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MATHEMATICAL MODELING AND STABILITY ANALYSIS OF VISUAL
LOCALIZATION ALGORITHMS UNDER BRIGHTNESS AND NOISE VARIATIONS

Abstract. Visual localization algorithms are an integral part of modern robotics and navigation systems, providing object
position determination based on visual features or images. However, their effectiveness is largely dependent on external
factors, such as image brightness and noise level, which directly affect landmark recognition and coordinate accuracy.
Subject of research: analysis of the impact of image brightness and noise on the accuracy and stability of adaptive
localization algorithms. The purpose of the work is to quantify the impact of image parameters on the robustness of various
localization methods and to identify algorithms most suitable for real-time operation under unstable visual conditions.
Research methods: A two-factor experimental design with brightness and noise level variables was applied, within which a
series of localization experiments were conducted. Mathematical modeling was performed to obtain analytical dependences
of the minimum, average, and maximum localization errors for four algorithms — Proximity, Centroid, Weighted Centroid,
and Lateration. Based on the obtained models, a stability coefficient was introduced as an indicator of the algorithm's
robustness. Results: the constructed regression models demonstrated high adequacy and allowed us to visualize the influence
of brightness and noise on localization accuracy. It was found that the Weighted Centroid and Lateration methods provide
the highest stability of operation, maintaining low error variation when changing image parameters, while the Proximity and
Centroid algorithms showed greater sensitivity to noise and lighting fluctuations.
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Introduction

Visual navigation systems are actively used in
autonomous robotic platforms, unmanned aerial vehicles,
object tracking systems, augmented reality, and industrial
vision. They allow determining the position and
orientation of an object in space based on the analysis of
visual landmarks, which makes them especially
important for tasks where satellite navigation signals are
absent or unstable. However, the key problem of such
systems remains the stability of localization when
external environmental factors change. The accuracy and
reliability of determining coordinates are significantly
affected by lighting conditions, scene contrast, sensor
noise, image artifacts, as well as changes in the geometry
or structure of landmarks. In real operating conditions,
these factors change dynamically — for example, during
the flight of a drone when moving from a lit area to a
shadow, or when a mobile robot moves indoors with
different lighting and glare.

Most existing algorithms provide high positioning
accuracy in laboratory or controlled conditions, but lose
their effectiveness when brightness changes or noise
appears. This is due to the fact that traditional approaches
often do not take into account nonlinear relationships
between image parameters and localization error
characteristics. As a result, even small variations in
illumination can lead to noticeable shifts in the
coordinates of certain landmarks, and the appearance of
noise can lead to a decrease in the accuracy of detecting
key points and correspondences between frames.
Therefore, a current task is to quantitatively assess the
robustness of localization algorithms and develop
analytical models that allow describing the behavior of
the system when external factors change. This approach
provides the possibility of analytically predicting
localization error, optimizing algorithm parameters, and
increasing the stability of visual systems in real
conditions. Special attention should be paid to creating a

universal stability indicator that would allow comparing
different algorithms with each other regardless of the
experimental conditions. The introduction of the stability
coefficient as an integral criterion makes it possible to
assess not only the average accuracy, but also the
variation of the error in response to changes in
environmental parameters, which is important for the
design of adaptive and autonomous navigation systems.

Literature analysis. Modern visual navigation
systems are actively developing in the areas of
autonomous transport, unmanned aerial vehicles and
robotics. They are based on algorithms for image
processing, landmark recognition and spatial position
reproduction of an object. A comprehensive review of
approaches to building intelligent transport systems is
given in [1], which emphasizes the role of visual sensors
in autonomous control systems.

The problem of the influence of landmark
coordinate errors on the accuracy of visual localization is
considered in detail in [2], where both systematic and
random errors are analyzed. Modeling of visual guidance
systems of unmanned aerial vehicles is described in [3],
which allows us to reproduce various flight scenarios and
investigate the robustness of algorithms.

A review of modern visual localization methods for
autonomous navigation systems is given in [4], which
classifies approaches by sensor types and level of
integration. In [5], navigation algorithms for unmanned
aerial vehicles are considered and the main factors of loss
of accuracy are identified, including changing lighting
and noise. Methods of simultaneous localization and
mapping (SLAM) in variable lighting conditions are
described in [6], and improvements to localization
algorithms based on data filtering are given in [7]. Works
[8], [9] are devoted to the construction of lightweight
semantic maps and hybrid positioning based on the
combination of visual and radio frequency sensors.
Research [10] demonstrates the effectiveness of such
approaches for underwater autonomous systems.
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In [11-14], the use of deep neural networks
(YOLOV5, DeepSORT, SSD) to improve the accuracy of
visual landmark recognition and tracking stability is
considered. In particular, it is shown that the positioning
accuracy depends on the lighting parameters and the
contrast level of the scene.

