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PREDICTING THE EFFICIENCY OF DCT-BASED DENOISING OF 1-D SIGNALS 

CORRUPTED BY ADDITIVE WHITE GAUSSIAN NOISE 
 

Abstract .  The object of the study is the process of 1-D signal processing by means of DCT-based filter. The subject of 

the study is the method for prediction of filtering efficiency in terms of signal-to-noise ratio improvement. The goal of the 

study is to identify which parameters can be used for prediction, evaluate the potential accuracy of the predictions, and assess 

whether the proposed approach is sufficiently generalizable. Methods used: numerical simulation, verification for a set of 

test 1-D signals of different origins. Results obtained: (1) accurate prediction is feasible, with a high level of accuracy 

achieved; (2) prediction accuracy depends on an input parameter that can be computed relatively easily; and (3) the proposed 

approach is sufficiently general to be applicable to both speech and medical signals affected by additive white Gaussian 

noise. Conclusions: (1) If the input SNR is below 30 dB, DCT-based filtering with appropriately chosen parameters can 

enhance it; (2) the extent of this improvement varies significantly but is predictable; and (3) this predictability enables 

informed decisions about whether filtering is beneficial and how to optimally configure its parameters. 
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Introduction 

Numerous information systems are designed to 

record and process one-dimensional (1-D) signals to 

measure their parameters or extract meaningful data. 

Notable examples include speech processing [1], medical 

diagnostics [2], control systems [3] and others. In most 

practical cases, the recorded signals are imperfect— 

noise or other factors degrade quality of signals to 

varying degrees [4–6]. In some cases, the noise is 

negligible – it is not visually apparent in signal/noise 

mixture and its negative impact on parameter estimation 

or information extraction is minimal and acceptable [7–

9]. However, in many practical situations, the influence 

of noise is significant, requiring the use of signal 

denoising [10, 11] or enhancements to parameter 

estimation methods [12].  

A wide range of denoising techniques – including 

filtering and smoothing methods – have been developed 

to date [13, 14]. These methods span various categories, 

such as non-adaptive and adaptive linear filters [15], non-

adaptive and adaptive nonlinear filters [16], and 

orthogonal transform based techniques utilizing, e.g., 

wavelets [17] and discrete cosine transform (DCT) [18]. 

Additionally, neural network-based methods trained for 

specific noise patterns have also been employed [19]. 

Among these, DCT-based techniques have demonstrated 

high effectiveness in suppressing Gaussian [20] and 

mixed [21] noise. As with other filtering methods, the 

performance of DCT-based denoising techniques 

depends on multiple factors [21, 22], including:  

1) signal complexity, which is difficult to 

characterize quantitatively and generally refers to 

spectral content, the presence of abrupt changes, etc. 

2) noise intensity often expressed in terms of input 

signal-to-noise ratio (SNR);  

3) filter parameter settings, such as block size, 

threshold type, and the proportionality factor between 

noise standard deviation (assumed to be known a priori 

or accurately estimated [23, 24]) and the threshold value, 

etc.  

Studies presented in [21, 22] demonstrate that 1) 

filtering may be ineffective or even unnecessary when the 

input SNR is sufficiently high or signal is highly complex 

resulting in low filtering efficiency; and 2) when the 

noise is additive white and Gaussian (AWGN), the 

filtering efficiency can be predicted in advance, provided 

that specific offline analyses are performed. If this 

prediction is both accurate and computationally efficient, 

it enables informed decisions about whether filtering 

should be applied. In cases where it is deemed 

unnecessary, skipping the filtering step can save both 

processing time and computational resources.  

The study presented in [22] was conducted on a 

limited set of test 1-D signals and validated using a single 

medical signal - an electrocardiogram (ECG). Other 

types of 1-D signals, particularly audio signals, were not 

considered. Additionally, the input parameter used for 

prediction in [22] was selected empirically, leaving it 

unclear whether alternative parameters could yield more 

accurate prediction. 

The focus of this study is the application of DCT-

based filtering to 1-D signals of various origins, with 

particular emphasis on speech and medical signals. Our 

core hypothesis is that a single, simple, and easily 

calculatable parameter can enable fast and accurate 

prediction of SNR improvement for signals corrupted by 

AWGN with a known variance.  

