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PREDICTING THE EFFICIENCY OF DCT-BASED DENOISING OF 1-D SIGNALS
CORRUPTED BY ADDITIVE WHITE GAUSSIAN NOISE

Abstract. The object of the study is the process of 1-D signal processing by means of DCT-based filter. The subject of
the study is the method for prediction of filtering efficiency in terms of signal-to-noise ratio improvement. The goal of the
study is to identify which parameters can be used for prediction, evaluate the potential accuracy of the predictions, and assess
whether the proposed approach is sufficiently generalizable. Methods used: numerical simulation, verification for a set of
test 1-D signals of different origins. Results obtained: (1) accurate prediction is feasible, with a high level of accuracy
achieved; (2) prediction accuracy depends on an input parameter that can be computed relatively easily; and (3) the proposed
approach is sufficiently general to be applicable to both speech and medical signals affected by additive white Gaussian
noise. Conclusions: (1) If the input SNR is below 30 dB, DCT-based filtering with appropriately chosen parameters can
enhance it; (2) the extent of this improvement varies significantly but is predictable; and (3) this predictability enables
informed decisions about whether filtering is beneficial and how to optimally configure its parameters.
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Introduction

Numerous information systems are designed to
record and process one-dimensional (1-D) signals to
measure their parameters or extract meaningful data.
Notable examples include speech processing [1], medical
diagnostics [2], control systems [3] and others. In most
practical cases, the recorded signals are imperfect—
noise or other factors degrade quality of signals to
varying degrees [4-6]. In some cases, the noise is
negligible — it is not visually apparent in signal/noise
mixture and its negative impact on parameter estimation
or information extraction is minimal and acceptable [7—
9]. However, in many practical situations, the influence
of noise is significant, requiring the use of signal
denoising [10, 11] or enhancements to parameter
estimation methods [12].

A wide range of denoising techniques — including
filtering and smoothing methods — have been developed
to date [13, 14]. These methods span various categories,
such as non-adaptive and adaptive linear filters [15], non-
adaptive and adaptive nonlinear filters [16], and
orthogonal transform based techniques utilizing, e.g.,
wavelets [17] and discrete cosine transform (DCT) [18].
Additionally, neural network-based methods trained for
specific noise patterns have also been employed [19].
Among these, DCT-based techniques have demonstrated
high effectiveness in suppressing Gaussian [20] and
mixed [21] noise. As with other filtering methods, the
performance of DCT-based denoising techniques
depends on multiple factors [21, 22], including:

1) signal complexity, which is difficult to
characterize quantitatively and generally refers to
spectral content, the presence of abrupt changes, etc.

2) noise intensity often expressed in terms of input
signal-to-noise ratio (SNR);

3) filter parameter settings, such as block size,
threshold type, and the proportionality factor between

noise standard deviation (assumed to be known a priori
or accurately estimated [23, 24]) and the threshold value,
etc.

Studies presented in [21, 22] demonstrate that 1)
filtering may be ineffective or even unnecessary when the
input SNR is sufficiently high or signal is highly complex
resulting in low filtering efficiency; and 2) when the
noise is additive white and Gaussian (AWGN), the
filtering efficiency can be predicted in advance, provided
that specific offline analyses are performed. If this
prediction is both accurate and computationally efficient,
it enables informed decisions about whether filtering
should be applied. In cases where it is deemed
unnecessary, skipping the filtering step can save both
processing time and computational resources.

The study presented in [22] was conducted on a
limited set of test 1-D signals and validated using a single
medical signal - an electrocardiogram (ECG). Other
types of 1-D signals, particularly audio signals, were not
considered. Additionally, the input parameter used for
prediction in [22] was selected empirically, leaving it
unclear whether alternative parameters could yield more
accurate prediction.

The focus of this study is the application of DCT-
based filtering to 1-D signals of various origins, with
particular emphasis on speech and medical signals. Our
core hypothesis is that a single, simple, and easily
calculatable parameter can enable fast and accurate
prediction of SNR improvement for signals corrupted by
AWGN with a known variance.

The goal of this paper is twofold:

1) to analyze parameters that can be used as inputs
for predicting filtering efficiency, compare their
performance, and provide practical recommendations for
their use;

2) to demonstrate that the proposed prediction
approach is general - i.e. accurate and applicable to
various types of 1D signals, including speech and
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medical (e.g., electrocardiographic). Additionally, the
study aims to identify the range of input SNRs for which
filtering is typically beneficial.

