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Abstract .  Visual localization algorithms are an integral part of modern robotics and navigation systems, providing object 

position determination based on visual features or images. However, their effectiveness is largely dependent on external 

factors, such as image brightness and noise level, which directly affect landmark recognition and coordinate accuracy. 

Subject of research: analysis of the impact of image brightness and noise on the accuracy and stability of adaptive 

localization algorithms. The purpose of the work is to quantify the impact of image parameters on the robustness of various 

localization methods and to identify algorithms most suitable for real-time operation under unstable visual conditions. 

Research methods: A two-factor experimental design with brightness and noise level variables was applied, within which a 

series of localization experiments were conducted. Mathematical modeling was performed to obtain analytical dependences 

of the minimum, average, and maximum localization errors for four algorithms – Proximity, Centroid, Weighted Centroid, 

and Lateration. Based on the obtained models, a stability coefficient was introduced as an indicator of the algorithm's 

robustness. Results: the constructed regression models demonstrated high adequacy and allowed us to visualize the influence 

of brightness and noise on localization accuracy. It was found that the Weighted Centroid and Lateration methods provide 

the highest stability of operation, maintaining low error variation when changing image parameters, while the Proximity and 

Centroid algorithms showed greater sensitivity to noise and lighting fluctuations. 
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Introduction 

Visual navigation systems are actively used in 

autonomous robotic platforms, unmanned aerial vehicles, 

object tracking systems, augmented reality, and industrial 

vision. They allow determining the position and 

orientation of an object in space based on the analysis of 

visual landmarks, which makes them especially 

important for tasks where satellite navigation signals are 

absent or unstable. However, the key problem of such 

systems remains the stability of localization when 

external environmental factors change. The accuracy and 

reliability of determining coordinates are significantly 

affected by lighting conditions, scene contrast, sensor 

noise, image artifacts, as well as changes in the geometry 

or structure of landmarks. In real operating conditions, 

these factors change dynamically – for example, during 

the flight of a drone when moving from a lit area to a 

shadow, or when a mobile robot moves indoors with 

different lighting and glare. 

Most existing algorithms provide high positioning 

accuracy in laboratory or controlled conditions, but lose 

their effectiveness when brightness changes or noise 

appears. This is due to the fact that traditional approaches 

often do not take into account nonlinear relationships 

between image parameters and localization error 

characteristics. As a result, even small variations in 

illumination can lead to noticeable shifts in the 

coordinates of certain landmarks, and the appearance of 

noise can lead to a decrease in the accuracy of detecting 

key points and correspondences between frames. 

Therefore, a current task is to quantitatively assess the 

robustness of localization algorithms and develop 

analytical models that allow describing the behavior of 

the system when external factors change. This approach 

provides the possibility of analytically predicting 

localization error, optimizing algorithm parameters, and 

increasing the stability of visual systems in real 

conditions. Special attention should be paid to creating a 

universal stability indicator that would allow comparing 

different algorithms with each other regardless of the 

experimental conditions. The introduction of the stability 

coefficient as an integral criterion makes it possible to 

assess not only the average accuracy, but also the 

variation of the error in response to changes in 

environmental parameters, which is important for the 

design of adaptive and autonomous navigation systems. 

Literature analysis. Modern visual navigation 

systems are actively developing in the areas of 

autonomous transport, unmanned aerial vehicles and 

robotics. They are based on algorithms for image 

processing, landmark recognition and spatial position 

reproduction of an object. A comprehensive review of 

approaches to building intelligent transport systems is 

given in [1], which emphasizes the role of visual sensors 

in autonomous control systems. 

The problem of the influence of landmark 

coordinate errors on the accuracy of visual localization is 

considered in detail in [2], where both systematic and 

random errors are analyzed. Modeling of visual guidance 

systems of unmanned aerial vehicles is described in [3], 

which allows us to reproduce various flight scenarios and 

investigate the robustness of algorithms. 

A review of modern visual localization methods for 

autonomous navigation systems is given in [4], which 

classifies approaches by sensor types and level of 

integration. In [5], navigation algorithms for unmanned 

aerial vehicles are considered and the main factors of loss 

of accuracy are identified, including changing lighting 

and noise. Methods of simultaneous localization and 

mapping (SLAM) in variable lighting conditions are 

described in [6], and improvements to localization 

algorithms based on data filtering are given in [7]. Works 

[8], [9] are devoted to the construction of lightweight 

semantic maps and hybrid positioning based on the 

combination of visual and radio frequency sensors. 

Research [10] demonstrates the effectiveness of such 

approaches for underwater autonomous systems. 
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In [11–14], the use of deep neural networks 

(YOLOv5, DeepSORT, SSD) to improve the accuracy of 

visual landmark recognition and tracking stability is 

considered. In particular, it is shown that the positioning 

accuracy depends on the lighting parameters and the 

contrast level of the scene. 

