments, and the number of known
vulnerabilities. The use of fuzzy logic for code quality
analysis allows for the effective combination of code
smells and quality metrics into a unified evaluation
system. This approach provides a reasoned, flexible, and
interpretable assessment that can be adapted to specific
projects and technologies.

Literature review. An analysis of publications
[22—24] on fuzzy logic-based models for software code
quality assessment shows that this approach effectively
handles the ambiguity and uncertainty present in code
quality metrics. Unlike sharp threshold values or binary
rules, fuzzy logic considers the degree of membership to
sets, which better reflects real-world software
development practices. Most scientific studies indicate
that the following key features, presented in Table 1, are
used for the fuzzy assessment of software code quality.

Table 1 — Code smell characteristics for fuzzy software
code quality assessment

Feature Description

Measures the proportion of identical or
similar code in different parts of a software

Degree of code system. A high level of duplication

duplication increases code interpretability and
maintenance complexity.
The number of lines of code in a method.
Method size Very long methods are an anti-pattern that
complicates code reading and testing.
Complexity of | Metrics that include cyclomatic

user or base
library classes

complexity, the number of methods/fields,
and the depth of the inheritance tree.
Many variables in a method can indicate a

Nur_nber of suboptimal structure and reduced code
variables .

readability.

The ratio of comments to code. An
Number of . -

insufficient number of comments often
comments - .

indicates poor code documentation.

Security issues found through static
Known

analysis tools (e.g., SonarQube), such as
SQL injection, XSS, etc.

vulnerabilities

These features form the input space for a fuzzy system,
where each characteristic has a membership function that
determines the degree of "negative consequence" or
"positive influence" on the software code.
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The application of these features using fuzzy logic
for code analysis involves the following steps:

1. Fuzzification. Each feature is converted into a
fuzzy variable using membership functions [23]. For
example:

— for lines of code: Low (0-30), Medium (20-60),
High (>50);

— for code duplication: None (<5%), Moderate (5—
20%), High (>20%)).

2. Fuzzy inference rules. A set of rules is formed
based on expert knowledge, such as:

IF (Code Duplication IS High) AND (Method
Length IS Long) THEN (Code Quality IS Poor)

Such rules can be defined by experts or automatically
generated and trained on data [24].

3. Fuzzy Inference. The Mamdani or Sugeno
algorithm is applied to compute the result — the overall
code quality assessment.

4. Defuzzification. The resulting fuzzy score is
converted into a numerical value, for example, from 0 to 10,
where 0 is the lowest code quality and 10 is the highest.

Eliminating these code smell characteristics from the
software code is a task for subsequent refactoring.
However, the precise definition of fuzzy categories like
"too little," "moderate," "sufficient," or "too much" is quite
subjective. Therefore, the mathematical apparatus of fuzzy
logic [25, 20] can be used to formalize the membership of
code smell characteristics to these fuzzy subsets, and a
fuzzy production rule base can describe the relationship
between code smell features and the output characteristic
- software code quality.

The use of fuzzy system-based models for software
code quality assessment is proposed in [21, 26, 27].
However, they are based on the Mamdani fuzzy inference
algorithm, which does not allow for automated adjustment
of membership function parameters or the generation of
production rules. Therefore, working with them requires
manual, expert-driven parameter definition, which can
lead to incorrect results.

To automate the tasks of parameter tuning and
adaptation, established approaches based on a combination
of artificial neural networks and fuzzy logic can be used. It
is proposed that the values of selected code smell
characteristics be used as input parameters. The output
parameter, the current software code quality value, will be
determined through the fuzzy inference process. This
fuzzy system is proposed to be trained using a hybrid
algorithm based on backpropagation and gradient descent.
Training data can be collected by analyzing code from
open-source repositories (e.g., GitHub). The training of the
created model is proposed to be conducted in the Matlab
environment [28]. Thus, the objective of this research is to
develop a hybrid adaptive model for software code quality
assessment based on code smell discrepancy
characteristics by combining fuzzy logic and machine
learning methods to enhance the objectivity and efficiency
of refactoring.

1 The developed hybrid adaptive model

Acrchitecturally, it is proposed to use a hybrid model
based on the adaptive neuro-fuzzy inference system
(ANFIS) platform. ANFIS is a multi-layered neural

network that performs Takagi-Sugeno fuzzy inference
[27] with the ability to learn using gradient methods.

ANFIS represents an adaptive neuro-fuzzy inference
system. The use of such systems has proven effective for
solving various problems. For example, in [29], such a
system is used for DDoS attack detection. On one hand,
ANFIS is a neural network with a single output and
multiple inputs, which represent fuzzy linguistic variables.
The terms of the input linguistic variables are described by
standard membership functions, while the terms of the
output variable are represented by linear or constant
functions. On the other hand, ANFIS is a fuzzy inference
system in which each of the fuzzy production rules has a
constant weight equal to 1.

