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AN ADAPTIVE MODEL FOR SOFTWARE CODE QUALITY ASSESSMENT 

IN REFACTORING TASKS BASED ON FUZZY LOGIC 
 

Abstract .  The article's objective is to develop a hybrid adaptive model for assessing software code quality based on code 

smell characteristics by combining fuzzy logic and machine learning methods to enhance the objectivity and efficiency of 

refactoring. The methodology underlying this research is aimed at developing a hybrid adaptive model for software code 

quality assessment. It combines fuzzy logic and artificial intelligence methods, specifically an adaptive neuro-fuzzy inference 

system (ANFIS). The multi-layered ANFIS implements the Takagi-Sugeno fuzzy inference with the ability to learn using 

gradient methods. The methodology is based on a hybrid approach that integrates expert knowledge with the automated 

training of the model on real data. Results. The research resulted in the development of a hybrid adaptive model for software 

code quality assessment based on fuzzy logic and the ANFIS. This model allows for automated, objective, and flexible code 

quality assessment in refactoring tasks. The model uses eight key code smell metrics: WMC, DIT, RFC, LCOM, NOA, NOC, 

CBO, and FANOUT. Their normalization and processing are performed using fuzzy logic based on the Takagi-Sugeno 

algorithm. This ensures that the uncertainty and subjectivity of expert evaluations are taken into account. The ANFIS 

architecture allows the model to learn from real data, with subsequent automated adjustment of the membership function 

parameters and rule weights. This enables the model to adapt to various technology stacks and projects. The use of trapezoidal 

membership functions increases the accuracy of modeling critical code smell zones, while the hybrid learning algorithm 

based on gradient descent ensures high precision in determining code quality, ultimately contributing to improved software 

efficiency, maintainability, scalability, and security. The scientific novelty of the research lies in the development of a hybrid 

adaptive model for software code quality assessment. Unlike existing models, this one is based on fuzzy logic and an ANFIS, 

which combines expert knowledge with automated training on real data to enhance the objectivity and efficiency of the 

refactoring process. The proposed ANFIS architecture with trapezoidal membership functions is used to process eight key 

code smell metrics (WMC, DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT) within the context of Takagi-Sugeno fuzzy 

inference. This provides a flexible, interpretable, and adaptive assessment of code quality with the ability to automatically 

tune model parameters based on gradient learning, which significantly increases the accuracy of code quality determination 

and the model's suitability for various technology stacks and projects. The practical significance of the research lies in the 

direct implementability and integration of the developed hybrid adaptive model for software code quality assessment into 

existing static analysis tools and DevOps processes, specifically as plugins for Continuous Integration/Continuous Delivery 

(CI/CD) systems. This will enable automated, objective, and adaptive monitoring of code quality in real time. In addition, the 

model has significant potential for extension to various programming languages and technology stacks by analyzing large 

datasets from open-source repositories, which will enhance its universality and accuracy. A promising direction for future work 

is to improve the ANFIS architecture by incorporating deep learning methods, which would allow for the automatic detection of 

new code smells and their interdependencies. The development of interpretable mechanisms to explain the model's decisions 

will increase developer trust in the system and promote its widespread adoption in both industrial software development and 

educational processes in software engineering and cybersecurity. 

Keywords: refactoring; code smells; fuzzy logic; ANFIS; software code quality; software cybersecurity; artificial 

intelligence; Takagi-Sugeno fuzzy inference. 

 

Introduction 

Problem relevance. The rapid development of 

information technologies and their global use in various 

fields demand higher requirements for ensuring the high 

quality of software.  

One way to improve software quality is through the 

use of comprehensive methods [1]. In today's 

environment, methods for formalized assessment of 

software product reliability and functional compliance 

are becoming particularly relevant, as they allow for the 

minimization of risks associated with errors in mission-

critical applications [2], while also considering that 

diagnostic errors can directly affect system security [3]. 

Furthermore, a comprehensive methodology for software 

quality management (SQM) involves the application of 

mathematical modeling, system analysis, and automated 

testing technologies [4]. 

To effectively solve the tasks of designing, 

developing, and maintaining information systems, it is 

crucial to integrate software code quality assurance 

mechanisms at all stages of the software development 

lifecycle. 

Undoubtedly, one of the most promising directions 

in addressing this challenge is the application of the 

software code refactoring process.  

Software code refactoring is a process aimed at 

making changes to existing code to improve its structure, 

readability, and maintainability without altering its 

external behavior.  

The use of refactoring within the framework of code 

optimization can prevent potential attacks on information 

systems [5] and reduce their information security risks. 

This action is particularly relevant in the context of 

growing cyber threats and digital risks to economic 

security [6, 7]. 
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Existing approaches to software code refactoring 

are characterized by certain limitations, including: 

‒ Subjectivity: The refactoring process depends 

on the developer's knowledge, experience, and personal 

views, which can lead to incomplete or redundant code 

modifications. Each developer may define their own 

formal criteria for assessing the need for this process. 

‒ Labor-intensiveness: Since manual refactoring 

requires significant time and human resources, the 

automation of this process is inevitable. 

‒ Insufficient scalability: Most existing 

refactoring methods are effective only for small systems 

or individual modules. Extending these methods to large 

systems leads to the complexity of analyzing 

interconnections between components. 

‒ Lack of adaptability: Traditional refactoring 

techniques have a fixed set of rules and patterns that do 

not account for the specifics of a particular project. 

‒ Lack of deep contextual understanding: 

Refactoring systems often fail to consider business logic, 

architectural constraints, and code semantics. This can 

result in changes that are syntactically correct but 

semantically incorrect. 