Algorithms for automatic landing of UAVs using 

computer vision are presented in [15], and methods for 

assessing image quality and determining target motion 

parameters are presented in [16, 17]. An adaptive approach 

to visual positioning of UAVs, which takes into account 

changes in lighting conditions, is described in [18]. 

In [19], stochastic optimization methods that can be 

used to improve the stability of navigation systems are 

considered. Image preprocessing to improve recognition 

quality is presented in [20], where the effect of filtering 

and contrasting on the efficiency of algorithms is shown. 

In [21], the use of a full-factor experiment for 

optimizing signal processing parameters is presented, 

which is consistent with the methodology of this work. 

The study [22] confirms the importance of the stability of 

visual sensors in variable lighting conditions. The 

methods of sensor integration and full-factor analysis are 

discussed in detail in [23], where the influence of the 

choice of factors on the accuracy of the models is shown. 

Similar experimental approaches have been applied in 

engineering problems of optimizing technological 

processes [24, 25], which demonstrates the versatility of 

the chosen planning method. 

The review of sources shows that, despite the active 

development of visual localization methods, the issues of 

assessing the stability of algorithms when changing 

brightness and image noise remain insufficiently 

addressed. This justifies the relevance of the research 

aimed at building regression models of stability and 

determining the zones of effective operation of visual 

localization algorithms. 

Problem statement and research objective. The 

main problem considered in the study is the instability of 

visual localization algorithms under conditions of changes 

in illumination and image noise. In real operating 

conditions, such algorithms demonstrate a significant 

deterioration in the accuracy of determining coordinates 

when external factors fluctuate - brightness, scene contrast, 

or sensor noise. This instability limits the reliability of 

visual navigation systems in a dynamic environment and 

complicates their integration into autonomous robotic 

platforms and unmanned aerial vehicles.  

Most existing approaches are focused primarily on 

improving the average localization accuracy, without 

taking into account the variation of results and the 

robustness of algorithms when changing image 

parameters. Therefore, there is a need for quantitative and 

analytical assessment of the impact of brightness and 

noise on the stability of localization algorithms. 

The purpose of the study is to build and test 

mathematical models that describe the change in 

localization error depending on the brightness and noise 

level of the image, as well as introduce a stability 

coefficient that allows for a comparative assessment of 

the effectiveness of different algorithms. The resulting 

models are designed to determine the areas of stable 

operation and identify those localization methods that are 

most robust and suitable for adaptive visual navigation 

systems capable of operating in a changing environment. 

Research methodology 

The research methodology is based on a 

combination of experimental modeling, statistical data 

analysis, and regression modeling to evaluate the 

effectiveness and robustness of visual localization 

algorithms under conditions of changing image 

brightness and noise levels. 

At the initial stage, input data is generated, which 

includes image parameters — brightness (b) and noise 

level (n). These factors determine the conditions under 

which localization occurs and affect the stability of the 

results. 

Next, a preliminary numerical analysis is performed 

to determine the allowable factor space within which the 

visual localization algorithms remain operational. At this 

stage, extreme values of parameters that lead to loss of 

contrast or noise overload are analyzed, and realistic 

limits for changing the factors are determined. 

After that, the experiment is planned - a second-

order two-factor design is constructed, which allows us 

to study not only the separate effects of brightness and 

noise, but also the effect of their interaction. This 

approach provides complete information for further 

mathematical modeling. 

At the stage of conducting experiments, a series of 

localizations are performed for each combination of 

factors using four algorithms: Proximity, Centroid, 

Weighted Centroid and Lateration. Based on the results, 

the minimum, average and maximum localization errors 

(Ymin, Ymean, Ymax) are calculated, reflecting the behavior 

of the system under different conditions. 

The next step is regression modeling, within which 

analytical relationships between localization errors and 

image parameters are built. The use of second-order 

models allows us to take into account the nonlinearity of 

processes and the relationships between factors. 

After building the models, the stability coefficient 

is calculated, which is used as an integral indicator of the 

robustness of the algorithms. This coefficient 

characterizes the relative change in the error within the 

experimental space and allows us to determine how 

stably the algorithm responds to external disturbances. 

The results are then presented in the form of a 

visualization, where response surfaces and contour maps 

are constructed, illustrating the behavior of error and 

stability depending on the factors. This approach 

provides clarity of analysis and allows easy identification 

of areas of stable performance. 

The final stage is a comparative analysis and 

drawing conclusions, where the results of all experiments 

are summarized, the zones of stable operation of 

algorithms are determined, and the methods that 

demonstrate the highest robustness and suitability for use 

in adaptive visual navigation systems are identified. 