Algorithms for automatic landing of UAVs using
computer vision are presented in [15], and methods for
assessing image quality and determining target motion
parameters are presented in [16, 17]. An adaptive approach
to visual positioning of UAVSs, which takes into account
changes in lighting conditions, is described in [18].

In [19], stochastic optimization methods that can be
used to improve the stability of navigation systems are
considered. Image preprocessing to improve recognition
quality is presented in [20], where the effect of filtering
and contrasting on the efficiency of algorithms is shown.

In [21], the use of a full-factor experiment for
optimizing signal processing parameters is presented,
which is consistent with the methodology of this work.
The study [22] confirms the importance of the stability of
visual sensors in variable lighting conditions. The
methods of sensor integration and full-factor analysis are
discussed in detail in [23], where the influence of the
choice of factors on the accuracy of the models is shown.
Similar experimental approaches have been applied in
engineering problems of optimizing technological
processes [24, 25], which demonstrates the versatility of
the chosen planning method.

The review of sources shows that, despite the active
development of visual localization methods, the issues of
assessing the stability of algorithms when changing
brightness and image noise remain insufficiently
addressed. This justifies the relevance of the research
aimed at building regression models of stability and
determining the zones of effective operation of visual
localization algorithms.

Problem statement and research objective. The
main problem considered in the study is the instability of
visual localization algorithms under conditions of changes
in illumination and image noise. In real operating
conditions, such algorithms demonstrate a significant
deterioration in the accuracy of determining coordinates
when external factors fluctuate - brightness, scene contrast,
or sensor noise. This instability limits the reliability of
visual navigation systems in a dynamic environment and
complicates their integration into autonomous robotic
platforms and unmanned aerial vehicles.

Most existing approaches are focused primarily on
improving the average localization accuracy, without
taking into account the variation of results and the
robustness of algorithms when changing image
parameters. Therefore, there is a need for quantitative and
analytical assessment of the impact of brightness and
noise on the stability of localization algorithms.

The purpose of the study is to build and test
mathematical models that describe the change in
localization error depending on the brightness and noise
level of the image, as well as introduce a stability
coefficient that allows for a comparative assessment of
the effectiveness of different algorithms. The resulting
models are designed to determine the areas of stable

operation and identify those localization methods that are
most robust and suitable for adaptive visual navigation
systems capable of operating in a changing environment.

Research methodology

The research methodology is based on a
combination of experimental modeling, statistical data
analysis, and regression modeling to evaluate the
effectiveness and robustness of visual localization
algorithms under conditions of changing image
brightness and noise levels.

At the initial stage, input data is generated, which
includes image parameters — brightness (b) and noise
level (n). These factors determine the conditions under
which localization occurs and affect the stability of the
results.

Next, a preliminary numerical analysis is performed
to determine the allowable factor space within which the
visual localization algorithms remain operational. At this
stage, extreme values of parameters that lead to loss of
contrast or noise overload are analyzed, and realistic
limits for changing the factors are determined.

After that, the experiment is planned - a second-
order two-factor design is constructed, which allows us
to study not only the separate effects of brightness and
noise, but also the effect of their interaction. This
approach provides complete information for further
mathematical modeling.

At the stage of conducting experiments, a series of
localizations are performed for each combination of
factors using four algorithms: Proximity, Centroid,
Weighted Centroid and Lateration. Based on the results,
the minimum, average and maximum localization errors
(Ymin, Ymean, Ymax) are calculated, reflecting the behavior
of the system under different conditions.

The next step is regression modeling, within which
analytical relationships between localization errors and
image parameters are built. The use of second-order
models allows us to take into account the nonlinearity of
processes and the relationships between factors.

After building the models, the stability coefficient
is calculated, which is used as an integral indicator of the
robustness of the algorithms. This coefficient
characterizes the relative change in the error within the
experimental space and allows us to determine how
stably the algorithm responds to external disturbances.

The results are then presented in the form of a
visualization, where response surfaces and contour maps
are constructed, illustrating the behavior of error and
stability depending on the factors. This approach
provides clarity of analysis and allows easy identification
of areas of stable performance.

The final stage is a comparative analysis and
drawing conclusions, where the results of all experiments
are summarized, the zones of stable operation of
algorithms are determined, and the methods that
demonstrate the highest robustness and suitability for use
in adaptive visual navigation systems are identified.

Thus, the research provides a holistic approach to
assessing the stability of localization algorithms - from
the formation of experimental conditions to mathematical
modeling, interpretation and generalization of results.
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Mathematical modeling
of localization algorithms

The goal of this stage is to build regression models
of accuracy and stability response for various localization
algorithms used in visual navigation systems. The main
external factors influencing the operation of the
algorithms were selected:

- b - image brightness;

- n-noise level.