The aforementioned limitations can, to varying 

degrees, affect the task of ensuring software code quality 

[8–10]. The need for a formalized approach to managing the 

refactoring process is evident, as similar methods for 

structuring management tasks are successfully applied in 

other complex technical systems, such as 

telecommunication networks [11]. One promising direction 

for code improvement is to account for secondary software 

defects that may arise during refactoring [12]. This 

problem can be solved by using predictive systems. 

General approaches for their implementation are presented 

in [13]. However, models that allow for the consideration 

of such defects are still in the development stage and 

require improvement. In particular, neurocomputers that 

operate based on efficient machine arithmetic can be used 

to solve similar problems [14]. 

The application of artificial intelligence (AI) 

methods to refactoring tasks can significantly help 

overcome these limitations by providing automated, 

objective, and adaptive solutions to improve code 

quality, security, and maintainability. There are 

numerous examples [15, 16] where AI methods have 

been effectively applied to synthesize (generate) new 

code, analyze existing code, detect vulnerabilities, 

programming errors, style violations, architectural flaws, 

automate code improvement, and obtain secure and 

optimized code based on identified shortcomings. It is 

also worth noting that similar approaches to error control 

based on mathematical procedures have found 

applications in other areas, such as systems with modular 

arithmetic [17]. 

The model MovePerf proposed in [18] focuses on 

predicting a program's execution time after a specific 

type of refactoring called "Move method". The authors 

investigate how moving methods impacts performance 

using a hybrid deep learning model that accounts for 

feature interaction. However, this process does not 

include a comprehensive procedure for evaluating the 

overall quality of the source code. This procedure is 

crucial for a thorough check to show how effectively the 

code's internal organization has been improved without 

losing functionality. It is an important part of supporting 

the long-term viability of the software. To address this 

challenge, fuzzy logic models can be applied, which are 

successfully used, for instance, in assessing risks within 

information security management [19]. 

Therefore, a fuzzy logic-based model for software 

code quality assessment is proposed. Fuzzy logic serves as 

an effective mathematical tool for solving decision-

making problems [20], particularly under complex 

conditions of uncertainty and incomplete input data. In the 

proposed model, software code quality is evaluated based 

on a set of features (discrepancy characteristics) used as 

input. For example, these inputs can be code smell 

characteristics [21], such as: the degree of code 

duplication, method size, class complexity, number of 

variables, comments, and the number of known 

vulnerabilities. The use of fuzzy logic for code quality 

analysis allows for the effective combination of code 

smells and quality metrics into a unified evaluation 

system. This approach provides a reasoned, flexible, and 

interpretable assessment that can be adapted to specific 

projects and technologies. 

Literature review. An analysis of publications 

[22–24] on fuzzy logic-based models for software code 

quality assessment shows that this approach effectively 

handles the ambiguity and uncertainty present in code 

quality metrics. Unlike sharp threshold values or binary 

rules, fuzzy logic considers the degree of membership to 

sets, which better reflects real-world software 

development practices. Most scientific studies indicate 

that the following key features, presented in Table 1, are 

used for the fuzzy assessment of software code quality. 

 
Table 1 – Code smell characteristics for fuzzy software 

code quality assessment 

Feature Description 

Degree of code 

duplication 

Measures the proportion of identical or 

similar code in different parts of a software 

system. A high level of duplication 

increases code interpretability and 

maintenance complexity. 

Method size 

The number of lines of code in a method. 

Very long methods are an anti-pattern that 

complicates code reading and testing. 

Complexity of 

user or base 

library classes 

Metrics that include cyclomatic 

complexity, the number of methods/fields, 

and the depth of the inheritance tree. 

Number of 

variables 

Many variables in a method can indicate a 

suboptimal structure and reduced code 

readability. 

Number of 

comments 

The ratio of comments to code. An 

insufficient number of comments often 

indicates poor code documentation. 

Known 

vulnerabilities 

Security issues found through static 

analysis tools (e.g., SonarQube), such as 

SQL injection, XSS, etc. 

 
These features form the input space for a fuzzy system, 

where each characteristic has a membership function that 

determines the degree of "negative consequence" or 

"positive influence" on the software code. 
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The application of these features using fuzzy logic 

for code analysis involves the following steps: 

1. Fuzzification. Each feature is converted into a 

fuzzy variable using membership functions [23]. For 

example: 

‒ for lines of code: Low (0–30), Medium (20–60), 

High (>50); 

‒ for code duplication: None (<5%), Moderate (5–

20%), High (>20%). 

2. Fuzzy inference rules. A set of rules is formed 

based on expert knowledge, such as: 

IF (Code Duplication IS High) AND (Method 

Length IS Long) THEN (Code Quality IS Poor) 

Such rules can be defined by experts or automatically 

generated and trained on data [24]. 

3. Fuzzy Inference. The Mamdani or Sugeno 

algorithm is applied to compute the result – the overall 

code quality assessment. 

4. Defuzzification. The resulting fuzzy score is 

converted into a numerical value, for example, from 0 to 10, 

where 0 is the lowest code quality and 10 is the highest. 

Eliminating these code smell characteristics from the 

software code is a task for subsequent refactoring. 

However, the precise definition of fuzzy categories like 

"too little," "moderate," "sufficient," or "too much" is quite 

subjective. Therefore, the mathematical apparatus of fuzzy 

logic [25, 20] can be used to formalize the membership of 

code smell characteristics to these fuzzy subsets, and a 

fuzzy production rule base can describe the relationship 

between code smell features and the output characteristic 

– software code quality. 

The use of fuzzy system-based models for software 

code quality assessment is proposed in [21, 26, 27]. 

However, they are based on the Mamdani fuzzy inference 

algorithm, which does not allow for automated adjustment 

of membership function parameters or the generation of 

production rules. Therefore, working with them requires 

manual, expert-driven parameter definition, which can 

lead to incorrect results. 