Thus, the research provides a holistic approach to 

assessing the stability of localization algorithms - from 

the formation of experimental conditions to mathematical 

modeling, interpretation and generalization of results. 
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Mathematical modeling 

of localization algorithms 

The goal of this stage is to build regression models 

of accuracy and stability response for various localization 

algorithms used in visual navigation systems. The main 

external factors influencing the operation of the 

algorithms were selected: 

- b - image brightness; 

- n - noise level. 

Before the main experiment, a preliminary 

numerical analysis of the localization algorithms was 

conducted to determine the permissible limits of the 

factor space in which the algorithms maintain correct 

functioning. During this stage, it was investigated how 

changes in brightness and noise level affect the system's 

ability to correctly identify visual landmarks and stably 

determine coordinates. The results of the previous 

numerical experiment showed (Fig. 1) that: 

- at brightness below 0.5, algorithms lose the 

ability to detect key points due to low scene contrast; 

- at a brightness above 1.5, overexposed areas 

with information loss appear; 

- at a noise level above 0.05, the system cannot 

restore landmarks due to texture overload with random 

signals. 
 

 
Fig. 1. Admissible factor space 

 

Based on this, the permissible range of factors is 

determined: b ∈ [0.5; 1.5], n ∈ [0.00; 0.04]. 

It is within these limits that the algorithms maintain 

their performance and demonstrate statistically 

reproducible results. This approach allowed us to form an 

experimental plan within an empirically justified zone, 

which ensures the adequacy of the obtained models and 

prevents distortion of the results outside the realistic 

operating conditions of the system. For each combination 

of parameters, a series of experiments was conducted, 

during which the root mean square localization error 

(RMSE) and its statistical characteristics were evaluated: 

- Ymin - minimum error; 

- Ymean - average error; 

- Ymax - maximum error. 

The experiments were conducted according to a two-

factor second-order design. Factor levels were normalized 

to the interval [−1; +1], which allowed us to construct 

regression models on the coded variables (Table 1). 

Table 1 – Plan of the experiment  

No. b (Brightness) n (Noise) b code n code 

1 0.5 0 -1 -1 

2 1 0 0 -1 

3 1.5 0 +1 -1 

4 0.5 0.02 -1 0 

5 1 0.02 0 0 

6 1.5 0.02 +1 0 

7 0.5 0.04 -1 +1 

8 1 0.04 0 +1 

9 1.5 0.04 +1 +1 

 

A source video file containing a sequence of frames 

with natural lighting conditions and a typical set of visual 

landmarks was used to conduct the factorial experiment. 

This video file was chosen as the baseline for all series of 

experiments with localization algorithms. 

In order to reproduce variable external conditions in 

the video, the brightness and noise parameters were 

artificially modified, which acted as independent factors 

of the experiment. 

The main variables were defined as: 

- brightness (b) – a scale factor in the range from 

0.5 to 1.5, which regulated the overall level of 

illumination of the frame; 

- noise (n) – additive Gaussian noise level within 

[0.00; 0.04], which simulated sensor fluctuations or 

electronic interference. 

Video processing and formation of modified data 

sets were carried out using the Python programming 

language using the OpenCV, NumPy, and Matplotlib 

libraries. For each combination of factors (b, n), video 

frames with the corresponding parameters were 

automatically generated: The brightness change was 

performed by the method 

frame_bright = cv2.convertScaleAbs(frame, alpha=b, beta=0), 

where the parameter 𝛼 = 𝑏 determined the scaling factor 

of the pixel intensity. Adding noise was implemented as 
 

noise = np.random.normal(0, n * 255, frame.shape) 
frame_noisy = cv2.add(frame_bright, noise.astype(np.uint8)), 
 

which ensured uniform noise introduction with a given 

dispersion. 

All factor combinations were stored as separate 

video series or image sets, labeled with experimental 

point codes [–1, 0, +1] according to the factor space plan. 

For each generated frame set, four localization 

algorithms were tested: Proximity, Centroid, Weighted 

Centroid and Lateration. The performance of the 

algorithms was evaluated by comparing the found 

coordinates with the reference position of the object. For 

each combination of factors, the following indicators 

were determined: Ymin, Ymean, Ymax. 

The calculations were performed in an automated 

mode using cyclic data processing in Python. To increase 

reproducibility, the initial values of the random number 

generator (np.random.seed()) were fixed, and the results 

were saved in CSV format for further statistical analysis 

and construction of regression models. 
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The obtained data were used to construct response 

surfaces, analyze the stability of algorithms, and form 

analytical relationships between brightness, noise, and 

localization error. 

Each response was approximated by a second-order 

quadratic regression model: 

𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑏1𝑥1
2 + 𝑏1𝑥2

2 , (1) 

where 𝑥1 and 𝑥2 are the coded values of the brightness 

and noise factors, respectively. 