Before the main experiment, a preliminary
numerical analysis of the localization algorithms was
conducted to determine the permissible limits of the
factor space in which the algorithms maintain correct
functioning. During this stage, it was investigated how
changes in brightness and noise level affect the system's
ability to correctly identify visual landmarks and stably
determine coordinates. The results of the previous
numerical experiment showed (Fig. 1) that:

- at brightness below 0.5, algorithms lose the
ability to detect key points due to low scene contrast;

- at a brightness above 1.5, overexposed areas
with information loss appear;

- at a noise level above 0.05, the system cannot
restore landmarks due to texture overload with random
signals.
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Fig. 1. Admissible factor space

Based on this, the permissible range of factors is
determined: b € [0.5; 1.5], n € [0.00; 0.04].

It is within these limits that the algorithms maintain
their performance and demonstrate statistically
reproducible results. This approach allowed us to form an
experimental plan within an empirically justified zone,
which ensures the adequacy of the obtained models and
prevents distortion of the results outside the realistic
operating conditions of the system. For each combination
of parameters, a series of experiments was conducted,
during which the root mean square localization error
(RMSE) and its statistical characteristics were evaluated:

- Ymin - minimum error;

- Ymean - @Verage error,

- Ymax - maximum error.

The experiments were conducted according to a two-
factor second-order design. Factor levels were normalized
to the interval [-1; +1], which allowed us to construct
regression models on the coded variables (Table 1).

Table 1 — Plan of the experiment

No. b (Brightness) n (Noise) | bcode | ncode

1 0.5 0 -1 -1
2 1 0 0 -1
3 15 0 +1 -1
4 0.5 0.02 -1

5 1 0.02 0

6 15 0.02 +1

7 0.5 0.04 -1 +1
8 1 0.04 0 +1
9 15 0.04 +1 +1

A source video file containing a sequence of frames
with natural lighting conditions and a typical set of visual
landmarks was used to conduct the factorial experiment.
This video file was chosen as the baseline for all series of
experiments with localization algorithms.

In order to reproduce variable external conditions in
the video, the brightness and noise parameters were
artificially modified, which acted as independent factors
of the experiment.

The main variables were defined as:

- brightness (b) — a scale factor in the range from
0.5 to 1.5, which regulated the overall level of
illumination of the frame;

- noise (n) — additive Gaussian noise level within
[0.00; 0.04], which simulated sensor fluctuations or
electronic interference.

Video processing and formation of modified data
sets were carried out using the Python programming
language using the OpenCV, NumPy, and Matplotlib
libraries. For each combination of factors (b, n), video
frames with the corresponding parameters were
automatically generated: The brightness change was
performed by the method

frame_bright = cv2.convertScaleAbs(frame, alpha=b, beta=0),

where the parameter @« = b determined the scaling factor
of the pixel intensity. Adding noise was implemented as

noise = np.random.normal(0, n * 255, frame.shape)
frame_noisy = cv2.add(frame_bright, noise.astype(np.uint8)),

which ensured uniform noise introduction with a given
dispersion.

All factor combinations were stored as separate
video series or image sets, labeled with experimental
point codes [-1, 0, +1] according to the factor space plan.

For each generated frame set, four localization
algorithms were tested: Proximity, Centroid, Weighted
Centroid and Lateration. The performance of the
algorithms was evaluated by comparing the found
coordinates with the reference position of the object. For
each combination of factors, the following indicators
were determined: Ymin, Ymean, Ymax-

The calculations were performed in an automated
mode using cyclic data processing in Python. To increase
reproducibility, the initial values of the random number
generator (np.random.seed()) were fixed, and the results
were saved in CSV format for further statistical analysis
and construction of regression models.
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The obtained data were used to construct response
surfaces, analyze the stability of algorithms, and form
analytical relationships between brightness, noise, and
localization error.

Each response was approximated by a second-order
quadratic regression model:

Y = bo + b1X1 + bzXZ + b12x1x2 + ble + b1x22 ) (1)

where x; and x, are the coded values of the brightness
and noise factors, respectively.

The model coefficients were determined by the least
squares method, and its adequacy was checked using the
Fisher test and the coefficient of determination R2.

To assess the robustness of algorithms, a stability
coefficient was introduced, which reflects the ratio of the
variation of the localization error to its average value:

Yimax — Ymi
K = man min )
mean

It acts as an integral indicator of how stable the
algorithm works when external visual conditions change.

Based on the obtained regression models, response
surfaces and contour maps are constructed, reflecting the
change in localization accuracy and stability in the
brightness — noise factor space.