To automate the tasks of parameter tuning and 

adaptation, established approaches based on a combination 

of artificial neural networks and fuzzy logic can be used. It 

is proposed that the values of selected code smell 

characteristics be used as input parameters. The output 

parameter, the current software code quality value, will be 

determined through the fuzzy inference process. This 

fuzzy system is proposed to be trained using a hybrid 

algorithm based on backpropagation and gradient descent. 

Training data can be collected by analyzing code from 

open-source repositories (e.g., GitHub). The training of the 

created model is proposed to be conducted in the Matlab 

environment [28]. Thus, the objective of this research is to 

develop a hybrid adaptive model for software code quality 

assessment based on code smell discrepancy 

characteristics by combining fuzzy logic and machine 

learning methods to enhance the objectivity and efficiency 

of refactoring. 
 

1 The developed hybrid adaptive model 

Architecturally, it is proposed to use a hybrid model 

based on the adaptive neuro-fuzzy inference system 

(ANFIS) platform. ANFIS is a multi-layered neural 

network that performs Takagi-Sugeno fuzzy inference 

[27] with the ability to learn using gradient methods. 

ANFIS represents an adaptive neuro-fuzzy inference 

system. The use of such systems has proven effective for 

solving various problems. For example, in [29], such a 

system is used for DDoS attack detection. On one hand, 

ANFIS is a neural network with a single output and 

multiple inputs, which represent fuzzy linguistic variables. 

The terms of the input linguistic variables are described by 

standard membership functions, while the terms of the 

output variable are represented by linear or constant 

functions. On the other hand, ANFIS is a fuzzy inference 

system in which each of the fuzzy production rules has a 

constant weight equal to 1. 

The model's architecture structurally involves the 

implementation of the following layers: 

1. Input layer (Layer 1): This layer handles the 

representation of normalized code smell values. Code 

smells are indicators of poor structure or design in software 

code that suggest the need for refactoring. For the model, 

we propose using quantitative characteristics that can be 

measured automatically, namely: 

‒ WMC (Weighted Methods per Class); 

‒ DIT (Depth of Inheritance Tree); 

‒ RFC (Response for a Class), the number of 

unique methods a class can invoke; 

‒ LCOM (Lack of Cohesion in Methods), the 

measure of a class's methods not being interconnected; 

‒ NOA (Number of Attributes); 

‒ NOC (Number of Children); 

‒ CBO (Coupling Between Objects); 

‒ FANOUT, the number of outgoing dependencies 

of the function/method. 

Each of these metrics is normalized (Fig. 1) to the 

range [0, 1], where 0 is the ideal value (no code smell) and 

1 is a critical value (a strong code smell). 

 

WMC  normalizer  [x1] 

DIT  normalizer  [x2] 

RFC  normalizer  [x3] 

LCOM  normalizer  [x4] 

NOA  normalizer  [x5] 

NOC  normalizer  [x6] 

CBO  normalizer  [x7] 

FANOUT  normalizer  [x8] 

 
 

 
8

1 2 8, , ..., 0, 1{ } [ ] x x  X x  =   
 

Fig. 1. Normalization process of the model's input layer 

 

To bring the values of the code features to a single 

scale, it is proposed to apply linear normalization: 

 min

max min

,norm i
i

x x
x

x x

−
=

−
 (1) 

where xi is the initial value of the i-th code smell; xmin, 

xmax are the minimum and maximum expected values 

(extrema) for this metric.  

The aforementioned extremum values can be: 

theoretical (for example, for DIT: [0, ∞], but in practice 



Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052 

86 

[0, 10]); statistical (obtained from a dataset); or expert-

defined. 

Thus, after normalization, an input vector { }X  is 

formed, where each xi is the normalized value of the 

corresponding code smell. This vector is fed into the 

ANFIS system, where each component is used for 

fuzzification (conversion into fuzzy sets), which then 

activates specific fuzzy rules and, ultimately, influences 

the code quality assessment. 

2. Fuzzification layer (Layer 2). The fuzzification 

layer of the hybrid ANFIS model is the second layer in 

its architecture and is responsible for converting crisp 

values into fuzzy values, which is the process of 

fuzzification. This is a key step that allows the system to 

operate with fuzzy sets, which are used to implement 

Takagi-Sugeno fuzzy inference [27]. 

For each input xi and each fuzzy term Aj the 

fuzzification layer calculates: 

 ( ,)
jij A iO x=   (2) 

where Oij ‒ the degree of membership of the i-th input to 

the j-th term; ( )
jA ix  ‒ the value of the membership 

function for xi. 

The conversion of crisp values into fuzzy ones is 

performed using membership functions of various types 

(e.g., triangular, trapezoidal). 

The fuzzification procedure involves the process of 

converting a numerical value (for example, a normalized 

code smell value) into a degree of membership to fuzzy 

sets such as: low, medium, or high. This process shows 

how much the numerical code smell value corresponds to 

the given linguistic terms. 

Each input feature (e.g., WMC, CBO) has its own 

group of membership functions that determine how much 

the value corresponds to each fuzzy term. 

For example, for WMC, the fuzzy terms "Low", 

"Medium", or "High" can be defined. Thus, if 

WMC = 0.7, the system calculates: μLow(0.7); 

μMedium(0.7); μHigh(0.7), where ( )х  is the corresponding 

membership function. In the ANFIS fuzzification layer 

(Layer 2), parameterized membership functions are most 

commonly used, for example: 

‒ triangular membership function (x): 

 ( )
( ) ( )

( ) ( )

0, ,

, ,
; , ,

, ,

0, ,

x a

x a b a a x b
x a b c

c x c b b x c

x c




− −  
= 

− −  
 

   (3) 

where x is the input value of the code smell characteristic; 

a is the left boundary of the fuzzy term (degree of 

membership  = 0); b is the center of the term (degree of 

membership  = 1); c is the right boundary of the term 

(degree of membership  = 0).  

