
ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1 

21 

UDC 004.9 doi: https://doi.org/10.20998/2522-9052.2026.1.03 
 

Oleh Pihnastyi, Georgii Kozhevnikov, Maksym Sobol 
 

National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine 
 

INPUT MATERIAL FLOW VALUES GENERATOR OF A CONVEYOR 

WITH A GIVEN CORRELATION FUNCTION AND DISTRIBUTION LAW 
 

Abstract .  The object of this study is a stationary stochastic input flow of material arriving at the input of an industrial 

conveyor transport system. The goal of this research is to develop a universal, statistically mathematical model of the input 

flow of materials, fully identifiable from a single long-term experimental implementation, as well as to create a multi-level 

system of dimensionless stochastic similarity criteria, enabling the objective classification and comparison of heterogeneous 

flows with similar structural properties. The results obtained. A simplified canonical decomposition of a stationary ergodic 

process with a minimum number of random coefficients is proposed, reproducing the specified mathematical expectation, 

variance, correlation function, and one-dimensional probability density of flow values. Analytical expressions are derived 

for approximating the distribution density of random coefficients with guaranteed fulfillment of the conditions of centering, 

normalization, and non-negativity. A multilevel system of stochastic similarity criteria is developed, including aggregated 

dimensionless criteria, a functional similarity criterion based on a normalized autocorrelation function, and a functional 

criterion based on quantile-quantile diagrams. A dimensionless flow normalization method is proposed, ensuring model 

transferability between conveyor systems differing by orders of magnitude in throughput and time scales. Using six 

independent long-term implementations of real conveyor systems in the mining and processing industries, the accuracy of 

the developed stochastic input flow generator using an analytical approximation of random coefficients is demonstrated.  

Conclusion. The developed methodology enables the classification and comparison of material input flows in transport 

systems and serves as the basis for a universal approach to constructing mathematical models and flow control algorithms 

under stochastic uncertainty. 

Keywords:  material flow; stochastic stationary process; canonical decomposition; dimensionless similarity criteria; 

conveyor; transport systems. 
 

Introduction 

Modern industrial transport and processing systems 

are characterized by a high degree of complexity and the 

stochastic nature of the processes that determine their 

operation. One of the key elements of such systems is 

conveyor transport lines, which ensure the continuous 

supply and redistribution of material flows. Their 

operational efficiency directly depends on the nature and 

structure of the input material flow, which in real 

conditions is stochastic due to fluctuations in the 

productivity of previous process units, uneven supply, 

and variations in the physical and mechanical properties 

of the transported material. 

Reducing overall costs in the extraction and 

processing of minerals is largely determined by the 

optimization of transport processes, in particular, by 

reducing the specific costs of moving raw materials [1]. 

One of the most common ways to improve efficiency is to 

ensure uniform distribution of material along the conveyor 

line, which facilitates more efficient use of transport 

capacity and increases system productivity [2–4]. 

Improving the uniformity of conveyor loading not only 

increases productivity but also reduces operating costs 

associated with equipment wear and maintenance [5–7]. 

The stable operation of transport systems depends largely 

on the nature of the incoming material flow, which is 

affected by stochastic feed fluctuations, uneven supply 

from adjacent process units, and control features. 

However, fluctuations in the incoming material 

flow, caused by a number of factors, remain a significant 

obstacle to stable system operation. These include, first 

and foremost, the stochastic nature of the incoming 

material flow entering the system [8]. Furthermore, the 

operation of control subsystems, including belt speed 

control mechanisms [9–11] or material feed from storage 

bins [12], has a significant impact. Accurate modeling of 

both stationary and non-stationary stochastic input 

material flows is critical for developing effective 

strategies to control the flow characteristics of conveyor 

lines, performing comparative evaluations of alternative 

routing schemes in extensive transportation networks 

[13, 14], and improving the overall stability and 

reliability of such systems [15–17]. 

The design and subsequent tuning of the 

characteristics of such systems require a thorough 

analysis of the statistical patterns of input material flows 

[18]. In real-world conditions, these flows exhibit 

significant stochastic fluctuations and temporal 

variability, which creates significant obstacles to the 

development of their mathematical descriptions. The 

presence of correlated random factors, as well as the 

heterogeneity and variability of flow properties, 

necessitates the development of more universal and 

accurate modeling methods that take into account the 

actual mechanisms for generating stochastic input 

material flows in conveyor transport systems [19]. 