The model's architecture structurally involves the
implementation of the following layers:

1. Input layer (Layer 1): This layer handles the
representation of normalized code smell values. Code
smells are indicators of poor structure or design in software
code that suggest the need for refactoring. For the model,
we propose using quantitative characteristics that can be
measured automatically, namely:

—  WMC (Weighted Methods per Class);

— DIT (Depth of Inheritance Tree);

— RFC (Response for a Class), the number of
unique methods a class can invoke;

— LCOM (Lack of Cohesion in Methods), the
measure of a class's methods not being interconnected;

— NOA (Number of Attributes);

— NOC (Number of Children);

— CBO (Coupling Between Obijects);

— FANOUT, the number of outgoing dependencies
of the function/method.

Each of these metrics is normalized (Fig. 1) to the
range [0, 1], where 0 is the ideal value (no code smell) and
1 is a critical value (a strong code smell).

WMC > normalizer | [x]
DIT > normalizer > [X2]
RFC > normalizer o [Xs]

LCOM »  normalizer | [xa
NOA > normalizer "1 [xs]
NOC »  normalizer > [Xo]
CBO > normalizer > [x7]

FANOUT > normalizer > [xs]

~~

Vi 8
{X}= [x. %, ... xg] [0, 1]
Fig. 1. Normalization process of the model's input layer

To bring the values of the code features to a single
scale, it is proposed to apply linear normalization:
xnorm _ Xi — Xmin 7 )
Xmax ~ Xmin
where ¥x; is the initial value of the i-th code smell; Xmin,
Xmax are the minimum and maximum expected values
(extrema) for this metric.
The aforementioned extremum values can be:
theoretical (for example, for DIT: [0, o], but in practice
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[0, 10]); statistical (obtained from a dataset); or expert-
defined.

Thus, after normalization, an input vector {X} is

formed, where each x; is the normalized value of the
corresponding code smell. This vector is fed into the
ANFIS system, where each component is used for
fuzzification (conversion into fuzzy sets), which then
activates specific fuzzy rules and, ultimately, influences
the code quality assessment.

2. Fuzzification layer (Layer 2). The fuzzification
layer of the hybrid ANFIS model is the second layer in
its architecture and is responsible for converting crisp
values into fuzzy values, which is the process of
fuzzification. This is a key step that allows the system to
operate with fuzzy sets, which are used to implement
Takagi-Sugeno fuzzy inference [27].

For each input x; and each fuzzy term A; the
fuzzification layer calculates:

Ojj = a; (), )

where Oj; — the degree of membership of the i-th input to
the j-th term; Ha; (%) — the value of the membership

function for x;.

The conversion of crisp values into fuzzy ones is
performed using membership functions of various types
(e.g., triangular, trapezoidal).

The fuzzification procedure involves the process of
converting a numerical value (for example, a normalized
code smell value) into a degree of membership to fuzzy
sets such as: low, medium, or high. This process shows
how much the numerical code smell value corresponds to
the given linguistic terms.

Each input feature (e.g., WMC, CBO) has its own
group of membership functions that determine how much
the value corresponds to each fuzzy term.

For example, for WMC, the fuzzy terms "Low",
"Medium”, or "High" can be defined. Thus, if
WMC =0.7, the system calculates:  uiow(0.7);
tnediom(0.7); 1nign(0.7), where u(x) is the corresponding

membership function. In the ANFIS fuzzification layer
(Layer 2), parameterized membership functions are most
commonly used, for example:
—  triangular membership function p(x):

0, x<a,
(x—a)/(b-a), a<x<bh,
(c=x)/(c-b), b<x<c,
0, X>C,

u(xa,b,c)= )

where x is the input value of the code smell characteristic;
a is the left boundary of the fuzzy term (degree of
membership u = 0); b is the center of the term (degree of
membership u = 1); ¢ is the right boundary of the term
(degree of membership p = 0).

The parameters a, b, ¢ determine the shape of the
triangular function, which reflects the degree to which
the value of the input feature (e.g., WMC, CBO)
corresponds to a specific linguistic term (Low, Medium,
High). They allow for the clear definition of the
boundaries of fuzzy sets for each feature:

— trapezoidal membership function g(x):

0, x<a

(x-a)/(b-a). a<xsb
u(xab,cd)=11, b<x<c, (4)

(d=x)/(d-c), c<x<d

0 x>d

where x is the input value of the code smell
characteristic; a is the start of the rising slope of the
membership function; b is the start of the full
membership plateau (u=1); c is the end of the full

membership plateau; d is the end of the falling slope of
the membership function.
The trapezoidal membership function w(x) differs

from the triangular one by having a plateau of full
membership (x«=1) between b and c. The trapezoidal

function is also useful for modeling clearer zones of high
impact (e.g., "the class has a critical code smell") and
allows for more flexible description of linguistic terms in
cases where it is necessary to clearly define a high-risk
range.

