
Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

50

UDC 004.7 doi: https://doi.org/10.20998/2522-9052.2026.1.06

Volodymyr Panchenko, Heorhii Kuchuk, Valentyn Noskov, Sergey Leonov, Oksana Lipchanska

National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

METHOD OF TEST POOL SYNTHESIS FOR AN INTELLIGENT HIGH-DENSITY

IOT EDGE-LAYER GATEWAY

Abstract . Relevance. High-density IoT environments are characterized by a large concentration of sensors and devices that

exchange data intensively within a limited space. Under such conditions, edge-layer intelligent gateways become particularly

important. These gateways can locally process information, optimize traffic, and ensure consistent interaction among heterogeneous

devices. The development of a test pool for an edge-layer intelligent gateway in high-density IoT is relevant due to the rapid growth

in the number of connected devices and the increase in their spatial density. In such conditions, the gateway must maintain stable

operation despite high levels of radio interference and competition for network resources. An additional challenge is the

heterogeneity of the IoT environment, as devices use different protocols, have different data formats, and exhibit diverse load

profiles. Without a specially constructed test pool, it is impossible to reliably evaluate the behavior of the gateway under a realistic

mix of technologies and topologies. However, due to substantial heterogeneity, the space of possible test-pool configurations has

very high dimensionality. Moreover, there are significant time and resource constraints associated with operating the test pool.

The subject of this study is the methods for constructing test pools. The purpose of the article is to develop a method for

synthesizing a test pool for an edge-layer intelligent gateway in high-density IoT. The following results were obtained. A five-

layer architecture of an edge-layer intelligent gateway for high-density IoT is proposed. The operational specifics of the gateway

and the particular aspects of its testing are identified. The task of synthesizing the test pool is reduced to a combinatorial problem

of selecting an optimal configuration within an extremely large state space. To solve it, the use of a classical genetic algorithm is

proposed. The proposed algorithm made it possible, within an acceptable time, to obtain a test pool with nearly minimal execution

time, a minimal number of tests, and maximal coverage of the gateway components. Conclusion. The proposed method enables

the construction of a test pool for an intelligent gateway within a high-dimensional state space while meeting the specified

requirements. Future research concerns the development of a method for reducing the dimensionality of the state space of individual

tests for gateway components.

Key words: Internet of Things; computer system; intelligent gateway; edge layer; IoT sensors.

Introduction

Problem Statement. The rapid development of the

Internet of Things (IoT) has contributed to the formation

of heterogeneous infrastructures [1]. Modern large-scale

IoT deployments are characterized by significant

variations in spatial device density [2]. In such high-

density IoT environments, complex interactions emerge

that cannot be accurately characterized by traditional

communication and data processing models [3]. This

issue is particularly acute during the operation of the IoT

ecosystem's edge layer [4]. The edge layer determines the

key characteristics of data flows, load balancing, and

system energy efficiency [5]. Notwithstanding its

criticality, the behavior of the high-density IoT edge

layer remains largely unexplored [6]. Existing

approaches do not adequately address the real-world

operating conditions of heterogeneous environments [7].

Consequently, operational models of edge layer devices

often lead to inaccurate estimates of latency, throughput,

reliability, and other critical performance indicators [8].

High-density IoT environments require a specialized

edge gateway designed to integrate diverse data flows [9].

This gateway functions as a bridge linking edge devices

with higher-level computing tiers, such as fog and cloud
layers. It provides adaptive data preprocessing, thereby

reducing the load on the network infrastructure and

improving system scalability [10]. Owing to

heterogeneous device density and fluctuations in traffic

load, the gateway needs to support dynamic resource

balancing [11, 12]. The effective functioning of the edge

layer gateway requires comprehensive testing, as it is

critical for facilitating interoperability among

heterogeneous devices and services [13]. Testing allows

for assessing the gateway's capability to maintain stable

operation under dynamic network topology shifts and load

fluctuations [14]. Particular attention must be paid to

verifying its performance in scenarios featuring non-

uniform device density, which is typical of high-density

IoT infrastructures. A significant challenge is the high

level of heterogeneity, encompassing diverse

communication protocols, data formats, computational

capabilities, and device energy resources. This hinders the

development of universal test scenarios that accurately

capture the system's actual operating environment [15]. An

additional layer of complexity arises from the necessity to

ensure proper routing and real-time processing of

incoming data from diverse device classes. The issue of

interface and protocol harmonization also arises, which

may lead to data incompatibility during testing [16].

The significant heterogeneity of devices and

communication channels results in a large number of

isolated tests aimed at checking individual gateway

components [17]. Therefore, the problem arises of

selecting a test pool that achieves maximal gateway

coverage under time constraints.

Literature review. Paper [18] proposes a

metamodeling-based approach for creating tests for IoT

systems characterized by high heterogeneity of devices

and standards. By formalizing system behavior, this

method facilitates automated test case generation,

thereby streamlining the testing process for complex IoT

architectures comprising gateways and varied end nodes.

The authors of [19] propose a method for the

automatic generation of test cases for IoT devices using

modern Natural Language Processing (NLP) models.

This represents a significant advancement, as it enables

the generation of structured, programmatically described

© Panchenko V., Kuchuk H., Noskov V., Leonov S., Lipchanska O., 2026

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

51

tests, potentially enhancing the testing efficiency of IoT

gateways and peripheral components.

There are various approaches to constructing an

optimal test subset from a large pool of tests for IoT edge

gateways.