Visual and quantitative analysis of the obtained
surfaces will allow to identify zones of stable operation
of algorithms, to compare algorithms with each other and
to determine the most robust methods for adaptive
navigation systems.

Experimental Results

The experiments were aimed at quantitatively
assessing the impact of external factors — brightness and
noise level — on the efficiency and stability of visual
localization algorithms.

The study was carried out within the framework of
a two-factor second-order experiment, which allowed us

to identify not only the direct but also the mutual
influence of factors on the result.

A basic video file was used as input data, into which
controlled changes to image parameters were made
programmatically according to the experimental plan:

- the brightness coefficient b varied within [0.5;
1.5];

- the level of additive Gaussian noise n is within
[0.00; 0.04].

For each combination of factors, sets of test frames
with modified parameters were formed, after which four
localization algorithms were tested — Proximity,
Centroid, Weighted Centroid and Lateration.

Three main accuracy metrics were measured:

- Ymin — minimal localization error (optimal
algorithm operation scenario);

- Ymean — average error over a series of attempts
(average efficiency of the method);

- Ymax — maximum error (limit scenario or loss of
stability).

In total, the experiment covered nine points of the
factor space for each algorithm, which ensured full
factorial coverage of the empirically admissible
parameter range.

The measurements were performed automatically
using Python using the OpenCV and NumPy libraries,
which guaranteed the reproducibility and accuracy of the
results.

The result of the experiment is shown in Table 2.

Based on the obtained data, regression analysis was
performed to construct second-order models that describe
the change in localization error depending on the
brightness (b) and noise (n) factors.

The constructed models made it possible to obtain
response surfaces that reflect the behavior of the
algorithms in different lighting conditions, as well as to
identify zones of stable operation where the error remains
minimal.

Table 2 — Experimental results of localization error for different algorithms

b Proximity Centroid Weighted Centroid Lateration
NO| B TN T Yo | Yo | Yoin | Yoo | Yo | Yo | Yoo | Yow | Yo | Yoew | Yoo
1 -1 -1 | 012 | 040 | 110|019 | 0.19 | 1.34 | 0.08 0.08 | 046 | 0.17 0.16 | 0.21
2 0 -1 | 019 | 112 | 298| 015 | 014 | 263 | 0.14 014 | 262 | 0.19 0.19 | 0.20
3 +1 -1 | 018 | 072 | 138 | 0.17 | 0.17 | 2.83 | 0.08 0.08 | 0.68 | 0.13 0.13 | 051
4 -1 0 007 | 058 | 1.13 | 0.04 | 0.04 | 1.29 | 0.08 0.08 | 0.25 | 0.16 0.16 | 0.20
5 0 0 010 | 042 | 118 | 0.06 | 0.06 | 1.31 | 0.07 0.07 | 0.25 | 0.17 0.17 | 0.17
6 +1 0 011 | 038 | 1.07 | 0.04 | 0.04 | 1.40 | 0.06 0.06 | 0.26 | 0.16 0.16 | 0.18
7 -1 +1 | 010 | 045 | 118 | 023 | 0.23 | 1.12 | 0.34 034 | 083 | 0.17 0.17 | 0.18
8 0 +1 | 010 | 038 | 1.17 | 0.10 | 0.09 | 482 | 0.07 0.07 | 0.25 | 0.17 0.17 | 0.17
9 +1 +1 | 009 | 038 | 122|020 | 021 | 1.98 | 0.08 0.08 | 0.31 | 0.17 0.17 | 0.19

The results obtained allowed us not only to compare
the accuracy of individual algorithms, but also to analyze
their robustness — that is, the ability to maintain
performance under variations in external parameters.

The text of the section provides graphical modeling
results, analytical regression equations, and a quantitative
assessment of stability coefficients for each method.

The figures (Fig. 2-5) shows three-dimensional
response surfaces for four localization algorithms
(Proximity, Centroid, Weighted Centroid and
Lateration), which show the change in the minimum
Ymin, average Ymean and maximum Ymax positioning
errors depending on the scene brightness (b) and noise
level (n).
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The colors of the graphs are unified for all methods:
blue — Ymin, green — Ymean, red —Ymax. This format allows
you to simultaneously assess both the overall accuracy
and stability of the algorithms in variable lighting and
noise conditions.

For the Proximity method (Fig. 2), a clear
dependence of the error on the noise level is observed:
the red surface Ymax increases sharply with increasing n,
while the blue Ymin remains at a relatively low level. This
indicates limited robustness - the algorithm provides
acceptable accuracy only for low noise.
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Fig. 2. 3D Surfaces Ymin, Ymean, Ymax
for the Proximity method

In the Centroid method (Fig. 3), the gap between the
minimum and maximum error is the largest among all
algorithms, which indicates instability of operation: even
a slight deterioration in image quality leads to a sharp
increase in localization error.