The goal of this paper is twofold:  

1) to analyze parameters that can be used as inputs 

for predicting filtering efficiency, compare their 

performance, and provide practical recommendations for 

their use;  

2) to demonstrate that the proposed prediction 

approach is general - i.e. accurate and applicable to 

various types of 1D signals, including speech and 
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medical (e.g., electrocardiographic). Additionally, the 

study aims to identify the range of input SNRs for which 

filtering is typically beneficial.  

General signal/noise model and basic principles 

of DCT-based filtering 

Assume that signal contaminated by noise can be 

expressed as  

 Sn(i) = S(i) + n(i), i = 1, ..., I, (1) 

where {S(i), i = 1,...,I} is a noise-free signal, i is the 

sample index, I is the total number of registered samples, 

{n(i), i = 1, ..., I} is zero mean additive white Gaussian 

noise with variance σ2.  

Unlike many wavelet-based filters, DCT-based 

denoising is performed on fixed size blocks. To ensure 

efficient computation, the block size is typically chosen 

as a power of two – commonly 16, 32, 64 or 128, which 

allows the use of fast DCT algorithms. For each l-th 

block, the following three steps are performed:  

1) direct DCT is applied, producing N DCT 

coefficients {Dl(k), k = 1, ..., N}, where N denotes the 

block size;  

2) thresholding is then performed resulting in a set 

of modified coefficients {Dl thr(k), k = 1, ..., N} where 

many Dl thr(k) values have reduced magnitudes compared 

to the original Dl(k) (the details of thresholding will be 

explained below);  

3) an inverse DCT is applied to the thresholded 

coefficients {Dl thr(k), k = 1, ..., N} producing N denoised 

signal values Sf l(m = l, …, l + N–1) for a given l-th block. 

It is important to note that, unlike sliding-window 

filtering, this approach yields denoised values for all 

samples within each block.  

The fundamental idea behind DCT-based denoising 

is that DCT coefficients with relatively large absolute 

values are likely to represent meaningful signal 

components, while those with small amplitudes are 

typically associated with noise. Therefore, during the 

thresholding stage, it is desirable to reduce or to eliminate 

the small magnitude DCT coefficients. Various 

thresholding techniques exist to achieve this. In the 

following, we focus on two methods known as hard 

thresholding, which is defined as  

𝐷𝑙 𝑡ℎ𝑟(𝑘) = {
 𝐷𝑙(𝑘),   𝑖𝑓 |𝐷𝑙(𝑘)| >  𝑇,

0,          𝑖𝑓 |𝐷𝑙(𝑘)| ≤  𝑇,
 𝑘 = 2, . . . 𝑁,  (2) 

and on combined thresholding defined as  

𝐷𝑡ℎ𝑟(𝑘) = {
𝐷𝑙(𝑘),          𝑖𝑓 |𝐷𝑙(𝑘)| >  𝑇,

𝐷𝑙
3(𝑘)/𝑇2, 𝑖𝑓 |𝐷𝑙(𝑘)| ≤  𝑇,

 𝑘 = 2, . . . 𝑁, (3) 

where, in both (2) and (3), T denotes the threshold 

parameter, which is typically set proportional to the noise 

standard deviation σ, such as T = βσ. The optimal (or 

recommended) value of β depends on thresholding 

method, the characteristics of signal and noise, and the 

chosen optimality criterion. As a guideline, β is 

commonly set to approximately 2.6 for hard thresholding 

(as in equation (2)), and around 4.5 for the combined 

thresholding approach.  

Typically, the signal length I is much greater than 

the block size N, and there are various ways to position 

the blocks along the signal. In this study, we consider the 

case of full overlapping, where the l-th block starts at the 

l-th sample and covers the range {S(m), m=l,...,l+N–1}. 

This results in I–N+1 possible block positions. For any 

sample index i within the range N–1 ≤ i ≤ I–N, there are 

N filtered values of Sf l corresponding to overlapping 

blocks with l = i–N+1, …, i. These multiple estimates can 

be combined in various ways to obtain the final denoised 

value, with simple averaging being the most 

straightforward approach. DCT-based filtering with full 

block overlapping generally provides more efficient 

noise suppression compared to partial overlapping, albeit 

at the cost of increased computational load. However, 

DCT-based methods remain computationally efficient in 

practice. Another advantage is that this filtering scheme 

introduces a fixed delay of N samples relative to the 

incoming data, which is acceptable in many applications. 

It should also be noted that noise suppression is typically 

less effective near the edges of the signal, compared to 

the central portion.  