Paper [20] suggests employing automated test

selection frameworks to analyze the existing test set and

determine the tests with the highest fault detection

capability. In article [21], the testing of the IoT edge layer

gateway focuses solely on stabilizing load control.

Article [22] employs multi-objective evolutionary

algorithms and linkage learning techniques for test

selection.

However, this approach fails to consider the

specifics of intelligent IoT edge layer gateways. The

studies presented in [23, 24] are more focused on energy

efficiency and anomaly detection issues.

The approaches proposed in [25] are primarily

designed for resource-constrained environments.

To achieve this, various metrics are used during test

case analysis.

This reduces the time required by ensuring key tests

are executed first.

Consequently, all the considered works [18–25]

overlook the particularities of the edge layer gateway.

The purpose of the research is to develop a method

of test pool synthesis for an intelligent high-density IoT

edge-layer gateway. To achieve the purpose, the

following tasks are solved:

1) analyze the operational features of an intelligent

high-density IoT edge layer gateway;

2) identify the specific characteristics of testing an

intelligent high-density IoT edge layer gateway;

3) develop a genetic algorithm for synthesizing a

test pool for the Intelligent Edge Layer Gateway (IELG)

in High-Density IoT (HDIoT).

1. Intelligent Edge-Layer Gateway

Architecture for High-Density IoT

The IELG HDIoT represents a complex, intelligent

computing unit. It is capable of simultaneously

processing data from a large number of IoT devices,

reaching up to tens of thousands [26]. The specific

features of the IELG are as follows [27]:

– heterogeneity of communication channels and

protocols used by HDIoT devices;

– protocol conversion capability;

– support for the dynamic mobility of various IoT

sensors;

– local analytics capability, specifically the

integration of Artificial Intelligence for preliminary

filtering, classification, and short-term forecasting;

– local data processing followed by aggregation and

transmission to the fog layer;

– Over-The-Air (OTA) update capability, defined

as the remote updating of software, firmware, or device

configurations via wireless or network channels without

physical access to the device;

– assurance of real-time operation in heterogeneous

and unstable networks.

The IELG typically consists of five main layers

(Fig. 1).

Fig. 1. IELG Architecture for HDIoT

1.1. Device Connectivity Layer. This layer

provides connectivity between the gateway and IoT end

devices. It supports both wired interfaces

(RS485/Modbus, CAN, Ethernet, BACnet, OPC-UA),

and wireless technologies (Wi-Fi, BLE, Zigbee, Z-Wave,

Thread, LoRaWAN, NB-IoT, 4G/5G). The key functions

of this layer include:

– collecting data from sensors;

Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

52

– performing initial data validation and

normalization;

– managing communication protocols such as

MQTT, CoAP, Modbus, OPC-UA.

1.2. Data Management Layer. This level performs

data preprocessing for subsequent AI analysis. This

involves the following operations:

– buffering data in local queues and caching;

– filtering and deduplicating data, handling noise;

– aggregating data within time windows;

– converting formats;

– managing routing;

– transmitting data to the fog or cloud IoT layers.

The following technologies are employed:

Lightweight databases (SQLite, InfluxDB,

TimescaleDB) and message brokers (MQTT Broker,

Kafka-lite, EMQX).

1.3. Edge AI Layer (Inference Layer). This layer

serves as the ‘brain’ of the intelligent gateway. It is

capable of autonomously executing the following tasks

when required:

– running ML/DL models locally;

– detecting anomalies;

– short-term prediction (predictive maintenance);

– computer vision tasks;

– making decisions in real-time.

In this context, the following accelerator processors

are used: TPU: Google Coral; GPU: NVIDIA Jetson;

NPU: ARM Ethos-U, Huawei Ascend; VPU: Intel

Movidius.

Such processors represent the optimal solution for

the IoT ecosystem. The most effective frameworks and

inference engines are: TensorFlow Lite; ONNX

Runtime; OpenVINO; NVIDIA TensorRT; PyTorch

Mobile.

1.4. Edge Containerization and Services Layer

(Edge Services Layer). This layer handles the

deployment of components and microservices, execution

of updates, AI model deployment, and application

lifecycle management.

1.5. Security Layer. This layer spans all

architectural levels and provides:

– on-device data encryption;

– TLS/DTLS for communication protocols;

– certificate management;

– access control (RBAC).

2. Key Testing Aspects of an IELG for HDIoT

Testing the intelligent high-density IoT gateway

involves specific unique features, most of which arise

from the presence of a vast number of heterogeneous

devices operating over diverse protocols, as well as from

highly non-uniform distributed loads [28]. Furthermore,

testing must encompass network, hardware, behavioral,

security, and intelligent aspects [29, 30].

It should also be noted that testing such a device is

inherently time-consuming and resource-intensive,

because:

– some tests require real Radio Frequency (RF)

traffic;

– some tests take minutes to complete (e.g., network

recovery);

– there are dependencies on hardware setups,

timing constraints, sensor lifespans, etc.

Thus, the issue of synthesizing a test pool for the

intelligent high-density IoT gateway becomes highly

relevant. Considering the large number of existing tests

for verifying individual gateway components, the

problem of synthesis essentially reduces to identifying an

optimal test set.

Therefore, it is necessary to solve a combinatorial

problem of selecting an optimal configuration within a

very large state space, where traditional methods become

inefficient [31].

A near-optimal solution can be found more rapidly

using evolutionary algorithms [32]. In particular, genetic

algorithms can be considered. For this purpose, an

individual test is treated as a gene, and a separate scenario

is treated as a chromosome. Consequently, the current

population consists of a set of scenarios, and the fitness

function evaluates the quality of the current population.