General signal/noise model and basic principles
of DCT-based filtering

Assume that signal contaminated by noise can be
expressed as

Sa(i) = (i) + n(i), i =1, ., 1, Q)

where {S(i), i=1,..,1} is a noise-free signal, i is the
sample index, | is the total number of registered samples,
{n(i), i =1, ..., I} is zero mean additive white Gaussian
noise with variance o2

Unlike many wavelet-based filters, DCT-based
denoising is performed on fixed size blocks. To ensure
efficient computation, the block size is typically chosen
as a power of two — commonly 16, 32, 64 or 128, which
allows the use of fast DCT algorithms. For each I-th
block, the following three steps are performed:

1) direct DCT is applied, producing N DCT
coefficients {Di(k), k = 1, ..., N}, where N denotes the
block size;

2) thresholding is then performed resulting in a set
of modified coefficients {Di wr(k), k = 1, ..., N} where
many D (k) values have reduced magnitudes compared
to the original Dy(k) (the details of thresholding will be
explained below);

3) an inverse DCT is applied to the thresholded
coefficients {Diwr(k), k =1, ..., N} producing N denoised
signal values Ssi((m =1, ..., I + N-1) for a given I-th block.
It is important to note that, unlike sliding-window
filtering, this approach yields denoised values for all
samples within each block.

The fundamental idea behind DCT-based denoising
is that DCT coefficients with relatively large absolute
values are likely to represent meaningful signal
components, while those with small amplitudes are
typically associated with noise. Therefore, during the
thresholding stage, it is desirable to reduce or to eliminate
the small magnitude DCT coefficients. Various
thresholding techniques exist to achieve this. In the
following, we focus on two methods known as hard
thresholding, which is defined as

Di(k), if ID(k)| > T,

Dy ¢nr (k) ={o, if D) < T, k=2,...N, (2)
and on combined thresholding defined as
Di(k),  if ID(K)| > T,
D = =2,...N
= o m i ool < 1.6 = 21 )

where, in both (2) and (3), T denotes the threshold
parameter, which is typically set proportional to the noise
standard deviation o, such as T = Bo. The optimal (or
recommended) value of B depends on thresholding
method, the characteristics of signal and noise, and the
chosen optimality criterion. As a guideline, B is
commonly set to approximately 2.6 for hard thresholding
(as in equation (2)), and around 4.5 for the combined
thresholding approach.

Typically, the signal length | is much greater than
the block size N, and there are various ways to position

the blocks along the signal. In this study, we consider the
case of full overlapping, where the I-th block starts at the
I-th sample and covers the range {S(m), m=l,...,I+N-1}.
This results in I-N+1 possible block positions. For any
sample index i within the range N-1 <i < |-N, there are
N filtered values of St corresponding to overlapping
blocks with I = i—-N+1, ..., i. These multiple estimates can
be combined in various ways to obtain the final denoised
value, with simple averaging being the most
straightforward approach. DCT-based filtering with full
block overlapping generally provides more efficient
noise suppression compared to partial overlapping, albeit
at the cost of increased computational load. However,
DCT-based methods remain computationally efficient in
practice. Another advantage is that this filtering scheme
introduces a fixed delay of N samples relative to the
incoming data, which is acceptable in many applications.
It should also be noted that noise suppression is typically
less effective near the edges of the signal, compared to
the central portion.

Noise removal efficiency also depends on the block
size N. To illustrate this dependence, as well as the
impact of thresholding type and the parameter B, Fig. 1
shows the behavior of the SNR improvement metric,
defined as

ISNR = 10log,(6?/MSE) = SNRoye — SNRipnp, |
where MSE is the mean square error at the filter output,
SNRoy: and SNR;,, are output and input SNRs,
respectively. The results presented in Fig. 1 were
obtained using the speech file F1, which contains English
language Harvard phrases [25].

SNR improvement for audio file F1
(input SNR = 20dB)

ISNR, dB

——N=16, hard
= =N=18, comb
Ak N=32, hard

N=32, comb
——N=64, hard
-2 - = N=64, comb

2 3 P 5 o 7 s 5 1
J‘
Fig. 1. Dependences of ISNR on B for audio file F1 denoising
by the DCT-based filters with types of thresholds
for three values of N (16, 32, and 64)

As shown in the results, ISNR reaches
approximately 2.5 dB for N = 16, about 3 dB for N = 32,
and around 3.5 dB for N = 64. This indicates that using
N =64 is a reasonable choice. The optimal results for
both types of thresholds are nearly identical for the same
block size, with the optimal B values aligning closely
with those recommended earlier. A noisy speech signal
with the input SNR of 10 dB is presented in Fig. 2, a. The
corresponding residual noise after filtering — defined as
{nres(i) = St(i) — S(i), i = 1, ..., I} is shown in Fig. 2, b,
where different colors represent the two thresholding
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methods. The MSE for hard thresholding is 0.0000163,
while for the combined thresholding — 0.0000155,
indicating the minimal difference. Given that the noise
variance is 0.0000620.0000620.000062, the resulting
ISNR is approximately 6 dB for both methods.