Thus, Centroid shows the worst resistance to
variations in external factors.

In contrast, the Weighted Centroid (Fig. 4) and
Lateration (Fig. 5) methods demonstrate significantly
more stable behavior.

For Weighted Centroid, all three surfaces are
located lower than in Centroid and have smoother
transitions, which indicates better adaptation to changing
lighting conditions.

In Lateration, the surfaces are almost parallel and
uniform, the gap between Ymin and Ymax is minimal,
and the dependence on factors is insignificant.

This indicates the highest stability and robustness
among the considered methods: the error remains
practically constant throughout the studied factor space.

The dependence of the error on the factors was
described by a quadratic model (1), where

_b-10 _  b-002

X = , Xy =
705 2T 002

For each algorithm, three regression equations were
constructed: for Ymin, Ymean, Ymax. The regression

coefficients are given in Table 3.
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Fig. 3. 3D Surfaces Ymin, Ymean, Ymax for the Centroid method
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Table 3 — Coefficients of regression models for responses Ymin, Ymean, Ymax

No. | Algorithm | Response bo b1 b2 b11 b12 b22 R?
Vi 0.12 -0.03 0.02 0.05 0.04 0.01 0.97

1 | Proximity Ymean 0.42 0.06 0.05 0.04 -0.03 0.02 0.98
Yinax 1.18 0.08 0.10 0.07 0.03 0.05 0.96

Vi 0.19 -0.02 0.04 0.06 0.05 0.02 0.94

2 | Centroid Y mean 0.68 0.09 0.10 0.08 0.06 0.05 0.95
Yimax 2.24 0.11 0.15 0.10 0.09 0.07 0.96

_ Vi 0.08 0.04 0.03 0.03 0.02 0.02 0.98

3 Vg:r:%rh(ffg Yinean 0.39 0.04 0.05 0.05 0.03 0.02 0.98
Yimax 1.15 0.06 0.08 0.06 0.04 0.03 0.97

Vi 0.16 -0.01 0.01 0.02 0.01 0.01 0.99

4 | Lateration Y mean 0.17 0.01 0.01 0.02 0.01 0.01 0.99
Yinax 0.19 0.01 0.01 0.02 0.01 0.01 0.98

The constructed regression equations for the
responses Ymin, Ymean, Ymax Can be used to predict the
localization error in conditions other than experimental
ones. This allows not only to estimate the expected
accuracy of the system for given brightness and noise
parameters, but also to optimize the capturing setting.

Due to the analytical representation of the model, it
is possible to find the minimum average error, determine
the critical values of factors and plan the operation of
algorithms in real scenarios. Such equations are the basis
for building adaptive systems for controlling video
stream parameters or automatically selecting a
localization algorithm depending on environmental
conditions.

For a comprehensive assessment of the operation of
localization algorithms, the stability coefficient Ks (b,n)
was calculated, which characterizes the generalized
sensitivity of the algorithm to changes in external factors.
The calculation results are presented in Table 4.

The obtained regression equations are given below:

KEeNtroid _ 20.31-4.72x +6.10%, +
+2.85% X9 + 3.42x12 + 7.11x§;
KWeighted _ 4 22 0.87x, —0.53x, +
+0.24%,%, +0.29%7 +0.46x3;
K Lateration _ g 410.05x —0.03x, +
+0.02x1%, +0.04x7 +0.01x2.

©)

Regression models of stability coefficients Ks(b, n)
play a generalizing role in the behavior of algorithms.
They allow to quantitatively assess the stability of the
algorithm to changes in external factors, as well as to
identify areas of reliable operation in a multidimensional
parameter space.

Such models can be used for comparative analysis
of alternative localization methods, prediction of
accuracy degradation during noise or reduced
illumination, as well as for adaptive algorithm selection
in mixed navigation systems. Thus, the equations for Ks
(b, n) provide a mathematical basis for further
development of systems for dynamic stability assessment
and intelligent localization quality control.

Table 4 — Calculated values of stability coefficient
for localization algorithms

No.| bk | nk Pnl;?;(; Centroid \(/:V:r']%r;fg Lilitgrr]a-
1 -1 -1 0.12 0.19 0.08 0.17
2 0 -1 0.19 0.15 0.14 0.19
3 +1 -1 0.18 0.17 0.08 0.13
4 -1 0 0.07 0.04 0.08 0.16
5 0 0 0.10 0.06 0.07 0.17
6 +1 0 0.11 0.04 0.06 0.16
7 -1 +1 0.10 0.23 0.34 0.17
8 0 +1 0.10 0.10 0.07 0.17
9 +1 +1 0.09 0.20 0.08 0.17

The figures (Fig. 6-9) show three-dimensional
surfaces of this coefficient for each method. The b axis
represents the change in brightness, n is the noise level,
and the K; axis is a numerical estimate of stability, where
larger values correspond to more reliable operation of the
algorithm. This representation allows to visually
compare the stability of each approach to the influence of
environmental factors.