The fitness function must evaluate the effectiveness

of the selected population for fault detection, gateway

loading, and verifying its reliability. Considering the

features of this intelligent gateway, compactness

(minimized test set) and testing speed (reduced execution

time) serve as crucial factors in designing the fitness

function. At the same time, component coverage should

remain as high as possible. Therefore, it is necessary to

first select a fitness function that accounts for the overall

quality of the test suite.

Existing constraints and the convergence rate of the

genetic algorithm can be tuned via crossover parameters.

3. Genetic algorithm

for test pool synthesis for IELG

Let there be a requirement to test an IELG

consisting of N components, composed of NF functional,

NP protocol, NС code, and NS security components, where

 NF + NP + NC + NS = N. (1)

The tests are numbered from 1 to N, where the first

NF numbers are allocated to functional components.

Testing can be performed using a set of К tests.

Each test can verify several gateway components. The

‘test-component’ relation is defined by the Boolean

matrix

 W = (wkn), k = 1..K, n = 1..N, (2)

where wkn = 1, if test with index k verifies component n;

otherwise wkn = 0.

The execution time of each test is defined by the

vector

 V = (vk), k = 1..K. (3)

Some tests can be executed in parallel. However,

this leads to an increase in execution time.

The grouping of tests into such subsets is defined

by the matrix

 S= (sk1,k2), k1, k2 = 1..K, k1  k2, (4)

where sk1,k2 = 0, if tests indexed by k1 and k2 cannot be

executed in parallel. In cases where parallel execution is

possible, sk1,k2 represents the percentage by which the

execution time of these tests increases.

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

53

In addition, the overall execution time for IELG

testing is bounded by Tmax.

A classical genetic algorithm is proposed to find a

near-optimal solution.

Each single test represents a gene. A chromosome

consists of a collection of genes that represent a potential

test set configuration. Formally, each chromosome is

described by a Boolean vector

 С = (сk), k = 1..K, (5)

where сk = 1, if the gene with index k is included in the

given chromosome; otherwise сk = 0.

The number of chromosomes in the m-th generation

constitutes І(m). To avoid excessively small test set sizes,

a constraint is imposed on the minimum number of tests

in a chromosome:

1

K

k min
k

c K

=

 , (6)

where minK – the minimum permissible number of tests

allowed in the solution set.

The initial population P(1) of size І(1) is generated

randomly, subject to the inequality (6):

 P(1) = {C11, C12,…,C1i,…, C1I(1)}, (7)

where C1i = (c1ik), i = 1.. І(1), k = 1..K.

The sequence of populations is defined by the tuple

  = (P(1), P(2), …, P(), …), (8)

where  – the sequential number of the current population,

and card P() = І().

Sequence (8) terminates when the current population

satisfies one of the genetic algorithm's termination

conditions.

To simplify the notation, the generation index is

omitted when considering the current population.

3.1. Test pool execution time. The following

algorithm is proposed to calculate the average duration of

the test set defined by Ci = (cik).

Step 0. Preliminarily, two auxiliary vectors of

length К are initialized:

 R = (rk) = (сk), k = 1..K; (9)

 T = (tk), k = 1..K,

 tk = 0  k  1..K. (10)

Additionally, at this step, a variable j is introduced

as the index of the current test under analysis, where

j = 1..K; j = 0.

Step 1. At this step, the process proceeds to the next

test; j = j + 1. If j > K, the process proceeds to step 3.

Step 2. If rj = 0, the current test is not included in

the given chromosome; therefore, the process proceeds to

Step 1.

Otherwise, the test execution time is established and

recorded in the corresponding element of vector T:

 tj = vj. (11)

Subsequently, a check is performed for tests that

can be executed in parallel with test j. This is

accomplished via a sequential analysis of the rows of

matrix S, starting from the current test:

for  in range (j, K + 1):

 if (r = 1) and (si > 0):

 r = 0

 if v  (1 + si) > 0:

 tj = v  (1 + si)

Consequently, the possibility of parallel execution

of certain tests is taken into account. The process then

proceeds to Step 1.

Step 3. Upon completion, the test execution

duration vector T is obtained. Thus, the mean duration of

the test set specified by chromosome Ci, is calculated as

 ()
1

ki

K

i
k

С t

=

= =  . (12)

3.2. Fitness function formulation. The test count

for the n-th component (n = 1..N) using chromosome Ci

is computed as

 '

1

K

n ik kn
k

c w

=

=  . (13)

When formulating the fitness function, priority

should be given to components with lower test count in the

synthesized set. Furthermore, functional components take

precedence over other component groups. Therefore,

during test coverage normalization, the following

normalized values are derived for the components:

'

' '

' '

0, 0;

1 , 0, ;

2 , 0, .

n

n n n F

n n F

n N

n N

 =



=  


 



  

 

 (14)

Thus, the fitness function for chromosome Сі takes

the following form:

 () 1
1 2 ,

N
nn max i

і
F max min

С
N N

= −
 =  + 

+ −

   
 

 
 (15)

where 1 2,  are weight coefficients, 1 2 1+ =  ;

,max min  – are the maximum and minimum possible

durations for gateway testing using subsets chosen from

the К test pool.

The values max and min are calculated using the

presented algorithm for determining the average test set

duration:

 () (), 1, ,1, 1 ;max max maxC C= =  (16)

 ()
1

, ,
K

min min min,k min
k

C c K

=

= =  (17)

where chromosome maxC contains all possible tests, and

chromosome minC represents the minimum set size,

containing the fastest available tests.