The parameters a, b, c determine the shape of the 

triangular function, which reflects the degree to which 

the value of the input feature (e.g., WMC, CBO) 

corresponds to a specific linguistic term (Low, Medium, 

High). They allow for the clear definition of the 

boundaries of fuzzy sets for each feature: 

‒ trapezoidal membership function ( )х :  

 ( )
( ) ( )

( ) ( )

0,

,

; , , ,  ,1,

,

0

x a

x a b a a x b

x a b c d b x c

d x d c c x d

x d




− −  


=  
 − −  




  (4) 

where x is the input value of the code smell 

characteristic; a is the start of the rising slope of the 

membership function; b is the start of the full 

membership plateau ( 1);=  c is the end of the full 

membership plateau; d is the end of the falling slope of 

the membership function. 

The trapezoidal membership function ( )х  differs 

from the triangular one by having a plateau of full 

membership ( 1)=  between b and c. The trapezoidal 

function is also useful for modeling clearer zones of high 

impact (e.g., "the class has a critical code smell") and 

allows for more flexible description of linguistic terms in 

cases where it is necessary to clearly define a high-risk 

range. 

‒ sigmoid membership function ( )х :  

 ( )
( )

1
; , ,

1
a x c

x f c
e
− −

=
+

  (5) 

where x is the input value (e.g., a normalized code smell 

value); 

a ‒ is the slope coefficient that determines the 

steepness of the function (the larger ,a  the sharper the 

transition from 0 to 1); 

c ‒ is the shift parameter that defines the point of 

intersection with 0.5, i.e., the value of x at which the 

degree of membership equals 0.5. 

This membership function can be useful in software 

code quality assessment tasks, especially when it is 

necessary to model the monotonically increasing or 

decreasing influence of a particular code smell on the 

overall code quality score [30]. 

In ANFIS, the parameters of these functions (e.g., 

a, b, c, d) are learnable and are optimized using gradient 

descent or another learning algorithm.  

For assessing software code quality based on code 

smell characteristics within the hybrid ANFIS model, the 

choice of the membership function has a significant 

impact on the accuracy and interpretability of the fuzzy 

inference. 

The advantages and disadvantages of the presented 

membership functions, in accordance with the model's 

objective, are provided in Table 2. 

Although other types of membership functions exist 

(e.g., Gaussian, S-shaped, Z-shaped), their use is not 

recommended for this task due to: difficulty of 

interpretation (they are less understandable to experts, 

making it harder to explain their correlation with code 

smells); increased complexity (they complicate the 

learning process and increase the risk of overfitting due 

to a larger number of parameters). Lack of a clear 

connection to linguistic terms [31]. 
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Table 2 – Advantages and disadvantages of membership functions 

Type of function Advantages Disadvantages 

Triangular Simplicity, clarity, fast training, interpretability. Lack of a clear high-risk zone. 

Trapezoidal 
Presence of a full membership zone ( = 1) high flexibility, 

well-suited for modeling critical zones.  

More complex interpretation, more 

parameters. 

Sigmoid 
Smooth change in the degree of membership, analytical 

derivative, well-suited for gradient learning. 

Less interpretable, more difficult for 

experts, risk of overfitting. 

 

The trapezoidal membership function is considered 

optimal for implementing the hybrid adaptive model for 

software code quality assessment because it:  

‒ best suited for modeling critical code smell 

zones, where the feature's value (e.g., WMC, CBO) 

reaches a dangerous level. The trapezoidal function 

allows for the definition of a plateau of full membership 

( 1);=  

‒ has clear boundaries and is easily explained by 

experts, unlike the sigmoid function. This is crucial since 

the model combines expert knowledge and machine 

learning; 

‒ offers flexible configuration due to its four 

parameters. This ensures better adaptability to different 

code smells and projects. In the hybrid ANFIS model, 

these parameters (a, b, c, d) are optimized by gradient 

descent, which provides high prediction accuracy; 

‒ is suitable for modeling linguistic terms. 

It is proposed to choose 3-5 terms for each code 

smell characteristic based on Table 3. 
 

Table 3 – Selection of linguistic terms for code smell 

characteristics 

Terms Details 

3 terms Low – Medium – High 

(Most commonly used in practice) 

4 terms Very Low – Low – Medium – High 

5 terms Very Low – Low – Medium – High – Very High 

(Used when a detailed analysis is required) 

 

The parameter tuning for the membership functions 

should be performed using alternative methods: 

‒ based on expert knowledge. Experts indicate 

which code smell values correspond to "Low", 

"Medium", or "High" levels; 

‒ based on data (statistically). Quantiles (e.g., 

25%, 50%, 75%) are calculated for each metric. These 

values are used as the intersection points of the 

membership functions. 

3. The rule layer (Layer 3). This layer calculates 

the firing strength of each rule, which is the product of 

the membership function values for all sub-conditions of 

the rule. 

The fuzzy rule layer in the hybrid ANFIS model is 

a main element that implements the Takagi-Sugeno fuzzy 

inference. This layer provides the model with semantic 

interpretability, as each rule can be understood by a 

human expert, and it also supports parameter learning 

using gradient methods. 

The main task of this layer is to compute the firing 

strength of each rule based on the degrees of membership 

of the inputs to the fuzzy sets. 