An interesting observation from the comparison of
Figs. 2, a and 2, b is that residual noise tends to be more
pronounced in segments where the original signal has
higher intensity. This can be explained, at least, for hard

Noisy speech signal, SNR =10 dB
I

thresholding, by the fact that noise suppression is reduced
when a larger number of DCT coefficients retain
relatively high absolute values after thresholding. The
combined thresholding behaves similarly, though in a
smoother manner. Therefore, for more complex signals -
characterized by a higher proportion of large-amplitude
DCT coefficients - the expected ISNR tends to be lower.
This observation forms the basis for the proposed ISNR
prediction approach.
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Fig. 2. Noisy speech signal with input SNR equal to 10 dB (a)
and residual noise after denoising by two versions of the DCT-based filters (b)

Efficiency prediction method
and its performance analysis

Before proposing a method for predicting filtering
efficiency, it is important to define the requirements such
a method should meet. To be practically useful, the
prediction method should satisfy the following criteria:

1) It must be faster than the filtering process itself,
keeping in mind that DCT-based denoising is already a
relatively fast technique.

2) It should be sufficiently accurate, providing
ISNR predictions with an error margin small enough to
support reliable decisions—such as whether filtering is
worthwhile or which filter parameters to choose.

3) It should be simple and lightweight, ideally
implementable using the same computational framework
as the filtering algorithm itself.

Fortunately, prior work has provided us experience
in developing methods for predicting filtering efficiency
for both 1-D signals [22] and images [26]. In both cases,
the core assumption is that there exists a well-defined
relationship between a parameter representing denoising

efficiency and an input parameter that jointly reflects
signal/image complexity and noise intensity. This
relationship is established offline—that is, it is derived in
advance and made available by the time a noisy signal or
image needs to be processed. Ones the input parameter is
computed for the current data, it is used as the argument
in the pre-established relationship to obtain the predicted
filtering efficiency.

Following this general overview, we now provide
some specific details. Suppose that the improvement in
SNR (or in peak signal-to-noise ratio (PSNR) in the case
of image processing) can be used as an representative
parameter for characterizing denoising efficiency. As
demonstrated in [22] and [26], it is possible to predict not
only SNR or PSNR improvements, but also other output
metrics related to denoising performance.

In both studies, the parameters denoted as P, and
Po.ss — defined as the probabilities that absolute values of
DCT coefficients within blocks do not exceed 2¢ and
0.50, respectively — are proposed as input features for
prediction. The use of Py, is motivated by the assumption
of normality in the distribution of AC DCT-coefficients
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for constant level signals or images, where Py,
approaches 0.95. In contrast, the use of Pgs. is more
empirical choice, based on observed predictive
performance rather than theoretical justification.

As demonstrated in [22] and [26] the parameter Py,
typically ranges from approximately 0.2 (for highly
complex signals with low noise levels) to about 0.9 (for
structurally simple signals under high noise conditions).
Similarly, Po s, ranges from around 0.07 to 0.35. These
observations were derived using six standard test images
(Blocks, Bumps, Doppler, etc.). For each test signal and
each input SNR level considered, both input and output
parameters were collected. Scatter-plots of ISNR vs Py
and ISNR vs Pgss were generated, and simple
monotonously increasing curves were fitted to the data.
The quality of these fits, measured by the coefficient of
determination R?, was approximately 0.92 for both
polynomial and exponential models, with a root mean
square error (RMSE) of about 0.7.

One might reasonably question whether the
prediction models derived from these test signals — none
of which are related to speech — are applicable to speech
denoising tasks. To investigate this, we analyzed five
speech signals from [25] covering a broad range of input
SNR values. Scatter plots for both hard and combined
thresholding approaches were created, as shown in
Fig. 3.

In both cases, second-order polynomial models
were used, yielding an R? of approximately 0.988 and of
RMSE of about 0.23, indicating a very strong predictive
capability.