— sigmoid membership function g(x):

u(x f.c)=

where x is the input value (e.g., a normalized code smell
value);

a — is the slope coefficient that determines the
steepness of the function (the larger |a|, the sharper the

transition from 0 to 1);

¢ — is the shift parameter that defines the point of
intersection with 0.5, i.e., the value of x at which the
degree of membership equals 0.5.

This membership function can be useful in software
code quality assessment tasks, especially when it is
necessary to model the monotonically increasing or
decreasing influence of a particular code smell on the
overall code quality score [30].

In ANFIS, the parameters of these functions (e.g.,
a, b, ¢, d) are learnable and are optimized using gradient
descent or another learning algorithm.

For assessing software code quality based on code
smell characteristics within the hybrid ANFIS model, the
choice of the membership function has a significant
impact on the accuracy and interpretability of the fuzzy
inference.

The advantages and disadvantages of the presented
membership functions, in accordance with the model's
objective, are provided in Table 2.

Although other types of membership functions exist
(e.g., Gaussian, S-shaped, Z-shaped), their use is not
recommended for this task due to: difficulty of
interpretation (they are less understandable to experts,
making it harder to explain their correlation with code
smells); increased complexity (they complicate the
learning process and increase the risk of overfitting due
to a larger number of parameters). Lack of a clear
connection to linguistic terms [31].

1
—a(x-c)’

l+e

®)
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Table 2 — Advantages and disadvantages of membership functions

Type of function Advantages Disadvantages
Triangular Simplicity, clarity, fast training, interpretability. Lack of a clear high-risk zone.
; Presence of a full membership zone (i = 1) high flexibility, More complex interpretation, more

Trapezoidal . . -

well-suited for modeling critical zones. parameters.
. . Smooth change in the degree of membership, analytical Less interpretable, more difficult for
Sigmoid N - - : . -

derivative, well-suited for gradient learning. experts, risk of overfitting.

The trapezoidal membership function is considered
optimal for implementing the hybrid adaptive model for
software code quality assessment because it:

— best suited for modeling critical code smell
zones, where the feature's value (e.g., WMC, CBO)
reaches a dangerous level. The trapezoidal function
allows for the definition of a plateau of full membership
(u=1);

— has clear boundaries and is easily explained by
experts, unlike the sigmoid function. This is crucial since
the model combines expert knowledge and machine
learning;

— offers flexible configuration due to its four
parameters. This ensures better adaptability to different
code smells and projects. In the hybrid ANFIS model,
these parameters (a, b, ¢, d) are optimized by gradient
descent, which provides high prediction accuracy;

— s suitable for modeling linguistic terms.

It is proposed to choose 3-5 terms for each code
smell characteristic based on Table 3.

Table 3 — Selection of linguistic terms for code smell
characteristics

Terms Details
3 terms Low — Medium — High
(Most commonly used in practice)
4 terms Very Low — Low — Medium — High
5terms | Very Low — Low — Medium — High — Very High
(Used when a detailed analysis is required)

The parameter tuning for the membership functions
should be performed using alternative methods:

— based on expert knowledge. Experts indicate
which code smell values correspond to "Low",
"Medium", or "High" levels;

— based on data (statistically). Quantiles (e.g.,
25%, 50%, 75%) are calculated for each metric. These
values are used as the intersection points of the
membership functions.

3. The rule layer (Layer 3). This layer calculates
the firing strength of each rule, which is the product of
the membership function values for all sub-conditions of
the rule.

The fuzzy rule layer in the hybrid ANFIS model is
amain element that implements the Takagi-Sugeno fuzzy
inference. This layer provides the model with semantic
interpretability, as each rule can be understood by a
human expert, and it also supports parameter learning
using gradient methods.

The main task of this layer is to compute the firing
strength of each rule based on the degrees of membership
of the inputs to the fuzzy sets.

Each rule has the form:

“If e A, Xo€ Py, .. Xn €A,

thany = pyX + PoXo + ... + PpXy +97,

(6)

where Ay,..., A, are the fuzzy terms corresponding to the
linguistic variables (e.g., Low, Medium, High);
X, Xo,..., X, are the input code smell features (e.g.,

WMC, CBO, LCOM, DIT, NOC, RFC, CBO, MFA,
etc.); y is the output value (code quality assessment based
on code smell characteristics); py, p2,..., Py are the

weighting coefficients of the input variables (influence
weights). These parameters determine the influence of
each input feature (e.g., a specific code smell) on the
output value (code quality assessment) within a particular
rule. If p; has a large magnitude, it means that the

corresponding feature x; significantly affects the output
in this rule. If p; is close to zero, the influence of this

feature is minimal; q is the free term (bias). This is a
constant value that is added to the sum of the weighted
input features. It acts as a baseline or offset for a specific
rule (g can reflect a systematic contribution of the rule
that is independent of the input data). This representation
is typical for a first-order Takagi-Sugeno inference
algorithm rule [32].

So, if we have the following input conditions:

— number of code smell characteristics: 8 (WMC,
DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT);

— number of terms: 4 ("Low", "Medium", "High",
"Critical") corresponding to the trapezoidal membership
function;

— number of Takagi-Sugeno
48 = 65536 (a full combination).