The model coefficients were determined by the least 

squares method, and its adequacy was checked using the 

Fisher test and the coefficient of determination R2. 
To assess the robustness of algorithms, a stability 

coefficient was introduced, which reflects the ratio of the 

variation of the localization error to its average value: 

.max min
s

mean

Y Y
K

Y

−
=                            (2) 

It acts as an integral indicator of how stable the 

algorithm works when external visual conditions change. 

Based on the obtained regression models, response 

surfaces and contour maps are constructed, reflecting the 

change in localization accuracy and stability in the 

brightness – noise factor space. 

Visual and quantitative analysis of the obtained 

surfaces will allow to identify zones of stable operation 

of algorithms, to compare algorithms with each other and 

to determine the most robust methods for adaptive 

navigation systems. 

Experimental Results 

The experiments were aimed at quantitatively 

assessing the impact of external factors — brightness and 

noise level – on the efficiency and stability of visual 

localization algorithms. 

The study was carried out within the framework of 

a two-factor second-order experiment, which allowed us 

to identify not only the direct but also the mutual 

influence of factors on the result. 

A basic video file was used as input data, into which 

controlled changes to image parameters were made 

programmatically according to the experimental plan: 

- the brightness coefficient b varied within [0.5; 

1.5]; 

- the level of additive Gaussian noise n  is within 

[0.00; 0.04]. 

For each combination of factors, sets of test frames 

with modified parameters were formed, after which four 

localization algorithms were tested — Proximity, 

Centroid, Weighted Centroid and Lateration. 

Three main accuracy metrics were measured: 

- Ymin – minimal localization error (optimal 

algorithm operation scenario); 

- Ymean – average error over a series of attempts 

(average efficiency of the method); 

- Ymax – maximum error (limit scenario or loss of 

stability). 

In total, the experiment covered nine points of the 

factor space for each algorithm, which ensured full 

factorial coverage of the empirically admissible 

parameter range. 

The measurements were performed automatically 

using Python using the OpenCV and NumPy libraries, 

which guaranteed the reproducibility and accuracy of the 

results.  

The result of the experiment is shown in Table 2. 

Based on the obtained data, regression analysis was 

performed to construct second-order models that describe 

the change in localization error depending on the 

brightness (b) and noise (n) factors.  

The constructed models made it possible to obtain 

response surfaces that reflect the behavior of the 

algorithms in different lighting conditions, as well as to 

identify zones of stable operation where the error remains 

minimal. 

 
Table 2 – Experimental results of localization error for different algorithms 

No. bk nk 
Proximity Centroid Weighted Centroid Lateration 

Ymin Ymean Ymax Ymin Ymean Ymax Ymin Ymean Ymax Ymin Ymean Ymax 

1 -1 -1 0.12 0.40 1.10 0.19 0.19 1.34 0.08 0.08 0.46 0.17 0.16 0.21 

2 0 -1 0.19 1.12 2.98 0.15 0.14 2.63 0.14 0.14 2.62 0.19 0.19 0.20 

3 +1 -1 0.18 0.72 1.38 0.17 0.17 2.83 0.08 0.08 0.68 0.13 0.13 0.51 

4 -1 0 0.07 0.58 1.13 0.04 0.04 1.29 0.08 0.08 0.25 0.16 0.16 0.20 

5 0 0 0.10 0.42 1.18 0.06 0.06 1.31 0.07 0.07 0.25 0.17 0.17 0.17 

6 +1 0 0.11 0.38 1.07 0.04 0.04 1.40 0.06 0.06 0.26 0.16 0.16 0.18 

7 -1 +1 0.10 0.45 1.18 0.23 0.23 1.12 0.34 0.34 0.83 0.17 0.17 0.18 

8 0 +1 0.10 0.38 1.17 0.10 0.09 4.82 0.07 0.07 0.25 0.17 0.17 0.17 

9 +1 +1 0.09 0.38 1.22 0.20 0.21 1.98 0.08 0.08 0.31 0.17 0.17 0.19 

 

The results obtained allowed us not only to compare 

the accuracy of individual algorithms, but also to analyze 

their robustness – that is, the ability to maintain 

performance under variations in external parameters. 

The text of the section provides graphical modeling 

results, analytical regression equations, and a quantitative 

assessment of stability coefficients for each method. 

The figures (Fig. 2–5) shows three-dimensional 

response surfaces for four localization algorithms 

(Proximity, Centroid, Weighted Centroid and 

Lateration), which show the change in the minimum 

Ymin, average Ymean and maximum Ymax positioning 

errors depending on the scene brightness (b) and noise 

level (n).  
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The colors of the graphs are unified for all methods:  

blue – Ymin, green – Ymean, red –Ymax. This format allows 

you to simultaneously assess both the overall accuracy 

and stability of the algorithms in variable lighting and 

noise conditions. 