In other words, the fitting results in our study are
significantly better than those reported in [22]. However,
an important question remains: how similar are the fitted
curves themselves? To assess this, we compare the
predicted ISNR values for Pys, = 0.28, 0.32, and 0.36.
According to [22], the corresponding ISNR predictions
are approximately 5.2, 6.0, and 8.7, respectively. In our
case, the predicted ISNRs are about 4.0, 5,6, and 8.8,
respectively indicating good agreement between the two
models.

As noted earlier, both input parameters, Pos, and
P.s, are somewhat empirical choices. To further explore
this, we evaluated additional cases of P., where ¢ was set
to 0.25, 0.75, 1.0, and 1.5. Overall, the prediction quality
remained high across all values of ¢, with R? exceeding
0.98 and RMSE not exceeding 0.305. Formally, the best
performance was achieved using Po.ss, with R?=0.988,
RMSE=0.244 - the results nearly identical to those
obtained with Py sc.

Therefore, for practical purposes, values of ¢ in the
range 0.25<e<0.5 are recommended.

It is important to recall that ISNR prediction -, i.e.
the calculation of P, - should be performed quickly. If
Pes is calculated using all possible block positions (as in
full-overlap filtering), the computation time is
approximately half that of the full denoising process,
since filtering involves two DCT operations per block.

However, further acceleration of prediction may be
necessary in practice. One efficient approach is to
compute the input parameter using partially overlapping
or non-overlapping blocks.

*  |SNRwvs. p05
10F untitled fit 1
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8t
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- -
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a
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[« I1SNRvs. po5
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027 028 029 03 031 032 033 034 035 036 0.37
p05

b

Fig. 3. Scatter-plots of ISNR vs Po.s6
for hard (a) and combined (b) thresholding

For example, in the case of speech signals sampled
at 16 kHz with a duration of about 2 s, using half-
overlapping blocks vyields a prediction RMSE of
approximately 0.27 dB, while using non-overlapping
blocks results in an RMSE of about 0.3 dB. These results
suggest that both configurations are acceptable for
practical use, offering prediction speeds one to two
orders of magnitude faster than full denoising.

It should also be noted that the prediction accuracy
data discussed above for speech signals were obtained
using the same signals that were used to generate the
scatter plots during the "training" phase. A natural question
arises: how well does the prediction generalize to new,
unseen signals? To investigate this, we applied the fitted
prediction curves from Fig. 3 to estimate ISNR (ISNRpreq)
for five speech signals (F5-F9 from the dataset [25]) that
were not used in constructing the scatter-plots. The
predicted ISNR values were then compared with the true
calculated ISNR values (ISNRca), as presented in Tables
1 and 2 for hard and combined thresholding, respectively.
It should be noted that the test here that signals vary in
power, and the AWGN standard deviation ¢ was adjusted
accordingly to achieve the desired input SNR.
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Table 1 — Predicted and calculated ISNRs for five signals
processed with hard thresholding, SNRinp= 10

n';'r':fe WPM ] 6 | Puss | ISNReaic | ISNRpred
F5wav | 9.98 | 00079 | 0.328 | 6.16 6.25
Fe.wav | 9.97 | 00021 | 0.335 | 643 6.80
F7wav | 9.97 | 00147 | 0333 | 651 6,69
Fewav | 9.98 | 00119 | 0.332 | 698 6.61
Fowav | 9.97 | 0.0088 | 0.330 | 648 6.42

Table 2 — Predicted and calculated ISNRs for five signals
processed with combined thresholding, SNRinp = 10

n';'r'ﬁe AU 6 | Puss | ISNReaic | ISNRpred
F5wav | 9.98 | 00079 | 0.328 | 6.03 6.10
Fewav | 9.97 | 00021 | 0.335 | 633 6.61
F7wav | 9.97 | 00147 | 0333 | 631 6.51
F8wav | 9.98 | 00119 | 0.332 | 6.79 6.44
Fowav | 9.97 | 0.0088 | 0.330 | 626 6.26

Analysis of the data in Tables 1 and 2 shows that
the predicted ISNRyreq and calculated ISNRcac differ by
no more than 0.37 dB, indicating a high level of
prediction accuracy. It is also noteworthy that ISNRcaic
values for all five considered speech signals are very
similar at the same input SNR, suggesting consistent
denoising performance across different signals.