3.3. Crossover operator specifics. The crossover

operator operates on the current population. Therefore, it

is necessary to determine the essential general

characteristics of the population.

Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

54

The following parameter characterizes the coverage

of gateway components by the current population's

chromosomes:

()()1 1

,

K I
ikk i

c

K

= =

+ =
 

 (18)

where ()
0, 0;

1 0.

x
x

x

=
= 




This parameter takes values in the interval from 1/К to 1,

with the maximum value 1+ = being achieved in the

case of complete test coverage of the gateway

components.

One of the algorithm termination conditions is

exceeding the minimum predefined fraction of tested

gateway components min , i.e.,

 min .+   (19)

Let MN– denote the set of gateway components that

remain untested within the current population.

Accordingly, the fraction of untested gateway

components is

 1 ,− + = −  (20)

while the number of unserved components is:

 ()()1 1
1 .

K I
ikk i

N c− = =
= −  (21)

Therefore, card MN– = N– .

Based on the objective of enhancing component test

coverage, the following conditions are added to the

crossover mechanism:

1) if condition (19) is not satisfied for the current

population, the size of the next population is increased, i.e.,

 І(+1) > І(), (22)

where  – is the index of the current population;

2) genes from the set of untested gateway

components MN–, are subject to mutation; moreover, as

N– increases, the percentage of mutated genes increases

too.

Furthermore, the testing time constraint is

significant for the intelligent gateway. Consequently,

chromosomes where Tі > Tmax, are excluded from

reproduction.

4. Discussion of results

To verify the obtained results, a generalized model

of an AI-Enabled Secure Multi-Protocol IoT Edge

Gateway was considered. This gateway operates at the

network edge, handling sensor data processing, security,

and autonomous analytics. The testing targeted 18

components responsible for network functions, protocol

integration, machine learning, and hardware

management:

− n1, token validation & revocation list;

− n2, MQTT connector (QoS handling);

− n3, MQTT session & state management;

− n4, CoAP large-payload handling;

− n5, REST API gateway;

− n6, packet parser;

− n7, load balancer & dispatcher;

− n8, upstream health check;

− n9, stream pre-processor;

− n10, anomaly detector & ML pipeline;

− n11, OTA & update manager;

− n12, sensor ingestion pipeline;

− n13, buffering subsystem;

− n14, power management & battery monitor;

− n15, hardware control & reset manager;

− n16, cache subsystem;

− n17, metrics exporter & telemetry;

− n18, notification pipeline.

A set of 30 tests were proposed for the testing

process. Each test was capable of testing between 1 and

6 different gateway components.

Figure 2 illustrates the simulation results regarding

the relationship between total testing time, gateway

component coverage requirements, and the genetic

algorithm's initial population size.

Fig. 2. Results of the gateway testing time calculation

50

100

150

200

250

300

80 82 84 86 88 90 92 94 96 98

To
ta

l t
es

ti
n

g
ti

m
e

Test coverage percentage

I(1)=10 I(1)=25 I(1)=50 Tmax

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

55

It is evident that the testing time rises with stricter

coverage requirements. For small initial populations,

the testing time grows quickly, converging to the

maximum. However, a significant increasing the

initial population size (when the population size is

greater than the chromosome size) provides negligible

time benefits.

Similar conclusions regarding the initial

population size can also be extended to the analysis of

the tests used (Fig. 3).

Fig. 3. Test count analysis

Conclusions

The article proposes a method for synthesizing a

test pool for an edge-layer intelligent gateway in high-

density IoT. The following tasks were considered when

developing the method:

1. A five-layer architecture of an edge-layer

intelligent gateway for high-density IoT is proposed. The

operational specifics of the gateway and the particular

aspects of its testing are identified.

2. The operational specifics of the gateway and the

particular aspects of its testing are identified.

3. The task of synthesizing the test pool is reduced to

a combinatorial problem of selecting an optimal

configuration within an extremely large state space. To

solve it, the use of a classical genetic algorithm is proposed.

The proposed algorithm made it possible, within

an acceptable time, to obtain a test pool with nearly

minimal execution time, a minimal number of tests, and

maximal coverage of the gateway components.

Future research concerns the development of a

method for reducing the dimensionality of the state space

of individual tests for gateway components.

Conflicts of interest

The authors declare that they have no conflicts of

interest in relation to the current study, including

financial, personal, authorship, or any other, that could

affect the study, as well as the results reported in this

paper.

Use of artificial intelligence

The authors confirm that they did not use artificial

intelligence technologies when creating the current work.

Acknowledgements

The study was funded by the Ministry of Education

and Science of Ukraine in the framework of the research

project 0125U001544 on the topic “Methodology for

ensuring the processes of monitoring and controlling the

implementation of project and program portfolios for

project offices in the context of Ukraine's reconstruction”.