Noise removal efficiency also depends on the block 

size N. To illustrate this dependence, as well as the 

impact of thresholding type and the parameter β, Fig. 1 

shows the behavior of the SNR improvement metric, 

defined as 

𝐼𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(σ2 MSE⁄ ) = 𝑆𝑁𝑅out  −  𝑆𝑁𝑅inp , 

where MSE is the mean square error at the filter output, 

𝑆𝑁𝑅out and 𝑆𝑁𝑅inp are output and input SNRs, 

respectively. The results presented in Fig. 1 were 

obtained using the speech file F1, which contains English 

language Harvard phrases [25]. 
 

 
Fig. 1. Dependences of ISNR on β for audio file F1 denoising 

by the DCT-based filters with types of thresholds 

for three values of N (16, 32, and 64) 

 

As shown in the results, ISNR reaches 

approximately 2.5 dB for N = 16, about 3 dB for N = 32, 

and around 3.5 dB for N = 64. This indicates that using 

N = 64 is a reasonable choice. The optimal results for 

both types of thresholds are nearly identical for the same 

block size, with the optimal β values aligning closely 

with those recommended earlier. A noisy speech signal 

with the input SNR of 10 dB is presented in Fig. 2, a. The 

corresponding residual noise after filtering – defined as 

{nres(i) = Sf(i) – S(i), i = 1, ..., I} is shown in Fig. 2, b, 

where different colors represent the two thresholding 
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methods. The MSE for hard thresholding is 0.0000163, 

while for the combined thresholding – 0.0000155, 

indicating the minimal difference. Given that the noise 

variance is 0.0000620.0000620.000062, the resulting 

ISNR is approximately 6 dB for both methods. 

An interesting observation from the comparison of 

Figs. 2, a and 2, b is that residual noise tends to be more 

pronounced in segments where the original signal has 

higher intensity. This can be explained, at least, for hard 

thresholding, by the fact that noise suppression is reduced 

when a larger number of DCT coefficients retain 

relatively high absolute values after thresholding. The 

combined thresholding behaves similarly, though in a 

smoother manner. Therefore, for more complex signals - 

characterized by a higher proportion of large-amplitude 

DCT coefficients - the expected ISNR tends to be lower. 

This observation forms the basis for the proposed ISNR 

prediction approach.  

 
Fig. 2. Noisy speech signal with input SNR equal to 10 dB (a)  

and residual noise after denoising by two versions of the DCT-based filters (b) 

 

Efficiency prediction method 

and its performance analysis 

Before proposing a method for predicting filtering 

efficiency, it is important to define the requirements such 

a method should meet. To be practically useful, the 

prediction method should satisfy the following criteria:  

1) It must be faster than the filtering process itself, 

keeping in mind that DCT-based denoising is already a 

relatively fast technique. 

2) It should be sufficiently accurate, providing 

ISNR predictions with an error margin small enough to 

support reliable decisions—such as whether filtering is 

worthwhile or which filter parameters to choose.  

3) It should be simple and lightweight, ideally 

implementable using the same computational framework 

as the filtering algorithm itself. 

Fortunately, prior work has provided us experience 

in developing methods for predicting filtering efficiency 

for both 1-D signals [22] and images [26]. In both cases, 

the core assumption is that there exists a well-defined 

relationship between a parameter representing denoising 

efficiency and an input parameter that jointly reflects 

signal/image complexity and noise intensity. This 

relationship is established offline—that is, it is derived in 

advance and made available by the time a noisy signal or 

image needs to be processed. Ones the input parameter is 

computed for the current data, it is used as the argument 

in the pre-established relationship to obtain the predicted 

filtering efficiency.  

Following this general overview, we now provide 

some specific details. Suppose that the improvement in 

SNR (or in peak signal-to-noise ratio (PSNR) in the case 

of image processing) can be used as an representative 

parameter for characterizing denoising efficiency. As 

demonstrated in [22] and [26], it is possible to predict not 

only SNR or PSNR improvements, but also other output 

metrics related to denoising performance.  

In both studies, the parameters denoted as P2σ and 

P0.5σ – defined as the probabilities that absolute values of 

DCT coefficients within blocks do not exceed 2σ and 

0.5σ, respectively – are proposed as input features for 

prediction. The use of P2σ is motivated by the assumption 

of normality in the distribution of AC DCT-coefficients 
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for constant level signals or images, where P2σ 

approaches 0.95. In contrast, the use of P0.5σ is more 

empirical choice, based on observed predictive 

performance rather than theoretical justification. 