Each rule has the form: 

 1 1 2 2

1 1 2 2

“   ,   , ...   ,

... ”,n

n n

n

If  x A x A   x A

than y p x p x   p x q

   

= + + + +
  (6) 

where 1,..., nA A  are the fuzzy terms corresponding to the 

linguistic variables (e.g., Low, Medium, High); 

1 2, , , nx x x  are the input code smell features (e.g., 

WMC, CBO, LCOM, DIT, NOC, RFC, CBO, MFA, 

etc.); y is the output value (code quality assessment based 

on code smell characteristics); 1 2, , , npp p  are the 

weighting coefficients of the input variables (influence 

weights). These parameters determine the influence of 

each input feature (e.g., a specific code smell) on the 

output value (code quality assessment) within a particular 

rule. If ip  has a large magnitude, it means that the 

corresponding feature ix  significantly affects the output 

in this rule. If ip  is close to zero, the influence of this 

feature is minimal; q is the free term (bias). This is a 

constant value that is added to the sum of the weighted 

input features. It acts as a baseline or offset for a specific 

rule (q can reflect a systematic contribution of the rule 

that is independent of the input data). This representation 

is typical for a first-order Takagi-Sugeno inference 

algorithm rule [32]. 

So, if we have the following input conditions: 

‒ number of code smell characteristics: 8 (WMC, 

DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT); 

‒ number of terms: 4 ("Low", "Medium", "High", 

"Critical") corresponding to the trapezoidal membership 

function; 

‒ number of Takagi-Sugeno rules will be 

48 = 65536 (a full combination). 

In general, Takagi-Sugeno rules have the following 

form: 

( ) ( )

( )
1 2

8 1

2 8

“ ...

, *

* ... * ”.

If  WMC is x and DIT  is x and  

and FANOUT  is x  than Quality p WMC

p DIT  p FANOUT q

= +

+ + + +

 (7) 

A fragment of the rule base range is presented in Table 

4. The operation algorithm of this layer assumes that the 

degrees of membership from the fuzzification layer for each 

input and each term are passed to its input. For each rule, the 

logical "AND" (conjunction) of the degrees of membership 

of all its antecedents is computed: 

 1 1 2 2( ) ( ) ( ),i n nA x A x A x =      (8) 

where i  is the degree of activation (firing strength) of 

the i-th fuzzy rule (6); ( )j jA x  is the degree of 

membership of the j-th input jx  to the fuzzy term ;jA  n 

is the number of input features (code smells), for 
example: WMC, CBO, LCOM, etc. 
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Table 4 – A fragment of the Takagi-Sugeno rules 

Rule # Conditions (8 features) 
Influence weights 

p1, p2, … , p8 
Bias q 

Inference formula (1st-order 

Takagi-Sugeno) 

1 

WMC=Low, DIT=Low, 

RFC=Low, LCOM=Low, 

NOA=Low, NOC=Low, 

CBO=Low, FANOUT=Low 

Initially, they are 

initialized with 

small random 

values ([0, 1]) or 

are set by an 

expert. The 

[0,1]ip  values 

are normalized, but 

they can also be 

negative (if an 

increase in a code 

smell improves 

quality, although 

this is rare). 

0.05..0.5q   

depending on 

the rules 

y = p1*WMC + p2*DIT + p3*RFC + 

+ p4*LCOM + p5*NOA + p6*NOC+ 

+ p7*CBO + p8*FANOUT + q 

2 

WMC=Medium, DIT=Low, 

RFC=Low, LCOM=Low, 

NOA=Low, NOC=Low, 

CBO=Low, FANOUT=Low 

y = p1*WMC + p2*DIT + p3*RFC + 

+ p4*LCOM + p5*NOA + p6*NOC 

+ 

+ p7*CBO + p8*FANOUT + q 

… … … 

65536 

WMC=Critical, DIT=Critical, 

RFC=Critical, 

LCOM=Critical, 

NOA=Critical, NOC=Critical, 

CBO=Critical, 

FANOUT=Critical 

y = p1*WMC + p2*DIT + p3*RFC + 

+ p4*LCOM + p5*NOA + p6*NOC 

+ 

+ p7*CBO + p8*FANOUT + q 

 

The firing strength (activation) is a number that 

shows how strongly a particular rule applies to the 

current set of code smells [33]. 

Therefore, the operation algorithm of the rule layer 

can be described mathematically as follows: 

Let there be given: 

‒  1 2, , ... , nx x x   x=  is the normalized set of 

code smell parameters; 

‒ for each ,ix  M fuzzy terms are defined; 

‒ the number of possible rules is .nR M=  

Then, for each rule 1, ,r R=  the following holds 

true: 

 
1

( ),r
i

n

A
i

r ix

=

=   (9) 

where ( )r
iA ix  is the degree of membership of the i-th 

input to the j-th term within the r-th rule. 

The output of the rule layer is a vector 

 1 2, ... , ,, R  =    where each element corresponds 

to the activation of a separate rule. The layer has high 

interpretability due to the clear semantics of the rules, 

supports the learning of inference parameters (using 

gradient descent), and is the result of combining fuzzy 

logic and neural networks. 

4. Normalization layer (Layer 4). This layer 

ensures the calculation of the normalized firing strength 

of each rule. The Normalization Layer of the hybrid 

ANFIS model is a key element for the fuzzy inference 

stage, which provides the relative weighting of rule 

activations before they are used in defuzzification. This 

layer allows the system to react more stably to different 

input combinations and improves the model's training for 

optimizing its parameters using gradient methods. 

This layer is aimed at calculating the normalized 

firing strengths of the rules. Its task is to determine how 

important each rule is relative to the others for the 

current set of inputs. This is due to the fact that: the 

absolute values of the rule activations i  can be large 

or small simultaneously; for an accurate output 

calculation, it is necessary to consider the relative 

weight of each rule. 