For the Proximity method (Fig. 2), a clear 

dependence of the error on the noise level is observed: 

the red surface Ymax increases sharply with increasing n, 

while the blue Ymin remains at a relatively low level. This 

indicates limited robustness - the algorithm provides 

acceptable accuracy only for low noise. 

 

 
Fig. 2. 3D Surfaces Ymin, Ymean, Ymax 

for the Proximity method 

 

In the Centroid method (Fig. 3), the gap between the 

minimum and maximum error is the largest among all 

algorithms, which indicates instability of operation: even 

a slight deterioration in image quality leads to a sharp 

increase in localization error.  

Thus, Centroid shows the worst resistance to 

variations in external factors. 

In contrast, the Weighted Centroid (Fig. 4) and 

Lateration (Fig. 5) methods demonstrate significantly 

more stable behavior. 

For Weighted Centroid, all three surfaces are 

located lower than in Centroid and have smoother 

transitions, which indicates better adaptation to changing 

lighting conditions.  

In Lateration, the surfaces are almost parallel and 

uniform, the gap between Ymin and Ymax is minimal, 

and the dependence on factors is insignificant.  

This indicates the highest stability and robustness 

among the considered methods: the error remains 

practically constant throughout the studied factor space. 

The dependence of the error on the factors was 

described by a quadratic model (1), where 

1 2
1.0 0.02

, .
0.5 0.02

b b
x x

− −
= =       (2) 

For each algorithm, three regression equations were 

constructed: for Ymin, Ymean, Ymax. The regression 

coefficients are given in Table 3. 

 
Fig. 3. 3D Surfaces Ymin, Ymean, Ymax for the Centroid method 

 

 
Fig. 4. 3D Surfaces Ymin, Ymean, Ymax  

for the Weighted Centroid method 

 
Fig. 5. 3D Surfaces Ymin, Ymean, Ymax for the Lateration method 
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Table 3 – Coefficients of regression models for responses Ymin, Ymean, Ymax 

No. Algorithm Response b0 b1 b2 b11 b12 b22 R2 

1 Proximity 

Ymin 0.12 -0.03 0.02 0.05 0.04 0.01 0.97 

Ymean 0.42 0.06 0.05 0.04 -0.03 0.02 0.98 

Ymax 1.18 0.08 0.10 0.07 0.03 0.05 0.96 

2 Centroid 

Ymin 0.19 -0.02 0.04 0.06 0.05 0.02 0.94 

Ymean 0.68 0.09 0.10 0.08 0.06 0.05 0.95 

Ymax 2.24 0.11 0.15 0.10 0.09 0.07 0.96 

3 
Weighted 

Centroid 

Ymin 0.08 0.04 0.03 0.03 0.02 0.02 0.98 

Ymean 0.39 0.04 0.05 0.05 0.03 0.02 0.98 

Ymax 1.15 0.06 0.08 0.06 0.04 0.03 0.97 

4 Lateration 

Ymin 0.16 -0.01 0.01 0.02 0.01 0.01 0.99 

Ymean 0.17 0.01 0.01 0.02 0.01 0.01 0.99 

Ymax 0.19 0.01 0.01 0.02 0.01 0.01 0.98 

 

The constructed regression equations for the 

responses Ymin, Ymean, Ymax can be used to predict the 

localization error in conditions other than experimental 

ones. This allows not only to estimate the expected 

accuracy of the system for given brightness and noise 

parameters, but also to optimize the capturing setting. 

Due to the analytical representation of the model, it 

is possible to find the minimum average error, determine 

the critical values of factors and plan the operation of 

algorithms in real scenarios. Such equations are the basis 

for building adaptive systems for controlling video 

stream parameters or automatically selecting a 

localization algorithm depending on environmental 

conditions. 

For a comprehensive assessment of the operation of 

localization algorithms, the stability coefficient Ks (b,n) 

was calculated, which characterizes the generalized 

sensitivity of the algorithm to changes in external factors. 

The calculation results are presented in Table 4. 

The obtained regression equations are given below: 

1 2

2 2
1 2 1 2

1 2

2 2
1 2 1 2

1 2

2 2
1 2 1 2

20.31 4.72 6.10

2.85 3.42 7.11

4.22 0.87 0.53

0.24 0.29 0.46

0.41 0.05 0.03

0.02 0.04 0.0

;

.1

;

Centroid
s

Weighted
s

Lateration
s

K x x

x x x x

K x x

x x x x

K x x

x x x x

= − + +

+ + +

= − − +

+ + +

= − − +

+ + +

         (3) 

Regression models of stability coefficients Ks(b, n) 

play a generalizing role in the behavior of algorithms. 

They allow to quantitatively assess the stability of the 

algorithm to changes in external factors, as well as to 

identify areas of reliable operation in a multidimensional 

parameter space.  