As demonstrated in [22] and [26] the parameter P2σ 

typically ranges from approximately 0.2 (for highly 

complex signals with low noise levels) to about 0.9 (for 

structurally simple signals under high noise conditions). 

Similarly, P0.5σ ranges from around 0.07 to 0.35. These 

observations were derived using six standard test images 

(Blocks, Bumps, Doppler, etc.). For each test signal and 

each input SNR level considered, both input and output 

parameters were collected. Scatter-plots of ISNR vs P2σ 

and ISNR vs P0.5σ were generated, and simple 

monotonously increasing curves were fitted to the data. 

The quality of these fits, measured by the coefficient of 

determination R2, was approximately 0.92 for both 

polynomial and exponential models, with a root mean 

square error (RMSE) of about 0.7. 

One might reasonably question whether the 

prediction models derived from these test signals – none 

of which are related to speech – are applicable to speech 

denoising tasks. To investigate this, we analyzed five 

speech signals from [25] covering a broad range of input 

SNR values. Scatter plots for both hard and combined 

thresholding approaches were created, as shown in 

Fig. 3.  

In both cases, second-order polynomial models 

were used, yielding an R2 of approximately 0.988 and of 

RMSE of about 0.23, indicating a very strong predictive 

capability. 

In other words, the fitting results in our study are 

significantly better than those reported in [22]. However, 

an important question remains: how similar are the fitted 

curves themselves? To assess this, we compare the 

predicted ISNR values for P0.5σ = 0.28, 0.32, and 0.36. 

According to [22], the corresponding ISNR predictions 

are approximately 5.2, 6.0, and 8.7, respectively. In our 

case, the predicted ISNRs are about 4.0, 5,6, and 8.8, 

respectively indicating good agreement between the two 

models. 

As noted earlier, both input parameters, P0.5σ and 

P2σ, are somewhat empirical choices. To further explore 

this, we evaluated additional cases of Pɛσ where ɛ was set 

to 0.25, 0.75, 1.0, and 1.5. Overall, the prediction quality 

remained high across all values of ɛ, with R2 exceeding 

0.98 and RMSE not exceeding 0.305. Formally, the best 

performance was achieved using P0.25σ, with R2=0.988, 

RMSE=0.244 - the results nearly identical to those 

obtained with P0.5σ.  

Therefore, for practical purposes, values of ɛ in the 

range 0.25≤ɛ≤0.5 are recommended.  

It is important to recall that ISNR prediction -, i.e. 

the calculation of Pɛσ, - should be performed quickly. If 

Pɛσ is calculated using all possible block positions (as in 

full-overlap filtering), the computation time is 

approximately half that of the full denoising process, 

since filtering involves two DCT operations per block.  

However, further acceleration of prediction may be 

necessary in practice. One efficient approach is to 

compute the input parameter using partially overlapping 

or non-overlapping blocks.  

 
a 

 
b 

Fig. 3. Scatter-plots of ISNR vs P0.5σ  

for hard (a) and combined (b) thresholding 

 

For example, in the case of speech signals sampled 

at 16 kHz with a duration of about 2 s, using half-

overlapping blocks yields a prediction RMSE of 

approximately 0.27 dB, while using non-overlapping 

blocks results in an RMSE of about 0.3 dB. These results 

suggest that both configurations are acceptable for 

practical use, offering prediction speeds one to two 

orders of magnitude faster than full denoising. 

It should also be noted that the prediction accuracy 

data discussed above for speech signals were obtained 

using the same signals that were used to generate the 

scatter plots during the "training" phase. A natural question 

arises: how well does the prediction generalize to new, 

unseen signals? To investigate this, we applied the fitted 

prediction curves from Fig. 3 to estimate ISNR (ISNRpred) 

for five speech signals (F5-F9 from the dataset [25]) that 

were not used in constructing the scatter-plots. The 

predicted ISNR values were then compared with the true 

calculated ISNR values (ISNRcalc), as presented in Tables 

1 and 2 for hard and combined thresholding, respectively. 