Based on the vector of rule activations 

 1 2, ... , ,, R  =    the layer calculates as: 

 
1

,
R

i ii
i=

=     (10) 

where i  is the degree of activation of the i-th rule; R is 

the total number of rules; i  is the normalized i-th rule 

activation. 
This approach guarantees that the sum of all 

normalized activations equals 1. The Normalization 

Layer is a part of the architecture that ensures learning 

stability and increases the accuracy of fuzzy inference. 

Normalizing the rule activations prevents rules with a 

large number of inputs from having an undue advantage. 

This is especially important in a hybrid learning 

algorithm, where both the inference parameters (of the 

linear rule part) and the membership function parameters 

are optimized in a single pass (when using gradient 

descent). 

Therefore, at the output of the layer, each rule has a 

weight that will be used in defuzzification. 

5. Defuzzification layer (Layer 5). This layer 

calculates the weighted average of the results, taking into 

account the rules' activity. The defuzzification layer of 

the hybrid ANFIS model is designed for the final 

computational stage of fuzzy inference. It provides the 

conversion of fuzzy results into a crisp numerical value, 

which can be interpreted as a software code quality 

assessment, or any other quantitative indicator. 

In this layer, the final result of the fuzzy inference 

of the proposed system is calculated using the weighted 

average of the rule conclusions, taking into account their 

normalized activations. This layer uses the results from 

the rule layer (Layer 3) and the normalization layer 

(Layer 4) and calculates the resulting parameter ‒ the 

code quality assessment, Q. At the same time, it supports 

gradient learning, and the result of the fuzzy inference 

depends on the model's parameters. 

Mathematically, this process can be described as 

follows. The input data are: 

‒ the normalized rule activations :i  

  1 2, ... , ;, R  =     
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‒ the Takagi-Sugeno rule conclusions: 

 
 

2

1 2

1 1 2 ... ,

, .. , ., .

i n in

R

p x p x p x qf

 f f f   f

+ + + +

=

=
  

The final stage of fuzzy inference (software code 

quality assessment) is calculated using the formula: 

 
1

,
R

i i fQ
=

=   (11) 

where Q is the final software code quality assessment 

 [0 ,1( , ]Q    where 0 corresponds to high code quality 

and 1 to low code quality); R is the total number of rules; 

i  is the normalized i-th rule activation; if  is the output 

value of the i-th rule (a linear combination of the inputs). 

The defuzzification layer (Layer 5) in ANFIS 

implements the conversion of fuzzy results into a crisp 

number, using a weighted average that accounts for rule 

activations. It also supports gradient learning and is a key 

link in the model optimization process. 

6. Output layer (Layer 6). The Output Layer 

returns the software code quality assessment in the range 

[0, 1]. The quality assessment is formed in the previous 

layer based on fuzzy inference. At this step, it is possible 

to perform post-processing, such as normalization, 

rounding, conversion to a discrete category (e.g., "Low" 

quality  [0. 1]( 7 ,Q −  refactoring is needed), "Medium" 

quality  [0.3 0 7( ],.Q −  refactoring is possible), "High" 

quality (  [0 ,3]( 0.Q −  no need for refactoring)), or 

comparison with a threshold for decision-making. 

The architecture of the adaptive model for 

software code refactoring based on fuzzy logic is 

shown in Fig. 2. 

 

Code smells Signs of bad structure or design of software code that indicate the need for refactoring 

 

Layer 1 Input layer 
Formation and presentation of normalized code smell 

values. 

Linear normalization: 

min

max min

.norm i
i

x x
x

x x

−
=

−
 

 1 2, , ..., 1} [ ] 0{ ,
i

i x x  X x  =   

Layer 2 Fuzzification layer 
The conversion of crisp values into degrees of 

membership to fuzzy sets. 

The process that determines 

how a numerical code smell 

value corresponds to the 

provided linguistic terms: 

( ).
jij A iO x=   

ijO  ‒ the degree of membership of the i-th input to the j-th term 

Layer 3 The rule layer 

It provides the model with semantic 

interpretability. It computes the firing strength of 

each rule based on the degrees of membership of 

the inputs to the fuzzy sets. 

For each rule, the logical 

"AND" (conjunction) of the 

degrees of membership of all 

its antecedents is calculated: 

1 1( ) ( ).i n nA x A x =    

 1 2, , ... , R   =    

Layer 4 Normalization layer 

It ensures the calculation of the normalized firing 

strength of each rule. Normalizing the rule 

activations prevents rules with a high degree of 

activation from having an undue advantage. 

The normalized rule activation: 

1

.i
R

i

i

i=


 =



 

 1 2, , ... , R   =    

Layer 5 
The defuzzification 

layer 

It ensures the conversion of fuzzy results into a 

crisp numerical value, which can be interpreted as 

a software code quality assessment or any other 

quantitative indicator. 

Software code quality 

assessment: 

1

.i i

R

i

fQ

=

 =  

Q ‒ final code quality assessment  [0, 1]Q     

Layer 6 Output layer 

Performing post-processing, for example, 

normalization, rounding, conversion to a discrete 

category (e.g., "Low", "Medium", "High" quality), 

or comparison with a threshold for decision-

making. 

 

 
Final software code quality assessment. 

 

Fig. 2. Architecture of an adaptive model for software code refactoring based on fuzzy logic 
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2 Hybrid learning algorithm 

The hybrid learning algorithm of the adaptive 

model for software code refactoring based on fuzzy logic 

combines forward pass and backward pass procedures, as 

well as the gradient descent algorithm. 

The training involves the following stages: 

1.  Initialization of fuzzy rules. Initial rules are 

created based on expert knowledge or analysis of the data 

from the subject area of the research. 

2. Forward pass procedure. This is the 

implementation of the forward computational process 

through all the layers of the ANFIS model. Data passes 

through all layers to the Defuzzification Layer, and the 

expected quality assessment expectedQ  is calculated 

using formula (11). 