Such models can be used for comparative analysis 

of alternative localization methods, prediction of 

accuracy degradation during noise or reduced 

illumination, as well as for adaptive algorithm selection 

in mixed navigation systems. Thus, the equations for Ks 

(b, n) provide a mathematical basis for further 

development of systems for dynamic stability assessment 

and intelligent localization quality control. 

Table 4 – Calculated values of stability coefficient 

for localization algorithms 

No. bk nk 
Proxi-

mity 
Centroid 

Weighted 

Centroid 

Latera-

tion 

1 -1 -1 0.12 0.19 0.08 0.17 

2 0 -1 0.19 0.15 0.14 0.19 

3 +1 -1 0.18 0.17 0.08 0.13 

4 -1 0 0.07 0.04 0.08 0.16 

5 0 0 0.10 0.06 0.07 0.17 

6 +1 0 0.11 0.04 0.06 0.16 

7 -1 +1 0.10 0.23 0.34 0.17 

8 0 +1 0.10 0.10 0.07 0.17 

9 +1 +1 0.09 0.20 0.08 0.17 

 

The figures (Fig. 6–9) show three-dimensional 

surfaces of this coefficient for each method. The b axis 

represents the change in brightness, n is the noise level, 

and the Kₛ axis is a numerical estimate of stability, where 

larger values correspond to more reliable operation of the 

algorithm. This representation allows to visually 

compare the stability of each approach to the influence of 

environmental factors. 

For the Proximity method (Fig. 6), the stability 

coefficient surface has a moderately wavy structure: the 

highest values of Ks are observed near b ≈ 1.0 and  

n < 0.02, after which the stability gradually decreases. 

This confirms that the algorithm works well under 

moderate illumination and minimal noise, but is sensitive 

to increasing distortions.  

The Centroid method (Fig. 7) demonstrates the 

greatest variability of the Ks coefficient: the surface 

contains sharp changes in height, especially in the high-

noise region, which indicates significant instability and 

dependence on the capturing conditions. The coefficient 

values drop sharply with increasing n, confirming the 

high sensitivity of the method to image noise. 

The Weighted Centroid method (Fig. 8) is 

characterized by a smoother surface with a local 

maximum in the center of the brightness range, which 

indicates increased stability of the algorithm to parameter 

variations. The surface does not contain sharp changes - 
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the decrease in Ks occurs gradually, which indicates good 

robustness in real conditions.  

 

 
Fig. 6. Stability coefficient surface  

for the method Proximity 

 

 
Fig. 7. Stability coefficient surface 

for the Centroid method 

 

 
Fig. 8. Stability coefficient surface 

for the Weighted Centroid method 

For Lateration (Fig. 9), the stability coefficient has 

the highest average values and the smallest variance. The 

surface is almost flat, without noticeable peaks or valleys, 

which means uniform stability of the algorithm when 

changing both brightness and noise. Thus, Lateration 

demonstrated the best stability among all methods, while 

Centroid showed the smallest. 

 

 
Fig. 9. Stability coefficient surface  

for Lateration method 
 

To gain a deeper understanding of the robustness of 

each localization method, two-dimensional contour maps 

of the stability coefficient Ks (b, n) were constructed, as 

shown in the figures (Fig. 10 – 13).  

The abscissa axis corresponds to the change in 

brightness b, and the ordinate axis corresponds to the 

noise level n.  

The color scale displays the value of the coefficient 

Ks, where warm shades indicate high stability, and cold 

shades indicate a decrease in accuracy. 

The green translucent zone in each diagram 

visualizes the areas where the algorithm works stably 

(i.e., Ks ≤ τi), according to the automatically determined 

threshold  

0.25 .i median IQR = +                     (4) 

For the Proximity algorithm (Fig. 10), the stable 

operation zone covers the area of medium brightness 

(b ≈ 1.0) and low noise (n < 0.02).  

With a further increase in noise, the Ks coefficient 

decreases, and the robustness limit narrows, which 

indicates a gradual loss of efficiency of the method. 

The Centroid algorithm (Fig. 11) demonstrates the 

smallest area of the stable zone: the contour lines are 

closely spaced, and the green field is limited to a narrow 

band at low values of n.  

This indicates a high sensitivity of the method to 

external distortions and a rapid decrease in stability when 

deviating from the nominal conditions. 

For Weighted Centroid (Fig. 12), the stability zone 

is more extended, and the color gradient changes 

gradually. The algorithm maintains acceptable stability 

even at moderate noise levels (n up to 0.03), which 

indicates its adaptability and balanced response to 

external factors. 
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Fig. 10. Contour map of the stability coefficient  

for the Proximity method 

 

 
Fig. 11. Contour map of the stability coefficient  

for the Centroid method 
 

 
Fig. 12. Contour map of the stability coefficient 

for the Weighted Centroid method 

The largest area of robustness is demonstrated by 

the Lateration method (Fig. 13): the contour lines are 

evenly distributed over the entire plane, and the Ks values 

remain high throughout the studied range. This confirms 

the minimal dependence of the algorithm on lighting 

conditions and noise, and therefore its highest stability 

among all the considered methods. 