REFERENCES

1. Lee, B.M. (2025), “Efficient Resource Management for Massive MIMO in High-Density Massive IoT Networks”, IEEE

Transactions on Mobile Computing, vol. 24(3), pp. 1963–1980, doi: https://doi.org/10.1109/TMC.2024.3486712

2. Kuchuk, H., Mozhaiev, O., Tiulieniev, S., Mozhaiev, M., Kuchuk, N., Tymoshchyk, L., Lubentsov, A., Onishchenko, Y.,

Gnusov, Y. and Tsuranov, M. (2025), “Devising a method for increasing data transmission speed in monitoring systems based

on the mobile high-density Internet of Things”, Eastern-European Journal of Enterprise Technologies, 3(4 (135)), pp. 52–61,

doi: https://doi.org/10.15587/1729-4061.2025.330644

3. Kuchuk, H., Mozhaiev, O., Tiulieniev, S., Mozhaiev, M., Kuchuk, N., Lubentsov, A., Onishchenko, Yu., Gnusov, Yu., Brendel,

O. and Roh, V. (2025), “Devising a method for energy-efficient control over a data transmission process across the mobile

high-density Internet of Things”, Eastern European Journal of Enterprise Technologies, vol. 4(4(136)), pp. 46–57, doi:

https://doi.org/10.15587/1729-4061.2025.336111

4. Moreno-Motta, J., Moreno-Vera, F. and Moreno, F.A. (2022), “MorArch: A Software Architecture for Interoperability to

Improve the Communication in the Edge Layer of a Smart IoT Ecosystem”, Lecture Notes in Networks and Systems, vol 286,

Springer, Singapore, pp. 185–195, doi: https://doi.org/10.1007/978-981-16-4016-2_18

5

10

15

20

25

30

80 82 84 86 88 90 92 94 96 98

N
u

m
b

er
 o

f t
es

ts
 u

se
d

Test coverage percentage

I(1)=10 I(1)=25 I(1)=50 K=30

https://www.scopus.com/sourceid/25038?origin=resultslist
https://www.scopus.com/sourceid/25038?origin=resultslist
https://doi.org/10.1109/TMC.2024.3486712
https://doi.org/10.15587/1729-4061.2025.330644
https://www.scopus.com/pages/publications/105015573766?origin=resultslist
https://www.scopus.com/pages/publications/105015573766?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://doi.org/10.15587/1729-4061.2025.336111
https://doi.org/10.1007/978-981-16-4016-2_18

Advanced Information Systems. 2026. Vol. 10, No. 1 ISSN 2522-9052

56

5. Vakaliuk, T.A., Andreiev, O.V., Dubyna, O.F., Korenivska, O.L. and Andreieva, Y.O. (2024), “Use of wireless technologies

in IoT projects”, Journal of Edge Computing, vol. 3, no. 2, pp.147–167, doi: https://doi.org/10.55056/jec.750

6. Kuchuk, N., Kashkevich, S., Radchenko, V., Andrusenko, Y. and Kuchuk, H. (2024), “Applying edge computing in the

execution IoT operative transactions”, Advanced Information Systems, vol. 8, no. 4, pp. 49–59, doi:

https://doi.org/10.20998/2522-9052.2024.4.07

7. Abdelwahed, S.H., Hefny, I.M., Hegazy, M., Said, L.A., and Soltan, A. (2025), “Survey of IoT multi-protocol gateways:

Architectures, protocols and cybersecurity”, Internet of Things (The Netherlands), vol. 33, article number 101703, doi:

https://doi.org/10.1016/j.iot.2025.101703

8. Kuchuk, H., Husieva, Y., Novoselov, S., Lysytsia, D., Krykhovetskyi, H. (2025), “Load Balancing of the layers Iot Fog-Cloud

support network”, Advanced Information Systems, vol. 9, no. 1, pp. 91–98, doi: https://doi.org/10.20998/2522-9052.2025.1.11

9. Castellanos, W., Macias, J., Pinilla, H., and Alvarado, J. D. (2020), “Internet of things: a multiprotocol gateway as solution of

the interoperability problem”, Mechatronics, Electronics and Telecommunications Advances Towar Industry 4.0, pp. 85–105,

doi: https://doi.org/10.48550/arXiv.2108.00098

10. Pagliari, E., Davoli, L. and Ferrari, G. (2024), “Harnessing Communication Heterogeneity: Architectural Design, Analytical

Modeling, and Performance Evaluation of an IoT Multi-Interface Gateway”, IEEE Internet of Things Journal, vol. 11(5),

pp. 8030–8051, doi: https://doi.org/10.1109/JIOT.2023.3317672

11. Rezanov, B. and Kuchuk, H. (2023), “Model of elemental data flow distribution in the Internet of Things supporting Fog

platform”, Innovative Technologies and Scientific Solutions for gateway Industries, vol. 2023(3), pp. 88–97, doi:

https://doi.org/10.30837/ITSSI.2023.25.088

12. Kuchuk, H., Mozhaiev, O., Kuchuk, N., Tiulieniev, S., Mozhaiev, M., Gnusov, Y., Tsuranov, M., Bykova, T., Klivets, S., and

Kuleshov, A. (2024), “Devising a method for the virtual clustering of the Internet of Things edge environment”, Eastern-

European Journal of Enterprise Technologies, vol. 1, no. 9 (127), pp. 60–71, doi: https://doi.org/10.15587/1729-

4061.2024.298431

13. Cao, W., Kosenko, V. and Semenov, S. (2022), “Study of the efficiency of the software security improving method and

substantiation of practical recommendations for its use”, Innovative Technologies and Scientific Solutions for Industries,

vol. 1(19), pp. 55–64, doi: https://doi.org/10.30837/ITSSI.2022.19.055

14. Shah, Q. A., Shafi, I., Ahmad, J., Alfarhood, S., Safran, M., and Ashraf, I. (2023), “A Meta Modeling-Based Interoperability

and Integration Testing Platform for IoT Systems”, Sensors, vol. 23(21), 8730, doi: https://doi.org/10.3390/s23218730