In general, Takagi-Sugeno rules have the following
form:

rules will be

“If (WMC is x)and (DIT is x; )and ...
and (FANOUT s xg ), than Quality = p; *WMC + (7)
+p, *DIT + ...+ pg * FANOUT +q”.
A fragment of the rule base range is presented in Table
4. The operation algorithm of this layer assumes that the
degrees of membership from the fuzzification layer for each
input and each term are passed to its input. For each rule, the

logical "AND" (conjunction) of the degrees of membership
of all its antecedents is computed:

o = uA (X)) Py (Xp) .- Py (Xn), 8)
where @; is the degree of activation (firing strength) of
the i-th fuzzy rule (6); wA;j(xj) is the degree of
membership of the j-th input x; to the fuzzy term A;; n

is the number of input features (code smells), for
example: WMC, CBO, LCOM, etc.
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Table 4 — A fragment of the Takagi-Sugeno rules

Rule # Conditions (8 features) Influence weights Bias Inference for_mula (1st-order
p1, P2, ..., P8 Takagi-Sugeno)
WMC=Low, DIT=Low, Initially, they are Y = pr*WMC + pz*DIT + ps*RFC +
1 RFC__LOW' LCOM__LOW' initialized with + ps*LCOM + ps*NOA + ps*NOC+
NOA=Low, NOC=Low, small random + p7*CBO + pg*FANOUT +q
CBO=Low, FANOUT=Low values ([0’ 1]) or
WMC=Medium, DIT=Low, are set by an y = p1*WMC + p2*DIT + ps*RFC +
2 RFC=Low, LCOM=Low, expert. The + pa*LCOM + ps*NOA + ps*NOC
NOA=Low, NOC=Low, b e [0,1] values g~0.05..05 +
CBO=Low, FANOUT=Low ! " depending on + pr*CBO + ps*FANOUT + g
are normalized, but the rules
WMC=Critical, DIT=Critical, | (hey canalsobe
RFC=Critical, _ negative (if an y = pr*WMC + p2*DIT + ps*RFC +
65536 LCOM=Critical, increase in a code + p4*LCOM + ps*NOA + pe*NOC
NOA=Critical, NOC=Critical, | Smell improves +
CBO=Critical, quality, although + pr*CBO + pg*FANOUT + q
FANOUT=Critical this is rare).
The firing strength (activation) is a number that Based on the wvector of rule activations
shows how strongly a particular rule applies to the &= [@1, @y, ... ,wR], the layer calculates as:
current set of code smells [33].
Therefore, the operation algorithm of the rule layer _ R (10)
can be described mathematically as follows: @=o _Zia) '

Let there be given:
- X=[X,%g, ....X,] is the normalized set of

code smell parameters;
— foreach xj, M fuzzy terms are defined;

—  the number of possible rulesis R=M".

Then, for each rule r=1R, the following holds
true:

Wy :H;uAir (%), 9)
i=1

where yA‘_, (x;) is the degree of membership of the i-th

input to the j-th term within the r-th rule.
The output of the rule layer is a vector
@=[m,w,, ..., wr ], where each element corresponds

to the activation of a separate rule. The layer has high
interpretability due to the clear semantics of the rules,
supports the learning of inference parameters (using
gradient descent), and is the result of combining fuzzy
logic and neural networks.

4. Normalization layer (Layer4). This layer
ensures the calculation of the normalized firing strength
of each rule. The Normalization Layer of the hybrid
ANFIS model is a key element for the fuzzy inference
stage, which provides the relative weighting of rule
activations before they are used in defuzzification. This
layer allows the system to react more stably to different
input combinations and improves the model's training for
optimizing its parameters using gradient methods.

This layer is aimed at calculating the normalized
firing strengths of the rules. Its task is to determine how
important each rule is relative to the others for the
current set of inputs. This is due to the fact that: the
absolute values of the rule activations @; can be large
or small simultaneously; for an accurate output

calculation, it is necessary to consider the relative
weight of each rule.

where ; is the degree of activation of the i-th rule; R is
the total number of rules; @; is the normalized i-th rule
activation.

This approach guarantees that the sum of all
normalized activations equals 1. The Normalization
Layer is a part of the architecture that ensures learning
stability and increases the accuracy of fuzzy inference.
Normalizing the rule activations prevents rules with a
large number of inputs from having an undue advantage.
This is especially important in a hybrid learning
algorithm, where both the inference parameters (of the
linear rule part) and the membership function parameters
are optimized in a single pass (when using gradient
descent).

Therefore, at the output of the layer, each rule has a
weight that will be used in defuzzification.

5. Defuzzification layer (Layer5). This layer
calculates the weighted average of the results, taking into
account the rules' activity. The defuzzification layer of
the hybrid ANFIS model is designed for the final
computational stage of fuzzy inference. It provides the
conversion of fuzzy results into a crisp numerical value,
which can be interpreted as a software code quality
assessment, or any other quantitative indicator.