Control subsystems also play an important role, 

including belt speed control mechanisms [9, 10, 11, 20] 

and systems for metering material feed from storage bins 

[12]. These factors create a complex dynamic flow 

structure, which introduces additional fluctuations and 

complicates the problem of maintaining a stable transport 

mode. Adequately describing the behaviour of conveyor 

systems requires correct modeling of the input material 

flow as a stochastic process with specified statistical 

characteristics. This requires not only determining the 

mathematical expectation and variance, but also 

accounting for correlations between successive flow 

values and the shape of its distribution. Traditional 
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models based on the assumption of normality or 

independence of random effects do not reflect the real 

characteristics of stochastic flows, leading to errors in the 

analysis of the dynamic and energy parameters of 

transport systems. 

In recent years, there has been growing interest in 

the use of stochastic modeling methods that allow the 

statistical properties of real material flows to be 

reproduced based on experimental data. However, the 

practical application of such models requires taking into 

account the limited scope of observations and preserving 

physically meaningful statistical characteristics. A 

promising solution to this problem is the use of a 

canonical decomposition of a stochastic process into 

orthogonal coordinate functions, which allows the input 

flow to be formed as a superposition of deterministic and 

stochastic components. This approach enables direct 

comparison of the model's statistical characteristics with 

experimental data and allows for the inclusion of 

aggregated similarity criteria linking the mathematical 

expectation, standard deviation, correlation time, and 

characteristic time of flow property change. 

This paper proposes a model of a stochastic 

stationary input material flow constructed using the 

canonical decomposition of a stochastic process and an 

approximation of the distribution density of its random 

components. Analytical relationships for determining the 

canonical decomposition coefficients that ensure the 

centering and non-negativity of the distribution density 

are considered. It is shown that a limited representation 

of the distribution density using a small number of terms 

ensures satisfactory accuracy while preserving the 

physical meaning of the model. In recent years, the 

application of artificial neural networks has been rapidly 

developing, both for diagnosing the condition of 

conveyor belts and rollers [21, 22, 23, 24], and for 

improving the efficiency and stability of mining process 

control [25], forecasting the flow parameters of multi-

section conveyor systems [26], and constructing 

intelligent control systems based on embedded artificial 

intelligence [1, 22, 27]. This confirms the high potential 

of neural network methods for solving the problem of 

accurately approximating the distribution density of 

random coefficients in the canonical decomposition of a 

stochastic input flow. 

To improve the accuracy of approximation for 

complex distributions, a neural network approach is 

discussed, based on the use of a multilayer perceptron for 

calculating mathematical expectations and 

approximation parameters based on experimental data. 

The developed model enables the generation of 

stochastic input material flows with specified statistical 

characteristics, a correlation function, and an 

approximate distribution density of values, which makes 

it suitable for use in the analysis and optimization of flow 

parameters of conveyor systems. The proposed approach 

facilitates a more accurate reproduction of real-world 

operating conditions of transport lines, as well as the 

creation of digital twins of technological processes that 

take into account the stochastic nature of material flows. 

The aim of this article is to develop and 

theoretically substantiate a model of a stochastic 

stationary input material flow based on the canonical 

decomposition of a stochastic process, with an analytical 

determination of the parameters for approximating the 

distribution density of random coefficients. The proposed 

model is intended to create a generator of input material 

flows that reproduces a given correlation function and the 

distribution density of values corresponding to 

experimental data. 

The results of this article can be used to improve the 

accuracy of modeling, forecasting, and optimization of 

the operating modes of transport and processing systems. 

Statement of the problem 

Based on an analysis of modern industrial transport 

and technological systems characterized by a highly 

stochastic input material flows, this article formulates the 

problem of developing a mathematical model of a 

stationary stochastic material flow entering a conveyor 

line. The model must adequately reflect the physical 

mechanisms of fluctuation formation caused by uneven 

raw material supply from previous process links, the 

presence of correlated random disturbances, and the 

influence of control subsystems (belt speed control, 

metered feed from storage bins). A key requirement is to 

ensure accurate reproduction of a complete set of statistical 

characteristics – the mathematical expectation, variance, 

correlation function, and distribution density function – 

based on a limited set of experimental realizations. 