15. Oliveira, F., Costa, D.G., Assis, F., and Silva, I. (2024), “Internet of Intelligent Things: A convergence of embedded

systems, edge computing and machine learning”, Internet of Things (The Netherlands), vol. 26, 101153, doi:

https://doi.org/10.1016/j.iot.2024.101153

16. Zhurylo, O., Liashenko, O. & Avetisova, K. (2023), “Hardware Security Overview of Fog Computing End Devices in the

Internet of Things”, Innovative Technologies and Scientific Solutions for Industries, vol, 23, pp. 57–71, doi:

https://doi.org/10.30837/ITSSI.2023.23.057

17. Urblik, L., Kajati, E., Papcun, P. and Zolotová, I. (2024), “Containerization in Edge Intelligence: A Review”, Electronics,

vol. 13, no. 7, 1335, doi: https://doi.org/10.3390/electronics13071335

18. Shah, Q. A., Shafi, I., Ahmad, J., Alfarhood, S., Safran, M., and Ashraf, I. (2023), “A Meta Modeling-Based Interoperability

and Integration Testing Platform for IoT Systems”, Sensors, vol. 23, no. 21, 8730, doi: https://doi.org/10.3390/s23218730

19. Kumar, S., Napte, K., Rani, R. and Pippal, S.K. (2025), “A method for IoT devices test case generation using language models”,

Methodsx, vol. 14, 103340, doi: https://doi.org/10.1016/j.mex.2025.103340

20. Marques, F., Morgado, A., Fragoso Santos, J. and Janota, M. (2022), “TestSelector: Automatic Test Suite Selection for Student

Projects”, Lecture Notes in Computer Science, vol 13498. Springer, Cham. https://doi.org/10.1007/978-3-031-17196-3_17

21. Kuchuk, H., Mozhaiev, O., Tiulieniev, S., Mozhaiev, M., Kuchuk, N., Tymoshchyk, L., Lubentsov, A., Gnusov, Y., Klivets,

S. and Kuleshov, A. (2025), “Devising a method for stabilizing control over a load on a cluster gateway in the internet of things

edge layer”, Eastern-European Journal of Enterprise Technologies, vol. 2(9(134)), pp. 24–32, doi:

https://doi.org/10.15587/1729-4061.2025.326040

22. Olsthoorn, M. and Panichella, A. (2021), “Multi-objective Test Case Selection Through Linkage Learning-Based Crossover”,

Lecture Notes in Computer Science(), vol 12914, Springer, Cham. doi: https://doi.org/10.1007/978-3-030-88106-1_7

23. Yareshchenko, V. and Kosenko, V. (2024), “low-power coding method in data transmission systems”, Innovative Technologies

and Scientific Solutions for Industries, vol. 3(29), pp. 121–129, doi: https://doi.org/10.30837/2522-9818.2024.3.121

24. Semenov, S., Mozhaiev, O., Kuchuk, N., Mozhaiev, M., Tiulieniev, S., Gnusov, Yu., Yevstrat, D.,Chyrva, Y., Kuchuk, H.

(2022), “Devising a procedure for defining the general criteria of abnormal behavior of a computer system based on the

improved criterion of uniformity of input data samples”, Eastern-European Journal of Enterprise Technologies, vol. 6(4-120),

pp. 40–49, doi: https://doi.org/10.15587/1729-4061.2022.269128

25. Garg, K. and Shekhar, S. (2024), “Test case prioritization based on fault sensitivity analysis using ranked NSGA-2”, Int. j. inf.

tecnol., vol.16, pp. 2875–2881, doi: https://doi.org/10.1007/s41870-024-01868-0

26. Dogea, R., Yan, X. T., and Millar, R. (2023), “Implementation of an edge-fog-cloud computing IoT architecture in aircraft

components”, MRS Communications, vol. 13(3), pp. 416–424, doi: https://doi.org/10.1557/s43579-023-00364-z

27. Zhang, Y., Yu, H., Zhou, W., and Man, M. (2023), “Application and research of IoT architecture for end-net-cloud edge

computing”, Electronics, vol. 12(1), 1, doi: https://doi.org/10.3390/electronics12010001

28. Kuchuk, H., Kalinin, Y., Dotsenko, N., Chumachenko, I. and Pakhomov, Y. (2024), “Decomposition of integrated high-density

IoT data flow”, Advanced Information Systems, vol. 8, no. 3, pp. 77–84, doi: https://doi.org/10.20998/2522-9052.2024.3.09

29. Kyrychok, R., Laptiev, O., Lisnevsky, R., Kozlovsky, V. and Klobukov V. (2022), “Development of a method for checking

vulnerabilities of a corporate network using Bernstein transformations”, Eastern-European Journal of Enterprise Technologies,

vol. 1, no. 9 (115), pp. 93–101, doi: https://doi.org/10.15587/1729-4061.2022.253530

30. Mani Kiran, C.V.N.S., Jagadeesh Babu, B. and Singh, M.K. (2023), “Study of Different Types of Smart Sensors for IoT

Application Sensors”, Smart Innovation, Systems and Technologies, vol. 290, pp. 101–107, doi: https://doi.org/10.1007/978-