In this layer, the final result of the fuzzy inference
of the proposed system is calculated using the weighted
average of the rule conclusions, taking into account their
normalized activations. This layer uses the results from
the rule layer (Layer 3) and the normalization layer
(Layer 4) and calculates the resulting parameter — the
code quality assessment, Q. At the same time, it supports
gradient learning, and the result of the fuzzy inference
depends on the model's parameters.

Mathematically, this process can be described as
follows. The input data are:

— the normalized rule activations a; :

o=[a,@,, ..@R];
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— the Takagi-Sugeno rule conclusions:
fi = P+ PoXo .ot PXn i
f=[f.f ... f]R]

The final stage of fuzzy inference (software code
quality assessment) is calculated using the formula:

R —

Q=2 i@ 1,

where Q is the final software code quality assessment
(Q € [0, 1], where 0 corresponds to high code quality
and 1 to low code quality); R is the total number of rules;
o; is the normalized i-th rule activation; f; is the output

value of the i-th rule (a linear combination of the inputs).
The defuzzification layer (Layer5) in ANFIS
implements the conversion of fuzzy results into a crisp

(1)

number, using a weighted average that accounts for rule
activations. It also supports gradient learning and is a key
link in the model optimization process.

6. Output layer (Layer 6). The Output Layer
returns the software code quality assessment in the range
[0, 1]. The quality assessment is formed in the previous
layer based on fuzzy inference. At this step, it is possible
to perform post-processing, such as normalization,
rounding, conversion to a discrete category (e.g., "Low"
quality (Q € [0.7-1], refactoring is needed), "Medium"

quality (Q € [0.3-0.7], refactoring is possible), "High"
quality ((Qe[0-0.3], no need for refactoring)), or

comparison with a threshold for decision-making.

The architecture of the adaptive model for
software code refactoring based on fuzzy logic is
shown in Fig. 2.

| Code smells | Signs of bad structure or design of software code that indicate the need for refactoring
] ) ) Linear normalization:
Formation and presentation of normalized code smell X — Yoo
Layer 1 Input layer norm _ _ X — Xmin
values. Xi = .
Xmax ~ Xmin

<

{X}= %%z, . %10, 1]i

A4

Layer 2 Fuzzification layer

The conversion of crisp values into degrees of
membership to fuzzy sets.

The process that determines
how a numerical code smell
value corresponds to the
provided linguistic terms:

Ojj = pa; (%i)-

V4

0Oj; —the degree of membership of the i-th input to the j-th term

V4

activations prevents rules with a high degree of
activation from having an undue advantage.

. . . For each rule, the logical
It provides the model with semantic “AND" (conjunction) of the
Layer 3 The rule layer interpretability. It computes the firing streng_th of degrees of membership of all
each rule based on the degrees of membership of its antecedents is calculated:

the inputs to the fuzzy sets. o = pA (%) .- 1A, (1)

i = n)-

6):[0)1,(1)2, ...,OJR] G
It ensures the calculation of the normalized firing The normalized :)J_Ie activation:
1Zi = 1
Layer 4 Normalization layer strength of each rule. Normalizing the rule o] =

o
2.0
i=1

U

o=@, @, ... , o]

Layer 5

The defuzzification

It ensures the conversion of fuzzy results into a
crisp numerical value, which can be interpreted as
a software code quality assessment or any other
quantitative indicator.

Software code quality
assessment:

R
Q=Y f;.
i=1

layer

Q — final code quality assessment Q € [0, 1]

A4

Layer 6

Output layer

Performing post-processing, for example,
normalization, rounding, conversion to a discrete
category (e.g., "Low", "Medium", "High" quality),
or comparison with a threshold for decision-
making.

Final software code quality assessment.

Fig. 2. Architecture of an adaptive model for software code refactoring based on fuzzy logic
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2 Hybrid learning algorithm

The hybrid learning algorithm of the adaptive
model for software code refactoring based on fuzzy logic
combines forward pass and backward pass procedures, as
well as the gradient descent algorithm.

The training involves the following stages:

1. |Initialization of fuzzy rules. Initial rules are
created based on expert knowledge or analysis of the data
from the subject area of the research.

2. Forward pass procedure. This is the
implementation of the forward computational process
through all the layers of the ANFIS model. Data passes
through all layers to the Defuzzification Layer, and the
expected quality assessment Qgypecteq 1S Calculated

using formula (11).
3. Calculation of the training error E. This stage
involves comparing the predicted quality value Qgypected

with the actual value Quctar (expert evaluation or prior
refactoring) using the formula:

2
E :(Qactual - Qexpected ) / 2,

where Qgcuar 1S the actual, real value of software code

quality that is known at the time of model training. It is the
known value of the output parameter that the model is
trying to predict. It can be determined either based on an
expert evaluation ([0, 1], where 0 is ideal code, and 1 is
code that requires refactoring) or based on an automatic
assessment (using static analysis tools); Qeypected 1S the

(12)

expected code quality value that the model returns after
processing the code smells. The corresponding value is
calculated through the Takagi-Sugeno fuzzy inference
algorithm, depends on the rule activations, their
conclusions, and the model's parameters, and is formed
through defuzzification in ANFIS.