It should be noted that the test here that signals vary in 

power, and the AWGN standard deviation σ was adjusted 

accordingly to achieve the desired input SNR.  
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Table 1 – Predicted and calculated ISNRs for five signals 

processed with hard thresholding, SNRinp ≈ 10 

File 

name 

Input 

SNR 
σ P0.5σ ISNRcalc ISNRpred 

F5.wav 9.98 0.0079 0.328 6.16 6.25 

F6.wav 9.97 0.0021 0.335 6.43 6.80 

F7.wav 9.97 0.0147 0.333 6.51 6,69 

F8.wav 9.98 0.0119 0.332 6.98 6.61 

F9.wav 9.97 0.0088 0.330 6.48 6.42 

 
Table 2 – Predicted and calculated ISNRs for five signals 

processed with combined thresholding, SNRinp ≈ 10 

File 

name 

Input 

SNR 
σ P0.5σ ISNRcalc ISNRpred 

F5.wav 9.98 0.0079 0.328 6.03 6.10 

F6.wav 9.97 0.0021 0.335 6.33 6.61 

F7.wav 9.97 0.0147 0.333 6.31 6.51 

F8.wav 9.98 0.0119 0.332 6.79 6.44 

F9.wav 9.97 0.0088 0.330 6.26 6.26 

 

Analysis of the data in Tables 1 and 2 shows that 

the predicted ISNRpred and calculated ISNRcalc differ by 

no more than 0.37 dB, indicating a high level of 

prediction accuracy. It is also noteworthy that ISNRcalc 

values for all five considered speech signals are very 

similar at the same input SNR, suggesting consistent 

denoising performance across different signals. 

Applicability of prediction method 

to ECG signals  

Now, a question arises whether ISNR can also be 

accurately predicted for ECG signals. To explore this, we 

selected several clean ECG signals from CEBSDB 

database [28–30], added AWGN of varying intensities to 

simulate different input SNRs, applied DCT-based 

denoising, and measured the resulting true ISNR. In 

parallel, we predicted ISNR using the fitted curves 

previously obtained for speech signals. Selected results 

are presented below.  

Fig. 4, a shows an example of a clean ECG signal 

and Fig. 4, b displays the same signal corrupted with 

AWGN at an input SNR of 15 dB. The noise is clearly 

visible and its suppression is necessary. Fig. 4, c 

illustrates the output of the DCT-based filter with hard 

thresholding and an optimal value of β. As seen, the noise 

is significantly reduced, while the essential structure of 

the ECG signal is preserved well.  

Fig. 5 presents the ISNR as a function of β for both 

thresholding types, based on the signal shown in Fig. 4. 

As observed, the maximum ISNR values are nearly 

identical for hard and combined thresholds. The optimal 

values of β are slightly larger than those recommended 

earlier, which can be attributed to the relatively high 

noise level in this example. The achieved ISNR 

(approximately 6 dB) is greater than that shown in Fig. 1, 

which is explained by two factors: the lower input SNR 

and a simpler (smoother) structure of the ECG signal 

compared to speech.  

 
a 

 
b 

 
c 

Fig. 4. Noise-free ECG signal (a), its noisy version for 

SNRinp=15 dB (b), and filtered version (c) 

 

Preliminary analysis of the data obtained for ECG 

signals reveals the following observations:  

1) At an SNRinp of 30 dB, filtering is generally 

unnecessity for two reasons. First, noise is visually 

negligible (Fig. 6). Second, the ISNR achieved is only 

about 1 dB, which is relatively small. Moreover, if the 

noise variance is known or can be reliably estimated, the 

SNRinp can also be estimated, allowing the filtering step 

to be skipped entirely.  

2) When SNRinp is lower, filtering becomes more 

beneficial. For example, at SNRinp=25 dB, the ISNR is 

approximately 2.5 dB; if SNRinp=20 dB, ISNR increases 
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to about 4.3 dB. This trend is consistent with the behavior 

observed in speech signals—ISNR increases as the input 

SNR decreases; 

3) The optimal values of β remain nearly the same 

across both types of thresholding. Specifically, they are 

slightly above 3 for hard thresholding, and 5 for 

combined thresholding; 

4) For a given signal, noise realization, and input 

SNR, the output SNR values resulting from the two 

thresholding methods differs very little - typically by less 

than 0.2 dB, as shown in Fig. 5). Therefore, in practice, 

either thresholding method can be used with comparable 

results. 
 

 
Fig. 5. Dependences of ISNR on β for two types of thresholds 

for DCT-based denoising of the signal in Fig. 4, b  

 

 
Fig. 6. Example of noisy signal for input SNR equal to 30 dB 

 

Let us now assess whether ISNR can be predicted 

with sufficient accuracy. Table 3 presents representative 

results, structured similarly to those shown in Tables 1 

and 2. 