Formally, the problem is reduced to constructing a 

canonical decomposition of a stationary ergodic process. 

The problem statement includes solving the 

following interrelated subproblems: 

a) determining the statistical characteristics of the 

input material flow based on experimental realizations; 

b) evaluation of aggregated similarity criteria for 

the input material flow; 

c) construction of a simplified canonical 

decomposition of the stochastic input material flow; 

d) analytical approximation of the distribution 

density of random coefficients in the canonical 

decomposition of the stochastic input material flow; 

d) development of a generator of realizations of the 

stochastic input material flow. 

The solution to this problem will ensure the creation 

of a universal tool for stochastic modeling of input flows, 

applicable to the optimization of conveyor system 

operating modes, taking into account real-world 

stochasticity. 

Model of stochastic stationary 

input material flow 

The key parameters in modeling a stochastic 

stationary flow of material (t)  arriving at the input of a 

transport conveyor at time  0, dt t  are the 

mathematical expectation m , the standard deviation 

 , the correlation time   of the input material flow 

values, and the characteristic time t , which determines 

the scale of change in the statistical properties of the 

material flow. Taking into account the similarity criteria 

for a stochastic stationary material flow: 
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 1 ,
m

= 






     2 ,
t

= 






     ,dt t   () 

the model of a stochastic stationary flow of material, 

taking into account the canonical expansion in the 

coordinate functions on the interval  0,   , d   

can be represented in the following form [28]: 

 in 1( ) ( ),= +       2 ,j j=     ,d   () 
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   0,M ( ) =     2 1.M ( )  =
 
    () 

The coefficients of the canonical decomposition 0 , 

cj , sj  are centered random variables with the 

mathematical expectation: 

  0 0,cj sjM M M    =  =  =     () 

and the standard deviation:  

 2 2
0 04M   =

 
  2 2 2

cj sj jM M    =  =
   

  () 

The model of a stochastic stationary material flow 

(2) is represented by the sum of a deterministic term 1  

and a stochastic term ( )  . The aggregated similarity 

criteria of the input material flow (1) determine the 

relationship between the general statistical characteristics 

m ,  ,   without directly answering the questions 

of which distribution function and correlation function 

represent the input material flow. The similarity criterion 

2  is a time scaling factor that determines the 

characteristic time interval for comparative analysis as a 

ratio 2t =   . When modeling a stochastic stationary 

input material flow, a good choice is the value 102  . 

If possible, the maximum permissible value of the 

similarity criterion 2  should be selected, which allows 

the use of a rich set of experimental data for the analysis. 

In the comparative analysis of stochastic stationary 

material flows, the characteristic time for each n-th 

material flow is selected based on condition 

n 2 nt =   , where the similarity criterion value 2  is 

the same for all material flows and is the maximum 

possible value provided condition n dnt t , 1..n N=  is 

met. In some cases, assumption n dnt t , may be 

adopted, whereby additional data are added to time 

interval  ,dn nt t t   through extrapolation or other 

methods. 

In the analysis of stochastic stationary input 

material flows, the similarity criterion value ~ 1002  

[28] was used. A lower similarity criterion value could 

have been chosen in this article.  However, this would 

have reduced the volume of experimental data and, 

accordingly, the accuracy of the comparative analysis. 

The statistical characteristics of the canonical 

decomposition of the stochastic centered stationary input 

material flow ( )   (2), taking into account notation (8), 

are defined in [28, 29] and can be represented as: 

a) mathematical expectation: 

   

( ) ( )

0

1

( ) 2
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j

m M M

M M


=

= =  +

   +  +  =   

 

   
  () 

b) standard deviation:  
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c) correlation function 
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It is assumed that N realizations of the random 

process ( )  , 1..n N=  is available for constructing a 

model of the stochastic input material flow. Each 

realization ( )n   of the stochastic process over interval 

 0,   , 1=  is expanded into a Fourier series: 