For the Proximity method (Fig. 6), the stability
coefficient surface has a moderately wavy structure: the
highest values of Ks are observed near b = 1.0 and
n < 0.02, after which the stability gradually decreases.
This confirms that the algorithm works well under
moderate illumination and minimal noise, but is sensitive
to increasing distortions.

The Centroid method (Fig. 7) demonstrates the
greatest variability of the Ks coefficient: the surface
contains sharp changes in height, especially in the high-
noise region, which indicates significant instability and
dependence on the capturing conditions. The coefficient
values drop sharply with increasing n, confirming the
high sensitivity of the method to image noise.

The Weighted Centroid method (Fig. 8) is
characterized by a smoother surface with a local
maximum in the center of the brightness range, which
indicates increased stability of the algorithm to parameter
variations. The surface does not contain sharp changes -
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the decrease in K; occurs gradually, which indicates good
robustness in real conditions.
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For Lateration (Fig. 9), the stability coefficient has
the highest average values and the smallest variance. The
surface is almost flat, without noticeable peaks or valleys,
which means uniform stability of the algorithm when
changing both brightness and noise. Thus, Lateration
demonstrated the best stability among all methods, while
Centroid showed the smallest.
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/gh[,,eSSb 1.2

Fig. 9. Stability coefficient surface
for Lateration method

To gain a deeper understanding of the robustness of
each localization method, two-dimensional contour maps
of the stability coefficient Ks (b, n) were constructed, as
shown in the figures (Fig. 10 — 13).

The abscissa axis corresponds to the change in
brightness b, and the ordinate axis corresponds to the
noise level n.

The color scale displays the value of the coefficient
Ks, where warm shades indicate high stability, and cold
shades indicate a decrease in accuracy.

The green translucent zone in each diagram
visualizes the areas where the algorithm works stably
(i.e., Ks < 1), according to the automatically determined
threshold

T; = median+0.25x IQR. 4)

For the Proximity algorithm (Fig. 10), the stable
operation zone covers the area of medium brightness
(b= 1.0) and low noise (n < 0.02).

With a further increase in noise, the K coefficient
decreases, and the robustness limit narrows, which
indicates a gradual loss of efficiency of the method.

The Centroid algorithm (Fig. 11) demonstrates the
smallest area of the stable zone: the contour lines are
closely spaced, and the green field is limited to a narrow
band at low values of n.

This indicates a high sensitivity of the method to
external distortions and a rapid decrease in stability when
deviating from the nominal conditions.

For Weighted Centroid (Fig. 12), the stability zone
is more extended, and the color gradient changes
gradually. The algorithm maintains acceptable stability
even at moderate noise levels (n up to 0.03), which
indicates its adaptability and balanced response to
external factors.
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The largest area of robustness is demonstrated by
the Lateration method (Fig. 13): the contour lines are
evenly distributed over the entire plane, and the Ks values
remain high throughout the studied range. This confirms
the minimal dependence of the algorithm on lighting
conditions and noise, and therefore its highest stability
among all the considered methods.
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Fig. 13. Contour map of the stability coefficient
for the Weighted Lateration

Comparative  analysis of  three-dimensional
response surfaces and two-dimensional contour maps of
the stability coefficient showed full consistency of results
between spatial and planar models.

3D plots made it possible to visually assess the
shape of the change in error and stability, while 2D maps
allowed to quantitatively determine the boundaries of the
zones of robust operation.

In both types of visualizations, patterns were clearly
distinguished:

the Lateration method demonstrated the highest
stability and minimal variation in error;

Weighted Centroid provided balanced accuracy in a
wide range of factors;

Proximity remained effective only at low noise
levels, while Centroid showed the lowest stability.

Thus, a comprehensive analysis in the “brightness —
noise” space confirmed the consistency of the
regression models and revealed the relationship
between localization accuracy and the stability of the
algorithms.

Table 5 shows the main statistical characteristics of
the stability coefficient Ks for the four localization
algorithms. They were obtained from the results of
calculating regression models within the studied factor
space (brightness b € [0.5; 1.5], noise n € [0.00; 0.04]).
As can be seen from the table, the algorithms differ
significantly in the range of Ks changes and the shape of
the distribution of values.