As observed, the prediction accuracy for ECG 

signals is lower than for speech signals (refer to Tables 1 

and 2), with discrepancies reaching up to 2.8 dB. We 

attribute this to two main factors. 

First, the prediction curves used for ECG signals 

were originally derived from speech signal data. Similar 

cross-domain discrepancies have been reported for test 

signals of different nature in [22]. Second, for the same 

value of P0.5σ, the RMSE of ISNR is higher for ECG 

signals than for speech signals. 

Table 3 – Predicted and calculated ISNRs for five signals 

processed with hard thresholding 

File 

name 

Input 

SNR 
σ P0.5σ ISNRcalc ISNRpred 

1r.wav 15.66 0.028 0.334 5.96 6.74 

2r.wav 15.12 0.028 0.325 6.75 6.09 

3r.wav 15.00 0.028 0.324 8.14 5.99 

4r.wav 15.33 0.031 0.332 7.74 6.62 

5r.wav 16.84 0.030 0.343 4.87 7.60 

1r.wav 20.59 0.0161 0.328 4.18 6.30 

2r.wav 19.99 0.157 0.307 6.16 4.96 

3r.wav 19.97 0.159 0.299 6.46 4.57 

4r.wav 20.23 0.178 0.310 7.00 5.11 

5r.wav 21.75 0.168 0.321 3.58 5.80 

 
Therefore, it can be concluded that while the 

previously derived prediction curves (i.e. the ISNR vs. 

P0.5σ) are applicable to DCT-based denoising of ECG 

signals, the prediction accuracy is notably lower. The 

underlying causes of this reduced accuracy warrant 

further investigation. 

Conclusions 

This study investigates the use of DCT-based filters 

with two types of thresholding—hard and combined—

for denoising two types of one-dimensional (1-D) 

signals: speech and ECG, across a wide range of input 

SNR values.  
The results show that denoising is generally 

beneficial when the input SNR is below 30 dB for both 

threshold types, which yield comparable performance 

when optimal or recommended values of β are used. 

Furthermore, it is demonstrated that ISNR can be 

effectively predicted using a simple statistical parameter 

computed over a set of blocks, which may be either non-

overlapping or half-overlapping This prediction method 

is significantly faster that filtering itself and achieves 

high accuracy for speech signals, with acceptable 

accuracy for ECG signals. Among the tested input 

parameters, P0.5σ is the recommended due to its strong 

predictive performance; however, other parameters such 

as P0.25σ or P0.75σ can also be used provided that 

corresponding prediction curves are established in 

advance.  

Future work will focus on a more detailed 

investigation of prediction methods for ECG denoising 

efficiency. 
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Прогнозування ефективності DCT-методів приглушення шуму в одновимірних сигналах,  

спотворених адитивним білим гаусівським шумом 

П. В. Брисін, В. В. Лукін, Б. В. Коваленко, О. Г. В'юницький, К. О. Егіазарян 

Анотація .  Об'єктом дослідження є процес обробки одновимірних сигналів за допомогою фільтра на основі 

ДКП. Предметом дослідження є метод прогнозування ефективності фільтрації з точки зору покращення 

співвідношення сигнал/шум. Метою дослідження є визначення параметрів, які можна використовувати для 

прогнозування, оцінка потенційної точності прогнозів та оцінка того, чи є запропонований підхід достатньо 

узагальнюваним. Використані методи: числове моделювання, верифікація для набору тестових одновимірних сигналів 

різного походження. Отримані результати: (1) точне прогнозування можливе, з високим рівнем досягнутої точності; 

(2) точність прогнозування залежить від вхідного параметра, який можна відносно легко обчислити; та (3) 

запропонований підхід є достатньо загальним, щоб бути застосовним як до мовних, так і до медичних сигналів, на які 

впливає адитивний білий гауссовий шум. Висновки: (1) Якщо вхідне співвідношення сигнал/шум нижче 30 дБ, 

фільтрація на основі DCT з відповідно вибраними параметрами може його покращити; (2) ступінь цього покращення 

значно варіюється, але є передбачуваною; та (3) ця передбачуваність дозволяє приймати обґрунтовані рішення щодо 

того, чи є фільтрація корисною та як оптимально налаштувати її параметри. 

Ключові  слова:  фільтрація на основі DCT; прогнозування ефективності шумозаглушення; одновимірні сигнали 

різного походження. 
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