3. Calculation of the training error E. This stage 

involves comparing the predicted quality value expectedQ  

with the actual value actualQ  (expert evaluation or prior 

refactoring) using the formula: 

 ( )
2

    2, actual expectedE Q Q= −  (12) 

where actualQ  is the actual, real value of software code 

quality that is known at the time of model training. It is the 

known value of the output parameter that the model is 

trying to predict. It can be determined either based on an 

expert evaluation ([0, 1], where 0 is ideal code, and 1 is 

code that requires refactoring) or based on an automatic 

assessment (using static analysis tools); expectedQ  is the 

expected code quality value that the model returns after 

processing the code smells. The corresponding value is 

calculated through the Takagi-Sugeno fuzzy inference 

algorithm, depends on the rule activations, their 

conclusions, and the model's parameters, and is formed 

through defuzzification in ANFIS. 

4. Backward pass. This procedure is aimed at 

minimizing the error in determining (predicting) the 

software code quality by adapting the model's 

parameters. That is, the model adjusts its internal 

parameters to improve the accuracy of the expectedQ  

determination, making it closer to the actual value 

.actualQ  

In the hybrid ANFIS model, two categories of 

parameters are adapted:  

‒ membership function parameters (a, b, c in 

triangular functions or a, b, c, d in trapezoidal functions) 

are updated using gradient descent, as they influence the 

nonlinear part of the model; 

‒  rule weighting coefficients 1 2, , ..( ),. , np   pp  

which correspond to the linear conclusion of the Takagi-

Sugeno rule, are updated using the least squares method. 

This hybrid approach ensures a significant increase 

in the efficiency and speed of training. 

The backward pass procedure allows the error from 

the output of the adaptive model for software code 

refactoring to be directed backward toward the model's 

inputs. This is done to evaluate how each model 

parameter influenced the error and, accordingly, to adjust 

these parameters.  

The backward pass procedure involves: 

‒ performing the forward pass procedure; 

‒ calculating the expected code quality value  

expectedQ   and the training error E; 

‒ calculating the gradients. This very process 

allows for determining how much each model parameter 

influences the prediction error, and accordingly, 

adjusting these parameters to improve accuracy.  

The gradient is a vector of partial derivatives  with 

respect to all model parameters: 

 
1 2

, ,  , , 
n

E E E
E

   
 =  

     
 (13) 

where E  is the gradient vector (of partial derivatives). 

It allows for determining how the parameters should be 

changed to reduce the error; 

E  is the partial derivative of the error with respect to 

each individual model parameter .i  It demonstrates the 

influence of a single parameter on the model's error; 

1 2, , ... , n      are the model parameters (for example, 

fuzzy rule coefficients, membership function parameters, 

neural network weights). 

Each derivative is calculated using the chain rule of 

differentiation, taking into account the influence of each 

parameter through all previous layers (fuzzification and 

defuzzification). 

5. Execution of the parameter update procedure 

using the gradient descent algorithm. The gradient 

descent algorithm is aimed at optimizing parameters to 

minimize functions (MSE, MAE, etc.) [34]. 

Parameters are updated using the formula: 

 , new old
E

= −


  


 (14) 

where θ is the parameter (for example, b in a triangular 

function);   is the learning rate; 
E


 is the error gradient 

(the derivative of the error with respect to this parameter). 
The process is repeated over a set of cycles until the 

error reaches a predefined level for model convergence. 

With a large number of inputs and rules, the training 

process can be lengthy. Poor or contradictory data can 

lead to inaccurate predictions. 

However, the undeniable advantages of the 

presented model are: the ability to improve rule settings 

based on new data; a proper level of interpretability due 

to the fuzzy rules; an organic combination of expert 

knowledge and machine learning; the ability to work with 

various technologies and languages; and support for 

integration into the software development process. 

3 Discussion of results 

The developed hybrid ANFIS model demonstrates 

significant potential for the automated and objective 

assessment of software code quality. Unlike existing 

approaches, which are often based on static rules or 

subjective expert evaluations, our model combines the 

interpretability of fuzzy logic with the adaptability of 

machine learning. The use of eight key code smell 

metrics as input parameters allows for covering a wide 
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range of potential problems in code. The proposed 

architecture, with its trapezoidal membership functions 

and a hybrid learning algorithm, ensures not only high 

accuracy but also flexibility, which is critically 

important for adapting the model to various 

programming languages and technology stacks. This 

allows the model to independently optimize its 

parameters based on real data, which minimizes the 

reliance on manual tuning. 

The achieved accuracy in code quality 

determination indicates the effectiveness of applying this 

hybrid approach to solve complex problems that have 

uncertainty and fuzziness in their input data. The model 

can be used not only for detecting existing code smells 

but also for predicting possible secondary defects that 

may arise during refactoring. Implementing this model 

into development processes, particularly into CI/CD 

tools, will provide developers with valuable, objective, 

and fast feedback on code quality, which will ultimately 

increase the overall efficiency of development, 

maintainability, and security of software. 

Conclusions 

Based on the results of the conducted research, the 

following conclusions were formulated. 

A hybrid adaptive model for software code quality 

assessment was developed based on fuzzy logic and the 

ANFIS architecture, which allows for overcoming the 

limitations of classical refactoring approaches, particularly 

their subjectivity, labor-intensity, and lack of adaptability. 

The proposed model integrates eight key code smell 

metrics (WMC, DIT, RFC, LCOM, NOA, NOC, CBO, 

FANOUT) using Takagi-Sugeno fuzzy inference. This 

ensures a flexible, interpretable, and objective 

assessment of code quality. 

The choice of trapezoidal membership functions 

was justified as optimal for modeling critical code smell 

zones. The hybrid learning algorithm, which combines 

forward and backward propagation of error, ensures the 

automatic tuning of the model's parameters, significantly 

increasing assessment accuracy. 