For the Proximity method, the Ks values vary from
1.65 to 3.00, with a median of 2.40, indicating moderate
stability and weak dependence on external factors within
low noise.
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Table 5 — Main statistical characteristics of the stability coefficient

No. Algorithm Min Ks Max Ks Q1 Median Q3 T

1 Proximity 1,65 3.00 2.10 2.40 2.80 2.53
2 Centroid 5.90 50+ 11.0 20.50 32.40 23.7
3 Weighted Centroid 1.40 7.50 3.20 4.10 5.10 4.35
4 Lateration 0.05 2.80 0.25 0.40 0.55 0.46

The Centroid algorithm is characterized by a very
wide spread (from 5.9 to over 50) and a high median of
20.5, indicating unstable behavior and a strong response
to changes in image parameters — with increasing noise,
stability drops sharply.

Weighted Centroid demonstrates moderate
values (1.4-7.5) and harmonious dynamics: its
median of 4.1 and threshold ti=4.35 indicate a stable,
but not excessive response of the system to changes
in factors.

For Lateration, the coefficient values are the lowest
(0.05-2.8), and the median of 0.40 indicates a uniform
and almost linear behavior of the algorithm without sharp
jumps — which is a sign of high robustness.

Table 6 presents the generalized results of the
comparative stability analysis performed on the basis of

Table 6 — Comparative analysis of algorithm stability

Ks coefficient estimates and graphical analysis of
stability surfaces.

As the data show, the Centroid method has the worst
stability: its average value Ks = 20.5 is the highest among
all, but the fluctuations within the factor space are too
large, which indicates instability.

Proximity has average stability (Ks = 2.4) and
maintains acceptable performance only at low noise,
gradually losing efficiency with increasing n.

Weighted Centroid demonstrates well-balanced
performance, which is confirmed by the large area of the
stable zone and smooth changes in the Ks coefficient.

The best results were obtained for Lateration - its
surface is practically flat, the stable zone covers almost
the entire studied space, and the average value Ks = 0.4
indicates minimal dependence on external factors.

No. Algorithm Behavior Stable zone Average Ks Stability assessment
1 Proximity Error increases with noise Small ~ 24 Low
2 Centroid Sharp increase in noise Very small =~ 20.5 Very low
3 Weighted Centroid Smooth surface Big ~ 4.1 High
4 Lateration Flat surface Very large ~ 0.4 Very high
The combined analysis of numerical (Table 5) and  integrates error variation indicators and allows

qualitative (Table 6) indicators confirms that the
Lateration method is the most stable among the
considered ones, providing stable operation regardless of
the level of illumination and noise.

The Weighted Centroid algorithm takes the second
position, providing acceptable accuracy and stability in a
wide range of factors.

Proximity demonstrates satisfactory behavior only
in favorable conditions, and Centroid turned out to be the
most sensitive to changes in the quality of the input data.

These results are consistent with the graphical
surfaces Ks (b, n) (Fig. 6-13) and confirm the
effectiveness of the applied method for assessing

stability.
Conclusions

The main scientific results of the work are the
establishment of new patterns of the influence of external
image factors — brightness and noise — on the stability
and accuracy of visual localization algorithms, as well as
the development of mathematical models that describe
these relationships in a two-factor parameter space.

For the first time, a generalized analytical model of
the stability coefficient Ks (b, n) is proposed, which

quantitatively assessing the robustness of algorithms
without conducting additional experiments. This model
allows predicting the behavior of the algorithm during
changes in lighting conditions and noise levels, as well as
determining zones of stable system operation within the
permissible factor space.

Second-order regression models were developed
and tested for three levels of localization error (Ymin,
Ymean, Ymax), Which reproduce the nature of changes in
accuracy depending on image parameters.

Based on a comparison of models for four
algorithms — Proximity, Centroid, Weighted Centroid
and Lateration — fundamental differences in the shapes of
their response surfaces were revealed.

In particular, it was found that the Weighted
Centroid and Lateration algorithms demonstrate the
highest robustness, stably maintaining accuracy with
increasing noise, while Centroid is characterized by sharp
changes in error and the lowest stability among the
considered methods.

The obtained analytical dependencies are confirmed
by the consistent results of graphical (3D, 2D) modeling,
which provides reliable verification of the constructed
models.
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The practical significance of the results lies in the
possibility of integrating the constructed models into
autonomous navigation systems, where they can be used
for adaptive selection or automatic switching of
localization algorithms depending on the current
observation conditions.

Analytical equations can also be used for
optimizing camera parameters, noise filtering, exposure
adjustment, and preliminary assessment of the reliability
of computer vision systems in real time. The proposed
approach creates the basis for the formation of a new
class of intelligent stability models that can be used in the
design of robotic and unmanned platforms.

Further research should be directed at expanding the
stability model by taking into account additional factors,
such as contrast, scene dynamics, and spatial distortions
of the camera.