981-19-0108-9_11

https://doi.org/10.55056/jec.750
https://www.scopus.com/authid/detail.uri?authorId=57196006131
https://www.scopus.com/authid/detail.uri?authorId=58244269900
https://www.scopus.com/authid/detail.uri?authorId=57189376280
https://www.scopus.com/authid/detail.uri?authorId=59412400500
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85209218056&origin=recordpage
https://www.scopus.com/record/display.uri?eid=2-s2.0-85209218056&origin=recordpage
https://www.scopus.com/sourceid/21101186339?origin=resultslist
https://doi.org/10.20998/2522-9052.2024.4.07
https://doi.org/10.1016/j.iot.2025.101703
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=57194413028
https://www.scopus.com/authid/detail.uri?authorId=57201604404
https://www.scopus.com/authid/detail.uri?authorId=57220049627
https://www.scopus.com/authid/detail.uri?authorId=58697828100
https://www.scopus.com/record/display.uri?eid=2-s2.0-85219225097&origin=recordpage
https://www.scopus.com/record/display.uri?eid=2-s2.0-85219225097&origin=recordpage
https://www.scopus.com/sourceid/21101186339?origin=resultslist
https://doi.org/10.20998/2522-9052.2025.1.11
https://doi.org/10.48550/arXiv.2108.00098
https://www.scopus.com/sourceid/21100338350?origin=resultslist
https://doi.org/10.1109/JIOT.2023.3317672
https://www.scopus.com/pages/publications/105019104684?origin=resultslist
https://www.scopus.com/pages/publications/105019104684?origin=resultslist
https://doi.org/10.30837/ITSSI.2023.25.088
https://doi.org/10.15587/1729-4061.2024.298431
https://doi.org/10.15587/1729-4061.2024.298431
https://www.scopus.com/pages/publications/105019206046?origin=resultslist
https://www.scopus.com/pages/publications/105019206046?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57190443921&origin=resultslist
https://doi.org/10.30837/ITSSI.2022.19.055
https://doi.org/10.3390/s23218730
https://www.scopus.com/sourceid/21101058910?origin=resultslist
https://doi.org/10.1016/j.iot.2024.101153
https://doi.org/10.30837/ITSSI.2023.23.057
https://doi.org/10.3390/electronics13071335
https://doi.org/10.3390/s23218730
https://www.scopus.com/sourceid/21100317906?origin=resultslist
https://doi.org/10.1016/j.mex.2025.103340
https://doi.org/10.1007/978-3-031-17196-3_17
https://doi.org/10.15587/1729-4061.2025.326040
https://doi.org/10.1007/978-3-030-88106-1_7
https://www.scopus.com/pages/publications/105019095807?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57190443921&origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57190443921&origin=resultslist
https://doi.org/10.30837/2522-9818.2024.3.121
https://www.scopus.com/authid/detail.uri?authorId=57202908821
https://www.scopus.com/authid/detail.uri?authorId=57201729490
https://www.scopus.com/authid/detail.uri?authorId=57196006131
https://www.scopus.com/authid/detail.uri?authorId=57875703100
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85147680553&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85147680553&origin=resultslist
https://doi.org/10.15587/1729-4061.2022.269128
https://doi.org/10.1007/s41870-024-01868-0
https://doi.org/10.1557/s43579-023-00364-z
https://doi.org/10.3390/electronics12010001
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=57204677409
https://www.scopus.com/authid/detail.uri?authorId=57204939770
https://www.scopus.com/authid/detail.uri?authorId=57194419994
https://www.scopus.com/authid/detail.uri?authorId=57190816915
https://www.scopus.com/record/display.uri?eid=2-s2.0-85208634521&origin=recordpage
https://www.scopus.com/record/display.uri?eid=2-s2.0-85208634521&origin=recordpage
https://www.scopus.com/sourceid/21101186339?origin=resultslist
https://doi.org/10.20998/2522-9052.2024.3.09
https://doi.org/10.15587/1729-4061.2022.253530
https://www.scopus.com/sourceid/21100204111?origin=resultslist
https://doi.org/10.1007/978-981-19-0108-9_11
https://doi.org/10.1007/978-981-19-0108-9_11

ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1

57

31. Kuchuk, H., Mozhaiev, O., Tiulieniev, S., Mozhaiev, M., Kuchuk, N., Tymoshchyk, L., Onishchenko, Yu., Tulupov, V.,

Bykova, T. and Roh, V. (2025), “Devising a method for forming a stable mobile cluster of the internet of things fog layer”,

Eastern-European Journal of Enterprise Technologies, 2025, vol. 1, no. 4(133), pp. 6–14, doi: https://doi.org/10.15587/1729-

4061.2025.322263

32. Taha, Z.Y., Abdullah, A.A. and Rashid, T.A. (2025), “Optimizing feature selection with genetic algorithms: a review of

methods and applications”, Knowl Inf Syst, vol. 67, pp. 9739–9778, doi: https://doi.org/10.1007/s10115-025-02515-1

Received (Надійшла) 12.10.2025

Accepted for publication (Прийнята до друку) 21.01.2026

ВІДОМОСТІ ПРО АВТОРІВ/ ABOUT THE AUTHORS

Панченко Володимир Іванович – старший викладач кафедри комп’ютерної інженерії та програмування, Національний

технічний університет «Харківський політехнічний інститут», Харків, Україна;

Volodymyr Panchenko – Senior Lecturer of the Computer Engineering and Programming Department, National Technical

University «Kharkiv Polytechnic Institute», Kharkіv, Ukraine;

e-mail: Volodymyr.Panchenko@khpi.edu.ua; ORCID Author ID: https://orcid.org/0000-0003-3364-3398;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=58759071400.

Кучук Георгій Анатолійович – доктор технічних наук, професор, професор кафедри комп’ютерної інженерії та

програмування, Національний технічний університет “Харківський політехнічний інститут”, Харків, Україна;

Heorhii Kuchuk – Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming

Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: kuchuk56@ukr.net; ORCID Author ID: http://orcid.org/0000-0002-2862-438X;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=57057781300.