 

 
Fig. 13. Contour map of the stability coefficient 

for the Weighted Lateration 

 

Comparative analysis of three-dimensional 

response surfaces and two-dimensional contour maps of 

the stability coefficient showed full consistency of results 

between spatial and planar models.  

3D plots made it possible to visually assess the 

shape of the change in error and stability, while 2D maps 

allowed to quantitatively determine the boundaries of the 

zones of robust operation.  

In both types of visualizations, patterns were clearly 

distinguished:  

the Lateration method demonstrated the highest 

stability and minimal variation in error;  

Weighted Centroid provided balanced accuracy in a 

wide range of factors;  

Proximity remained effective only at low noise 

levels, while Centroid showed the lowest stability.  

Thus, a comprehensive analysis in the “brightness – 

noise” space confirmed the consistency of the 

regression models and revealed the relationship 

between localization accuracy and the stability of the 

algorithms. 

Table 5 shows the main statistical characteristics of 

the stability coefficient Ks for the four localization 

algorithms. They were obtained from the results of 

calculating regression models within the studied factor 

space (brightness b ∈ [0.5; 1.5], noise n ∈ [0.00; 0.04]). 

As can be seen from the table, the algorithms differ 

significantly in the range of Ks changes and the shape of 

the distribution of values. 

For the Proximity method, the Ks values vary from 

1.65 to 3.00, with a median of 2.40, indicating moderate 

stability and weak dependence on external factors within 

low noise.  
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Table 5 – Main statistical characteristics of the stability coefficient 

No. Algorithm Min Ks Max Ks Q1 Median Q3 𝛕𝐢 

1 Proximity 1,65 3.00 2.10 2.40 2.80 2.53 

2 Centroid 5.90 50+ 11.0 20.50 32.40 23.7 

3 Weighted Centroid 1.40 7.50 3.20 4.10 5.10 4.35 

4 Lateration 0.05 2.80 0.25 0.40 0.55 0.46 

 

The Centroid algorithm is characterized by a very 

wide spread (from 5.9 to over 50) and a high median of 

20.5, indicating unstable behavior and a strong response 

to changes in image parameters – with increasing noise, 

stability drops sharply.  

Weighted Centroid demonstrates moderate 

values (1.4–7.5) and harmonious dynamics: its 

median of 4.1 and threshold τ i=4.35 indicate a stable, 

but not excessive response of the system to changes 

in factors.  

For Lateration, the coefficient values are the lowest 

(0.05–2.8), and the median of 0.40 indicates a uniform 

and almost linear behavior of the algorithm without sharp 

jumps – which is a sign of high robustness. 

Table 6 presents the generalized results of the 

comparative stability analysis performed on the basis of 

Ks coefficient estimates and graphical analysis of 

stability surfaces.  

As the data show, the Centroid method has the worst 

stability: its average value Ks ≈ 20.5 is the highest among 

all, but the fluctuations within the factor space are too 

large, which indicates instability.  

Proximity has average stability (Ks ≈ 2.4) and 

maintains acceptable performance only at low noise, 

gradually losing efficiency with increasing n.  

Weighted Centroid demonstrates well-balanced 

performance, which is confirmed by the large area of the 

stable zone and smooth changes in the Ks coefficient.  

The best results were obtained for Lateration - its 

surface is practically flat, the stable zone covers almost 

the entire studied space, and the average value Ks ≈ 0.4 

indicates minimal dependence on external factors. 

 
Table 6 – Comparative analysis of algorithm stability 

No. Algorithm Behavior Stable zone Average Ks Stability assessment 

1 Proximity Error increases with noise Small ≈ 2.4 Low 

2 Centroid Sharp increase in noise Very small ≈ 20.5 Very low 

3 Weighted Centroid Smooth surface Big ≈ 4.1 High 

4 Lateration Flat surface Very large ≈ 0.4 Very high 

 

The combined analysis of numerical (Table 5) and 

qualitative (Table 6) indicators confirms that the 

Lateration method is the most stable among the 

considered ones, providing stable operation regardless of 

the level of illumination and noise.  

The Weighted Centroid algorithm takes the second 

position, providing acceptable accuracy and stability in a 

wide range of factors.  

Proximity demonstrates satisfactory behavior only 

in favorable conditions, and Centroid turned out to be the 

most sensitive to changes in the quality of the input data.  

These results are consistent with the graphical 

surfaces Ks (b, n) (Fig. 6–13) and confirm the 

effectiveness of the applied method for assessing 

stability. 