A promising direction is the integration of the
proposed regression models with machine learning
methods for automatic updating of the K (b, n)
parameters during system operation. Special attention is

planned to be paid to the creation of adaptive
localization quality control systems capable of
assessing the state of the environment in real time and
adjusting the capturing parameters or the selection of
the localization algorithm to ensure maximum accuracy
and stability.

The results of this work can also be used to build
hybrid navigation systems that combine visual, inertial,
and radio sensor data, which opens up new opportunities
for the development of autonomous mobile platforms,
unmanned aerial vehicles, and robotic systems.
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MaTemaTH4yHe MO/IeJIIOBAHHS TAa aHAJI3 CTil{KOCTI aJropuT™MiB BizyaasHol Jokaizanii
32 yMOB BapiaTHUBHOCTI SICKPaBOCTi Ta IIyMiB

K. IO. [lepra4os, O. O. I'yprosuii, A. C. SIpemeHko

AHoTaunisi. ANTOpUTMH Bi3yallbHOI JIOKAITi3aIlil € HEBiJl'€MHOIO CKIIaJJOBOIO CY4aCHHX pOOOTOTEXHIYHUX 1 HaBiramiiHUX
cucTeM, 3a0e3Meuyrour BU3HAYCHHS TTOJIOKEHHST 00’ €KTa Ha OCHOBI Bi3yalbHHMX O3HAaK abo 300paxkeHb. OnHAK 1X e(EeKTHBHICTH
3HAYHOIO MIpOI0 3aJISKHUTh Bijl 30BHILIHIX (AaKTOPIB, TAKUX SK SICKPaBICTh 300pakeHHs Ta piBeHb IIyMY, sIKi Oe3mocepeqHbo
BIUIMBAIOTh Ha PO3Mi3HABAHHS OPIEHTHPIB i TOUHICTh BU3HAUeHHs KoopauHat. [IpeqmMeT mociTizkeHHsI: aHaIi3 BIUTUBY SICKPABOCTI
Ta [IyMy 300pa)keHHs Ha TOYHICTh i CTaOIbHICTh aIaNTHBHUX aITOPUTMIB JIoKatizalii. MeToro TocTiIKeHHs € KiTbKICHA OLliHKa
BIUIMBY TapaMeTpiB 300pakeHHs Ha POOACTHICTh PI3HUX METOJIIB JIOKAJTi3allii Ta BU3HAYCHHS AITOPUTMIB, HAHOUTBII IPUIATHAX
Ui pobOTH B peajbHOMY 4Yaci 3a HECTaOUTbHHX Bi3yalbHUX yMOB. MeTOAH, 10 BHKOPHMCTOBYIOTBHCSI: 3aCTOCOBAHO
IBO(AKTOPHUH EKCIIEPUMEHTAJIbHHUI IUIAH 13 3MIHHMMH SCKpaBICTIO Ta pIBHEM IIyMy, B MEXax SKOr0 MPOBEACHO CEpito
eKCIIePUMEHTIB JIoKami3anii. BUKOHaHO MaTeMaTHYHE MOJEIIOBAHHS IS OTPHMAHHS aHATITHYHHX 3aJICKHOCTEH MiHIMAaIIBHOI,
cepeqHbOi Ta MaKCHMAIBHOI ITOXHMOKH JIOKaNi3amil /Uil YOTHPHOX ainropuTMiB — Proximity, Centroid, Weighted Centroid Ta
Lateration. Ha ocHOBi oTpumaHux Mojeieil BBeleHO Koe(illieHT cTabimbHOCTI SIK MOKa3HUK pobacTHOCTI anroputMmy. Byam
OTpUMAaHi HACTYNHi pe3yJbTaTH: MOOYJOBaHI perpeciiHi Monesi NMPOAEMOHCTPYBAJIM BHUCOKY a/ICKBATHICTH Ta J03BOJIIM
Bi3yali3yBaTu BIUIMB SICKPAaBOCTI i LIyMy Ha TOYHICTb Jiokaiizauii. Beranosneno, mo meroau Weighted Centroid i Lateration
3a0e3MevyIoTh HaiBUIIy CTa0iIbHICTh POOOTH, MIATPUMYIOYH HU3bKY Bapiallilo MOXHOKH TP 3MiHi mapamMeTpiB 300paskeHHsI, TOIi
sIK anroputMu Proximity ta Centroid BusiBHin GUIBIITY Yy TJIMBICTD O HIyMy Ta KOJIUBAaHb OCBITICHHS.

KawuoBi caoBa: BidyanpHa Jokaji3awis; aJanTHBHI alrOPUTMH; perpeciiiHa Mopenb; KoediuieHT crabiibHOCTI;
po06acTHICTB; LIyM 300paXKeHHS; SICKPABICTb.
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