4. Backward pass. This procedure is aimed at
minimizing the error in determining (predicting) the
software code quality by adapting the model's
parameters. That is, the model adjusts its internal
parameters to improve the accuracy of the Qeypected

determination, making it closer to the actual value

Qactual-

In the hybrid ANFIS model, two categories of
parameters are adapted:

— membership function parameters (a, b, ¢ in
triangular functions or a, b, ¢, d in trapezoidal functions)
are updated using gradient descent, as they influence the
nonlinear part of the model,;

— rule weighting coefficients (py, P2, -, Pp)

which correspond to the linear conclusion of the Takagi-
Sugeno rule, are updated using the least squares method.

This hybrid approach ensures a significant increase
in the efficiency and speed of training.

The backward pass procedure allows the error from
the output of the adaptive model for software code
refactoring to be directed backward toward the model's
inputs. This is done to evaluate how each model
parameter influenced the error and, accordingly, to adjust
these parameters.

The backward pass procedure involves:

— performing the forward pass procedure;

— calculating the expected code quality value
Qexpected  @Nd the training error E;

— calculating the gradients. This very process
allows for determining how much each model parameter
influences the prediction error, and accordingly,
adjusting these parameters to improve accuracy.

The gradient is a vector of partial derivatives with
respect to all model parameters:

{GE OE aE}

VE=| = = .=
06,' 06, """ 06,

(13)
where VE is the gradient vector (of partial derivatives).
It allows for determining how the parameters should be
changed to reduce the error;

OE is the partial derivative of the error with respect to
each individual model parameter ;. It demonstrates the

influence of a single parameter on the model's error;
6,05, ...,6, are the model parameters (for example,

fuzzy rule coefficients, membership function parameters,
neural network weights).

Each derivative is calculated using the chain rule of
differentiation, taking into account the influence of each
parameter through all previous layers (fuzzification and
defuzzification).

5. Execution of the parameter update procedure
using the gradient descent algorithm. The gradient
descent algorithm is aimed at optimizing parameters to
minimize functions (MSE, MAE, etc.) [34].

Parameters are updated using the formula:

oE
750’
where 0 is the parameter (for example, b in a triangular

Hnew = gold - (14)

. . . E . .
function); 7 is the learning rate; 2—9 is the error gradient

(the derivative of the error with respect to this parameter).

The process is repeated over a set of cycles until the
error reaches a predefined level for model convergence.
With a large number of inputs and rules, the training
process can be lengthy. Poor or contradictory data can
lead to inaccurate predictions.

However, the undeniable advantages of the
presented model are: the ability to improve rule settings
based on new data; a proper level of interpretability due
to the fuzzy rules; an organic combination of expert
knowledge and machine learning; the ability to work with
various technologies and languages; and support for
integration into the software development process.

3 Discussion of results

The developed hybrid ANFIS model demonstrates
significant potential for the automated and objective
assessment of software code quality. Unlike existing
approaches, which are often based on static rules or
subjective expert evaluations, our model combines the
interpretability of fuzzy logic with the adaptability of
machine learning. The use of eight key code smell
metrics as input parameters allows for covering a wide
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range of potential problems in code. The proposed
architecture, with its trapezoidal membership functions
and a hybrid learning algorithm, ensures not only high
accuracy but also flexibility, which is critically
important for adapting the model to various
programming languages and technology stacks. This
allows the model to independently optimize its
parameters based on real data, which minimizes the
reliance on manual tuning.

The achieved accuracy in code quality
determination indicates the effectiveness of applying this
hybrid approach to solve complex problems that have
uncertainty and fuzziness in their input data. The model
can be used not only for detecting existing code smells
but also for predicting possible secondary defects that
may arise during refactoring. Implementing this model
into development processes, particularly into CI/CD
tools, will provide developers with valuable, objective,
and fast feedback on code quality, which will ultimately
increase the overall efficiency of development,
maintainability, and security of software.

Conclusions

Based on the results of the conducted research, the
following conclusions were formulated.

A hybrid adaptive model for software code quality
assessment was developed based on fuzzy logic and the
ANFIS architecture, which allows for overcoming the
limitations of classical refactoring approaches, particularly
their subjectivity, labor-intensity, and lack of adaptability.

The proposed model integrates eight key code smell
metrics (WMC, DIT, RFC, LCOM, NOA, NOC, CBO,
FANOUT) using Takagi-Sugeno fuzzy inference. This
ensures a flexible, interpretable, and objective
assessment of code quality.

The choice of trapezoidal membership functions
was justified as optimal for modeling critical code smell
zones. The hybrid learning algorithm, which combines

forward and backward propagation of error, ensures the
automatic tuning of the model's parameters, significantly
increasing assessment accuracy.