Носков Валентин Іванович – доктор технічних наук, доцент, професор кафедри комп’ютерної інженерії та

програмування, Національний технічний університет “Харківський політехнічний інститут”, Харків, Україна;

Valentyn Noskov – Doctor of Technical Sciences, Associate Professor, Professor of Computer Engineering and Programming

Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: valentyn.noskov@khpi.edu.ua; ORCID Author ID: http://orcid.org/0000-0002-7879-0706;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=57331254200.

Леонов Сергій Юрійович – доктор технічних наук, професор, професор кафедри комп’ютерної інженерії та

програмування, Національний технічний університет “Харківський політехнічний інститут”, Харків, Україна
Sergey Leonov – Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming Department,

National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: serleomail@gmail.com; ORCID Author ID: http://orcid.org/0000-0001-8139-0458;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=7005357987.

Ліпчанська Оксана Валентинівна – кандидат технічних наук, доцент, доцент кафедри комп’ютерної інженерії та

програмування, Національний технічний університет “Харківський політехнічний інститут”, Харків, Україна
Oksana Lipchanska – Candidate of Technical Sciences, Associate Professor, Associate Professor of Computer Engineering

and Programming Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: Oksana.Lipchanska@khpi.edu.ua; ORCID Author ID: http://orcid.org/0000-0003-4173-699X;

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=57218516877.

Метод синтезу тестового пулу для інтелектуального шлюзу граничного шару високощільного IoT

В. І. Панченко, Г. А. Кучук, В. І. Носков, С. Ю. Леонов, О. В. Ліпчанська

Анотація . Актуальність. Високощільні ІоТ-середовища характеризуються великим скупченням сенсорів і

пристроїв, які інтенсивно обмінюються даними в обмеженому просторі. За таких умов особливої ваги набувають

інтелектуальні шлюзи граничного шару. Такі шлюзи здатні локально обробляти інформацію, оптимізувати трафік і

забезпечувати узгоджену взаємодію різнорідних пристроїв. Розробка тестового пулу для інтелектуального шлюзу

граничного шару високощільного IoT є актуальною через швидке зростання кількості підключених пристроїв та

збільшення їх просторової щільності. У таких умовах шлюз має забезпечувати стабільну роботу попри високий рівень

радіоперешкод і конкуренцію за мережеві ресурси. Додатковою проблемою є гетерогенність IoT-середовища, тому що

пристрої використовують різні протоколи, мають різні формати даних і різні профілі навантаження. Без спеціально

сформованого тестового пулу неможливо надійно оцінити поведінку шлюзу за умов реалістичного міксу технологій та

топологій. Але внаслідок суттєвої гетерогенності простір можливих варіантів формування пулу має велику розмірність.

Крім того, існують суттєві часові та ресурсні обмеження при експлуатації тестового пулу. Предметом вивчення в статті

є методи формування тестових пулів. Метою статті є розробка методу синтезу тестового пулу для інтелектуального

шлюзу граничного шару високощільного ІoТ. Отримано такі результати. Запропонована п’ятирівнева архітектура

інтелектуального шлюзу граничного шару високощільного ІoТ. Визначені особливості функціонування шлюзу та

специфічні особливості при проведенні його тестування. Задача синтезу тестового пулу зведена до комбінаторної задачі

вибору оптимальної конфігурації у дуже великому просторі станів. Для її розв’язання запропоновано використовувати

класичний генетичний алгоритм. Запропонований алгоритм дозволив за прийнятний час отримати тестовий пул з

практично мінімальним часом виконання, мінімальною кількістю тестів та максимальним покриттям компонент шлюзу.

Висновок. Запропонований метод дозволяє у просторі станів великої розмірності сформувати тестовий пул для

інтелектуального шлюзу, який відповідає заданим вимогам. Напрям подальших досліджень стосується розробки методу

зменшення розмірності простору станів окремих тестів компонент шлюзу.

Ключові слова : Інтернет речей; комп’ютерна система; інтелектуальний шлюз; граничний шар; сенсори ІоТ.

https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=57201729490
https://www.scopus.com/authid/detail.uri?authorId=58095778100
https://www.scopus.com/authid/detail.uri?authorId=58983967300
https://www.scopus.com/authid/detail.uri?authorId=58697865800
https://www.scopus.com/record/display.uri?eid=2-s2.0-105000948165&origin=recordpage
https://www.scopus.com/record/display.uri?eid=2-s2.0-105000948165&origin=recordpage
https://www.scopus.com/sourceid/21100450083?origin=resultslist
https://doi.org/10.15587/1729-4061.2025.322263
https://doi.org/10.15587/1729-4061.2025.322263
https://doi.org/10.1007/s10115-025-02515-1
mailto:Volodymyr.Panchenko@khpi.edu.ua
https://orcid.org/0000-0003-3364-3398
https://www.scopus.com/authid/detail.uri?authorId=58759071400
http://orcid.org/0000-0002-2862-438X
https://www.scopus.com/authid/detail.uri?authorId=57057781300
mailto:valentyn.noskov@khpi.edu.ua
http://orcid.org/0000-0002-7879-0706
https://www.scopus.com/authid/detail.uri?authorId=57331254200
mailto:serleomail@gmail.com
http://orcid.org/0000-0001-8139-0458
https://www.scopus.com/authid/detail.uri?authorId=7005357987
mailto:Oksana.Lipchanska@khpi.edu.ua
http://orcid.org/0000-0003-4173-699X
https://www.scopus.com/authid/detail.uri?authorId=57218516877