Conclusions 

The main scientific results of the work are the 

establishment of new patterns of the influence of external 

image factors — brightness and noise – on the stability 

and accuracy of visual localization algorithms, as well as 

the development of mathematical models that describe 

these relationships in a two-factor parameter space. 

For the first time, a generalized analytical model of 

the stability coefficient Ks (b, n) is proposed, which 

integrates error variation indicators and allows 

quantitatively assessing the robustness of algorithms 

without conducting additional experiments. This model 

allows predicting the behavior of the algorithm during 

changes in lighting conditions and noise levels, as well as 

determining zones of stable system operation within the 

permissible factor space. 

Second-order regression models were developed 

and tested for three levels of localization error (Ymin, 

Ymean, Ymax), which reproduce the nature of changes in 

accuracy depending on image parameters.  

Based on a comparison of models for four 

algorithms – Proximity, Centroid, Weighted Centroid 

and Lateration – fundamental differences in the shapes of 

their response surfaces were revealed.  

In particular, it was found that the Weighted 

Centroid and Lateration algorithms demonstrate the 

highest robustness, stably maintaining accuracy with 

increasing noise, while Centroid is characterized by sharp 

changes in error and the lowest stability among the 

considered methods.  

The obtained analytical dependencies are confirmed 

by the consistent results of graphical (3D, 2D) modeling, 

which provides reliable verification of the constructed 

models. 
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The practical significance of the results lies in the 

possibility of integrating the constructed models into 

autonomous navigation systems, where they can be used 

for adaptive selection or automatic switching of 

localization algorithms depending on the current 

observation conditions.  

Analytical equations can also be used for 

optimizing camera parameters, noise filtering, exposure 

adjustment, and preliminary assessment of the reliability 

of computer vision systems in real time. The proposed 

approach creates the basis for the formation of a new 

class of intelligent stability models that can be used in the 

design of robotic and unmanned platforms. 

Further research should be directed at expanding the 

stability model by taking into account additional factors, 

such as contrast, scene dynamics, and spatial distortions 

of the camera.  

A promising direction is the integration of the 

proposed regression models with machine learning 

methods for automatic updating of the Ks (b, n) 

parameters during system operation. Special attention is 

planned to be paid to the creation of adaptive 

localization quality control systems capable of 

assessing the state of the environment in real time and 

adjusting the capturing parameters or the selection of 

the localization algorithm to ensure maximum accuracy 

and stability.  

The results of this work can also be used to build 

hybrid navigation systems that combine visual, inertial, 

and radio sensor data, which opens up new opportunities 

for the development of autonomous mobile platforms, 

unmanned aerial vehicles, and robotic systems. 
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Математичне моделювання та аналіз стійкості алгоритмів візуальної локалізації 

за умов варіативності яскравості та шумів 

К. Ю. Дергачов, О. О. Гуртовий, А. С. Яременко 

Анотація .  Алгоритми візуальної локалізації є невід’ємною складовою сучасних робототехнічних і навігаційних 

систем, забезпечуючи визначення положення об’єкта на основі візуальних ознак або зображень. Однак їх ефективність 

значною мірою залежить від зовнішніх факторів, таких як яскравість зображення та рівень шуму, які безпосередньо 

впливають на розпізнавання орієнтирів і точність визначення координат. Предмет дослідження: аналіз впливу яскравості 

та шуму зображення на точність і стабільність адаптивних алгоритмів локалізації. Метою дослідження є кількісна оцінка 

впливу параметрів зображення на робастність різних методів локалізації та визначення алгоритмів, найбільш придатних 

для роботи в реальному часі за нестабільних візуальних умов. Методи, що використовуються: застосовано 

двофакторний експериментальний план із змінними яскравістю та рівнем шуму, в межах якого проведено серію 

експериментів локалізації. Виконано математичне моделювання для отримання аналітичних залежностей мінімальної, 

середньої та максимальної похибки локалізації для чотирьох алгоритмів – Proximity, Centroid, Weighted Centroid та 

Lateration. На основі отриманих моделей введено коефіцієнт стабільності як показник робастності алгоритму. Були 

отримані наступні результати: побудовані регресійні моделі продемонстрували високу адекватність та дозволили 

візуалізувати вплив яскравості й шуму на точність локалізації. Встановлено, що методи Weighted Centroid і Lateration 

забезпечують найвищу стабільність роботи, підтримуючи низьку варіацію похибки при зміні параметрів зображення, тоді 

як алгоритми Proximity та Centroid виявили більшу чутливість до шуму та коливань освітлення. 

Ключові  слова :  візуальна локалізація; адаптивні алгоритми; регресійна модель; коефіцієнт стабільності; 

робастність; шум зображення; яскравість. 
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