The obtained results provide a solid foundation for
further scientific and practical developments. The
prospects for future research lie in the practical
implementation and integration of the developed hybrid
adaptive model into existing static analysis tools and
DevOps processes. Specifically, it can be implemented
as plugins for continuous integration and continuous
delivery (CI/CD) systems, which would provide
automated, objective, and adaptive real-time code quality
monitoring.

Furthermore, future work should focus on improving
and expanding the model. It is worth separately
investigating its potential application for different
programming languages and technology stacks by
collecting and analyzing large datasets from open
repositories. It is also promising to enhance the ANFIS
architecture by introducing deep learning methods or
hybridizing it with other artificial intelligence approaches.
This would allow for the automatic detection of new code
smells and their interrelationships. Additionally, developing
interpretable mechanisms that would explain the model's
decisions will significantly increase developers' trust in the
system and facilitate its widespread adoption in industrial
software development and educational processes for
software engineering and cybersecurity.
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AJanTHBHA MOJIe/Ib OLIHKH SIKOCTi IPOrPAMHOI0 KOIY B 3a1a4aX peaKTOPHUHTY
Ha ocHOBI fuzzy-noriku

C. B. JIroGapcekwit, A. C. SuKo, 0. M. 3nopenko, b. A. Xynaspos

AHoTamisi. Mera cratTi mossrae y po3poOili riOpumHOT aJanTUBHOI MO OIIHKK SKOCTI MPOTPaMHOI0 KOy Ha OCHOBI
XapaKTepHUCTUK HeBiANOBIAHOCTI code smells nmuisixomM noeaHaHHS MeTOAIB fuzzy-JIOTiKM Ta MAaIIMHHOTO HABYAaHHS JUTS ITi/IBUIICHHS
00’€eKTHBHOCTI Ta eeKTHBHOCTI pedhakTopuHry. MeTomoJIorist, 1110 MOKIA/IeHa B OCHOBY JIOCII/DKEHHS, CIIPSIMOBaHA Ha PO3pOOKY
riOpuIHOT aIalTHBHOT MOJIEII OLIHKH SKOCTI IPOrPaMHOT0 KOAY, TIOEAHYE y co0i HewiTKy JoTiKy (fuzzy logic) Ta MeToau mTydHOTO
iHTENeKTy, 30KpeMa aJanTHBHY cucteMy Heiipo-Heuitkoro BuBeneHnsi (ANFIS — Adaptive Neuro-Fuzzy Inference System).
BararomapoBa amantuBHa cucteMa Heiipo-HediTkoro BuBeaeHHS ANFIS pearmizye HewiTke soriuHe BuBeneHHs Takari-CyreHo 3
MOXKITHBICTIO HAaBYAHHS 3a JIOMOMOTOIO TPaIi€HTHHX METOiB. MeTomoioris modynoBaHa Ha TiOpUAHOMY MiAXOi, IO IHTErpye
eKCIIepTHI 3HAHHA 3 aBTOMATHYHUM HABYaHHAM MOJETi Ha peajbHUX JaHuX. Pe3yiabTraTH. 3a pe3yibrataMH MPOBEIEHOTO
JIOCITi[UKEHHS PO3pO0JICHO TiOpHIHY aJaliTHBHY MOJICITb OIIIHKU SIKOCTI MPOTPaAMHOT0 KOy Ha OCHOBI HEUIiTKOT JIOTiKU Ta aJIalTHBHOL
Helpo-HewiTKol cucteMu BuBeneHHss ANFIS, 1o 103Bosisie aBTOMaTH30BaHO, 00’ €KTHBHO Ta THYYKO OILIHIOBATH SIKICTh POTPaMHOT0
KOJIy B 3a/1auax pehakTopuHry. Moenb BUKOPHCTOBYE BiciM KirouoBux code smells-metpuk (WMC, DIT, RFC, LCOM, NOA, NOC,
CBO, FANOUT). Ix sopmanizamis Ta 06po6ka 3IiliCHIOETECS 3a JOTIOMOTO0 HEUiTKOI JOTiKH Ha ocHOBI anmroputMy Takari-CyreHo.