Applicability of prediction method
to ECG signals

Now, a question arises whether ISNR can also be
accurately predicted for ECG signals. To explore this, we
selected several clean ECG signals from CEBSDB
database [28-30], added AWGN of varying intensities to
simulate different input SNRs, applied DCT-based
denoising, and measured the resulting true ISNR. In
parallel, we predicted ISNR using the fitted curves
previously obtained for speech signals. Selected results
are presented below.

Fig. 4, a shows an example of a clean ECG signal
and Fig. 4, b displays the same signal corrupted with
AWGN at an input SNR of 15 dB. The noise is clearly
visible and its suppression is necessary. Fig. 4,c
illustrates the output of the DCT-based filter with hard
thresholding and an optimal value of . As seen, the noise
is significantly reduced, while the essential structure of
the ECG signal is preserved well.

Fig. 5 presents the ISNR as a function of  for both
thresholding types, based on the signal shown in Fig. 4.
As observed, the maximum ISNR values are nearly
identical for hard and combined thresholds. The optimal
values of B are slightly larger than those recommended
earlier, which can be attributed to the relatively high
noise level in this example. The achieved ISNR
(approximately 6 dB) is greater than that shown in Fig. 1,
which is explained by two factors: the lower input SNR
and a simpler (smoother) structure of the ECG signal
compared to speech.
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Fig. 4. Noise-free ECG signal (a), its noisy version for
SNRinp=15 dB (b), and filtered version (c)

Preliminary analysis of the data obtained for ECG
signals reveals the following observations:

1) At an SNRiy of 30 dB, filtering is generally
unnecessity for two reasons. First, noise is visually
negligible (Fig. 6). Second, the ISNR achieved is only
about 1 dB, which is relatively small. Moreover, if the
noise variance is known or can be reliably estimated, the
SNRinp can also be estimated, allowing the filtering step
to be skipped entirely.

2) When SNRjy, is lower, filtering becomes more
beneficial. For example, at SNRinp=25 dB, the ISNR is
approximately 2.5 dB; if SNRinp=20 dB, ISNR increases
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to about 4.3 dB. This trend is consistent with the behavior
observed in speech signals—ISNR increases as the input
SNR decreases;

3) The optimal values of B remain nearly the same
across both types of thresholding. Specifically, they are
slightly above 3 for hard thresholding, and 5 for
combined thresholding;

4) For a given signal, noise realization, and input
SNR, the output SNR values resulting from the two
thresholding methods differs very little - typically by less
than 0.2 dB, as shown in Fig. 5). Therefore, in practice,
either thresholding method can be used with comparable
results.

ISNR for file: 1r.wav, SNR = 15dB
T T T

B=3.4, B=54,
ISNR = 6.07

ISNR = 6.01
.

ISNR, dB

w

1

— hard threshold
comb threshold

ol ‘ | ‘ ‘ ‘
2 3 4 5 6 7 8 9 10
e
Fig. 5. Dependences of ISNR on P for two types of thresholds
for DCT-based denoising of the signal in Fig. 4, b
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Fig. 6. Example of noisy signal for input SNR equal to 30 dB

Let us now assess whether ISNR can be predicted
with sufficient accuracy. Table 3 presents representative
results, structured similarly to those shown in Tables 1
and 2.

As observed, the prediction accuracy for ECG
signals is lower than for speech signals (refer to Tables 1
and 2), with discrepancies reaching up to 2.8 dB. We
attribute this to two main factors.

First, the prediction curves used for ECG signals
were originally derived from speech signal data. Similar
cross-domain discrepancies have been reported for test
signals of different nature in [22]. Second, for the same
value of Pgs,, the RMSE of ISNR is higher for ECG
signals than for speech signals.

Table 3 — Predicted and calculated ISNRs for five signals
processed with hard thresholding

nZ"nfe 'ng;t 6 | Pose | ISNRea | ISNRpred
lrwav | 1566 | 0.028 | 0334 | 596 6.74
orwav | 1512 | 0028 | 0325 | 675 6.09
3rwav | 1500 | 0.028 | 0.324 | 814 5.99
arwav | 1533 | 0031 | 0332 | 7.74 6.62
Srwav | 1684 | 0030 | 0.343 | 487 7.60
1rwav | 2059 | 0.0161 | 0328 | 4.8 6.30
orwav | 1999 | 0157 | 0307 | 6.6 4.96
3rwav | 1997 | 0159 | 0299 | 6.46 457
arwav | 2023 | 0178 | 0310 | 7.00 5.11
Srwav | 2175 | 0168 | 0.321 | 358 5.80

Therefore, it can be concluded that while the
previously derived prediction curves (i.e. the ISNR vs.
Po.ss) are applicable to DCT-based denoising of ECG
signals, the prediction accuracy is notably lower. The
underlying causes of this reduced accuracy warrant
further investigation.