The obtained results provide a solid foundation for 

further scientific and practical developments. The 

prospects for future research lie in the practical 

implementation and integration of the developed hybrid 

adaptive model into existing static analysis tools and 

DevOps processes. Specifically, it can be implemented 

as plugins for continuous integration and continuous 

delivery (CI/CD) systems, which would provide 

automated, objective, and adaptive real-time code quality 

monitoring. 

Furthermore, future work should focus on improving 

and expanding the model. It is worth separately 

investigating its potential application for different 

programming languages and technology stacks by 

collecting and analyzing large datasets from open 

repositories. It is also promising to enhance the ANFIS 

architecture by introducing deep learning methods or 

hybridizing it with other artificial intelligence approaches. 

This would allow for the automatic detection of new code 

smells and their interrelationships. Additionally, developing 

interpretable mechanisms that would explain the model's 

decisions will significantly increase developers' trust in the 

system and facilitate its widespread adoption in industrial 

software development and educational processes for 

software engineering and cybersecurity. 
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Адаптивна модель оцінки якості програмного коду в задачах рефакторингу 

на основі fuzzy-логіки 

С. В. Любарський, А. С. Янко, Ю. М. Здоренко, Б. А. Худаяров 

Анотація. Мета статті полягає у розробці гібридної адаптивної моделі оцінки якості програмного коду на основі 

характеристик невідповідності code smells шляхом поєднання методів fuzzy-логіки та машинного навчання для підвищення 

об’єктивності та ефективності рефакторингу. Методологія, що покладена в основу дослідження, спрямована на розробку 

гібридної адаптивної моделі оцінки якості програмного коду, поєднує у собі нечітку логіку (fuzzy logic) та методи штучного 

інтелекту, зокрема адаптивну систему нейро-нечіткого виведення (ANFIS ‒ Adaptive Neuro-Fuzzy Inference System). 

Багатошарова адаптивна система нейро-нечіткого виведення ANFIS реалізує нечітке логічне виведення Такагі-Сугено з 

можливістю навчання за допомогою градієнтних методів. Методологія побудована на гібридному підході, що інтегрує 

експертні знання з автоматичним навчанням моделі на реальних даних. Результати. За результатами проведеного 

дослідження розроблено гібридну адаптивну модель оцінки якості програмного коду на основі нечіткої логіки та адаптивної 

нейро-нечіткої системи виведення ANFIS, що дозволяє автоматизовано, об’єктивно та гнучко оцінювати якість програмного 

коду в задачах рефакторингу. Модель використовує вісім ключових code smells-метрик (WMC, DIT, RFC, LCOM, NOA, NOC, 

CBO, FANOUT). Їх нормалізація та обробка здійснюється за допомогою нечіткої логіки на основі алгоритму Такагі-Сугено. 

Це забезпечує врахування невизначеності та суб’єктивності експертних оцінок. Архітектура ANFIS дозволяє моделі 

навчатися на реальних даних з подальшим автоматичним налаштуванням параметрів функцій приналежності та вагових 

коефіцієнтів правил. Саме це надає змогу адаптуватися до різних технологічних стеків та проєктів. Використання 

трапецієподібних функцій приналежності підвищує точність моделювання критичних зон code smells, а гібридний алгоритм 

навчання на основі градієнтного спуску забезпечує високу точність визначення якості коду, що в підсумку сприяє 

підвищенню ефективності, підтримуваності, розширюваності та безпеки програмного забезпечення. Наукова новизна 

дослідження полягає у розробці гібридної адаптивної моделі оцінки якості програмного коду, яка на відміну від існуючих, 

здійснена на основі нечіткої логіки та адаптивної системи нейро-нечіткого виведення ANFIS, що поєднує експертні знання з 

автоматичним навчанням на реальних даних для підвищення об’єктивності та ефективності процесу рефакторингу. 

Запропоновано використання архітектури ANFIS з трапецієподібними функціями приналежності для обробки восьми 

ключових метрик code smells (WMC, DIT, RFC, LCOM, NOA, NOC, CBO, FANOUT) у контексті нечіткого логічного 

виведення Такагі-Сугено, що забезпечує гнучке, інтерпретоване та адаптивне оцінювання якості коду з можливістю 

автоматичного налаштування параметрів моделі на основі градієнтного навчання, що значно підвищує точність визначення 

якості коду та придатність моделі для різноманітних технологічних стеків та проєктів. Практичне значення дослідження 

полягає у можливості прямої реалізації та інтеграції розробленої гібридної адаптивної моделі оцінки якості програмного коду 

в існуючі інструменти статичного аналізу та DevOps-процеси, зокрема у вигляді плагінів для систем безперервної інтеграції 

та доставки (CI/CD). Це дозволить забезпечити автоматизований, об'єктивний та адаптивний моніторинг якості коду в 

реальному часі. Окрім цього, модель має значний потенціал для розширення на різні мови програмування та технологічні 

стеки шляхом аналізу великих масивів даних з відкритих репозиторіїв, що підвищить її універсальність та точність. 

Перспективним є також удосконалення архітектури ANFIS через впровадження методів глибокого навчання, що дасть змогу 

автоматично виявляти нові code smells та їх взаємозв'язки. Розробка інтерпретованих механізмів пояснення рішень моделі 

підвищить довіру розробників до системи та сприятиме її широкому впровадженню як у промислову розробку програмного 

забезпечення, так і в навчальні процеси з програмної інженерії та кібербезпеки.  

Ключові  слова:  рефакторинг; code smells; нечітка логіка; ANFIS; якість програмного коду; кібербезпека 

програмного забезпечення; штучний інтелект; нечітке логічне виведення Такагі-Сугено. 
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