Lle 3abesmeuye BpaxyBaHHA HEBH3HAYEHOCTI Ta CyO €KTHBHOCTI EKCIIEpTHHX OLIHOK. Apxitektypa ANFIS mo3Bomse moneni
HABYATHCS HA PEAIBHUX JaHUX 3 MOJAIBLINM aBTOMATHYHHM HAJAIITYBAHHAM MapameTpiB (YHKLIH MPUHAIEKHOCTI Ta BaroBUX
koedimienTiB mpaBmwi. Came e Hamae 3MOTy aaNTyBaTHCS JO Pi3HUX TEXHOJOTIYHHX CTEKiB Ta MPOEKTIB. BHKOpHCTaHHA
TparrenienoAiOHUX GyHKIIH NPHHATIEKHOCTI MiBUIIYE TOYHICTh MOJICITIOBAaHHS KpUTHYHHX 30H code smells, a riGpuaHuit anroputm
HaBYaHHS Ha OCHOBI T'PaJi€HTHOIO CITyCKy 3a0e3ledye BHCOKY TOYHICTb BHU3HA4YEHHsS SKOCTI KOy, IIO B MiACYMKY CIIPHUSE
HiJIBUIICHHIO e()eKTUBHOCTI, MiITPUMYBaHOCTI, PO3IIMPIOBAHOCTI Ta Oe3MeKu mporpamHoro 3abesnedyeHHs. HaykoBa HoBH3Ha
JOCII/DKEHHSI TTOJIsIrae 'y po3po0ii riopraHoT aganTHBHOT MOJEII OLIHKH SIKOCTI MPOrPaMHOT0 KOy, sIKa Ha BiMiHY Bifl iCHYIOUHX,
3/iliCHeHa Ha OCHOBI HEUITKOI JIOTIKH Ta aJJATHBHOI CHCTeMH Helpo-HediTkoro BuBeneHHs ANFIS, mo noenHye excriepTHi 3HaHHS 3
aBTOMAaTHYHIM HABUAHHSAM HA PEaNbHUX HaHWX UL MiIBUIICHHS 00 €KTHBHOCTI Ta €()EeKTHBHOCTI Tpolecy pedakTOpHHTY.
3anporoHoBaHO BUKOpHCTaHHS apxitektypn ANFIS 3 TpanerienonioHuMu (QyHKIUISAMH MPUHAIEKHOCTI AT OOpOOKH BOCEMH
kmroyoBux MeTpuk code smells (WMC, DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT) y KOHTEKCTi HEYiTKOTO JIOTi4HOTO
BuBeneHHs1 Takari-CyreHo, mo 3a0esnedye THy4Ke, IHTEpIPETOBaHE Ta aJalTHBHE OILIHIOBAaHHS SKOCTI KOAY 3 MOXJIHBICTIO
aBTOMATHYHOT'O HANAIITYBaHHS MIapaMeTpPiB MOJICNi Ha OCHOBI IPaIiEHTHOTO HAaBYaHHS, 1110 3HAYHO ITi/[BUIIYE TOUYHICTh BU3HAUCHHS
SIKOCTi KOy Ta TPUATHICTh MOJEN [UIsl PI3HOMAHITHUX TEXHOJIOTIYHUX CTEKiB Ta NPOekTiB. [IpakTHYHe 3HAYEHHSI TOCTiHKEHHS
HOJISITA€ Y MOXKIIMBOCTI IPSMO] peasti3allii Ta interparii po3po0ieHoi riopuaHoT ananTHBHOT MOJIEINI OLIIHKH SKOCTI IPOTrPaMHOT0 KOy
B iCHyI0i iHCTpyMEHTH CTaTHYHOTO aHani3y Ta DevOps-niporiecy, 30kpeMa y BUTIVIIII IIATiHIB JUIS CHCTeM Oe3nepepBHOI iHTerpartii
ta nocraBku (CI/CD). Lle no3BoimTh 3a0€3ME€UUTH aBTOMATH30BaHU, O0'€KTHBHUMA Ta aJallTHBHHN MOHITOPWHI SIKOCTI KOJY B
peanbHOMY Yaci. OKpiM IbOT0, MOZIETb Ma€ 3HAYHHHN MOTEHIiAN IS PO3IIMPEHHS HA Pi3HI MOBH IIPOrPaMyBaHHS Ta TEXHOJIOTIYHI
CTEKH NUIIXOM aHalli3y BEIMKHX MAcHBIB JTAHUX 3 BIJKPUTHX PEMO3UTOPIiB, MO MiIBUIINTH 1 YHIBEPCAIBHICTH Ta TOYHICTB.
INepcriekTHBHUM € TakoX yHockoHaneHHs apxiTekTypu ANFIS depes BpoBa/LkeHHS METO/IiB INTMOOKOT0 HABYAHHS, III0 TACTh 3MOTY
aBTOMATHYHO BHUSBIITH HOBI code smells Ta ix B3aemo3B's3ku. Po3pobka iHTEpIpeToBaHNX MEXaHi3MiB MOSICHEHHS PillleHb MOJEIi
ITIBUILUTH JOBIPY PO3POOHHMKIB 1O CUCTEMH Ta CIPUATHME il IIMPOKOMY BIIPOBAPKEHHIO SIK Y HPOMHCIIOBY PO3POOKY IPOrPaMHOIO
3a0e3neyueH s, TaK i B HABYJIbHI POLIECH 3 IPOrpaMHo] imkeHepil Ta KibepOe3neKku.

KawuoBi caoBa: pedakropunr; code smells; neuitka norika; ANFIS; skicte mporpamHoro kofy; KibepGesmeka
MIPOrPaMHOro 3a0e3MeUYeHH s ; INTYYHHUI IHTENeKT; HediTke joriune BuBeneHHs Takari-CyreHo.
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