Conclusions

This study investigates the use of DCT-based filters
with two types of thresholding—hard and combined—
for denoising two types of one-dimensional (1-D)
signals: speech and ECG, across a wide range of input
SNR values.

The results show that denoising is generally
beneficial when the input SNR is below 30 dB for both
threshold types, which yield comparable performance
when optimal or recommended values of B are used.
Furthermore, it is demonstrated that ISNR can be
effectively predicted using a simple statistical parameter
computed over a set of blocks, which may be either non-
overlapping or half-overlapping This prediction method
is significantly faster that filtering itself and achieves
high accuracy for speech signals, with acceptable
accuracy for ECG signals. Among the tested input
parameters, Poss iS the recommended due to its strong
predictive performance; however, other parameters such
as Poass Or Pyrss can also be used provided that
corresponding prediction curves are established in
advance.

Future work will focus on a more detailed
investigation of prediction methods for ECG denoising
efficiency.
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ITpornosyBanns edexTuBHocTi DCT-MeToAIB NPUTIIylIEHHS IHyMY B OJIHOBUMIPHHX CHTHAJIAX,
CIOTBOPEHNX AANTHBHUM OiTMM rayciBcbKHM HIyMOM

I1. B. bpucin, B. B. Jlykin, b. B. Koanenko, O. I'. B'ronnupkuii, K. O. Eriazapsa

AnoTanisi. O0'eKTOM HOCITiMKEeHHS € Mpoiec 0OpoOKH OJHOBHUMIPHHX CHTHAIIB 32 JOMOMOTOIO (ibTpa HA OCHOBI
JKII. IIpenmeToM HOCTiIKeHHSI € METOJ MPOTHO3YBaHHA €QEKTHUBHOCTI (imbTpamii 3 TOYKH 30py MOKpAIIEHHS
CIIBBITHOMICHHS CUTHAN/IIYM. MeT0I0 [OCTiI:KeHHS € BU3HAUCHHS IapaMeTpiB, sSKi MOXHAa BHKOPHCTOBYBATH JJIS
MPOTHO3YBaHHS, OIIHKA IMOTCHIIHHOI TOYHOCTI MPOTHO3IB Ta OI[iHKA TOTO, YH € 3alpOIOHOBAHHMH MiAXiJ] JOCTaTHBO
y3araibHIOBaHUM. BUKOpHCTaHi METOIM: YACIIOBE MOJICIIOBaHHS, BepHpikallis A Habopy TECTOBUX OJHOBHMIPHUX CUTHATIB
pizHoro noxoxeHHs. OTpumani pe3yasTaTu: (1) TouHe MPOrHO3YBaHHS MOXKJIMBE, 3 BACOKMM PiBHEM JOCSTHYTOI TOYHOCTI;
(2) TouHIiCTP MPOTHO3YBAaHHsS 3aleKUTh BiJ BXIAHOTO Mapamerpa, SKHH MOXHA BiJHOCHO Jerko oOuucnut; Ta (3)
3aIpOINOHOBAHMH MiXiJ] € JOCTATHBO 3arajibHUM, 00 OyTH 3aCTOCOBHHM 5K 10 MOBHHX, TaK i O MEIUYHHUX CUTHAIIB, HA SIKi
BIUTUBA€E aAWTHBHUI Oinmii rayccoBuil mym. BucHoBkm: (1) Skimo BXigHe crmiBBifHOIIEHHs curHan/mym Huwkde 30 1b,
¢inbrparist #Ha ocHoBi DCT 3 BitnoBigHO BUOpaHUMH MapaMeTpaMH MOke HOro HOKpamuTH; (2) CTyIiHb IIbOTO ITOKPAIIEeHHS
3HaYHO BapilOETHCS, alle € mependadyBanolo; Ta (3) 1 nepeadavdyBaHICTh JO3BOJISE MPUIMATH OOTPY HTOBaHI PIlICHHS MO0
TOTO, 4H € (BiNBTPAIist KOPUCHOIO Ta K ONTUMAJIBHO HAJAIITYBATH ii MapaMeTpH.

Kawuosi cnoBa: dinprpauis Ha ocHoBi DCT; mporHo3yBaHHs e(heKTUBHOCTI IIyMO3aryILeHHs; OJHOBUMIpPHI CHUTHAIIH
PI3HOTO MOXOKEHHSL.
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