0
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with constant expansion coefficients: 
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Mathematical expectation, standard deviation, and 

correlation function of the input flow of material can be 

calculated from N realizations of the random process 

( )   [28]: 
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The obtained formulas allow to calculate the 

standard deviation and the correlation function of the 

stochastic stationary flow of material according to N 

experimental realizations of the random process. If the 

material flow is a stationary and ergodic process, then its 

canonical decomposition has the form [28]: 
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The key simplification in the analysis of such a 

process is connected not so much with the absence of the 

term 0 / 2 , but with the fact that the statistical 

characteristics of the input flow of material: 

mathematical expectation (15), dispersion (16) and 

correlation function (17) can be estimated directly from 

one realization of the random process: 
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Such an approach becomes possible due to 

ergodicity, which ensures the equivalence of temporal 

averaging and averaging over the ensemble of 

realizations. Restrictions (24) are imposed on 

coefficients cj , sj  of the canonical expansion (19). If 

it is assumed that the coefficient cj  is a random 

variable, then the coefficient sj  is expressed through 

the random variable cj  in accordance with equation 

(24). Constraints (24) significantly simplify the type of 

canonical expansion of the initial expression for a 

random process, allow the transition from the canonical 

expansion (19) to the canonical expansion: 
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for the construction of which transformations are used [30]: 
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where j  is a random variable taking a value from the 

interval [0, 2 ] . Taking into account constraint (24), the 

canonical expansion (25) is represented as:  
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Material flow ( )   is a centered random process 

with statistical characteristics (9)–(11). Taking this into 

account, we present expressions for statistical 

characteristics in the form: 
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and we get the requirements: 
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Equation (33) is obtained from condition (31), from 

which follows 
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The density of the distribution of the random 

variable j  on the interval [0, 2 ]  in the form of an 

expansion is sought: 
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Taking into account the condition of normalization, 

the density of distribution ( )jf   and the equation for 

calculating the average value of function ( ) : 

2

0

( ) 1,jf d  =


  

2

0

( ) ( ) ( ) ,j jf d M     =  


  () 

as well as constraints (32), (33), the first coefficients of 

the density expansion of distribution ( )jf   can be 

determined: 
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
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 
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
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
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sin(2 )
0.s

M
C


= =


    

The expansion coefficients of 1cC , 1sC , 2cC , 2sC  

are equal to zero due to conditions (30), (31). These 

conditions ensure that the mathematical expectation (9) 

is equal to zero and the standard deviation (10) of the 

centered stochastic flow of material ( )   is equal to
2 . 

Since the distribution density ( )jf   of the random 

variable j  is for the centered stochastic flow of 

material ( )   this distribution density automatically 

satisfies the condition that the coefficients of the 

expansion 1cC , 1sC , 2cC , 2sC  are equal to zero when 

it is approximated by the canonical expansion (35). Thus, 

the density of distribution ( )jf  can be approximated by 

the following decomposition:  

3

1
( ) cos( ) sin( ).

2
j j cn j sn j

n

f  C n C n


=

 = +  + 


 () 

The coefficients cnC , snC  are chosen from the 

condition of non-negativity of the distribution density 

( ) 0jf   . The accuracy of the approximation is 

determined by the number of terms in the expansion (35). 

The density of the distribution bounded by the first term 

in expression (40) corresponds to the uniform 

distribution of the random variable j : 

 ( )( ) 1 2 .j jf  =   () 

In general, it is impossible to unambiguously restore 

the density of distribution ( )jf   from one realization of 

stochastic process ( )   (29). The density of the 

distribution of a stochastic process is determined by the 

superposition of the functions of random variables j . 

Since in one implementation of the stochastic process 

( )   the variable j  takes a random value j , which 

does not depend on time, then the values of the function:  

( )( ) cosj j j jA= −                    () 

when decomposing the implementation of the stochastic 

process ( )   (25) with a uniformthe sample for time   

for the full period gives the same theoretical density of 

the distribution of values regardless of the value j : 

 2 2( ) 1 ,
j j j jf A = − 

 
      2.j jA=  () 

The value of the flow of material ( )   at each 

moment of time   is determined by the superposition 

1
( ) ( )jj



=
=      of the values of functions ( )j  . A 

uniform over time   sampling of the values of these 

functions over a full period gives the arcsine law of the 

distribution density (44). The superposition of the values 

of the functions ( )j   for one implementation 

determines the law of distribution of the random value of 

the flow of material ( )  .  

Each realization ( )j   (43) corresponds to the 

value j  of the random variable j  with the 

distribution density (41). Thus, the value of the random 

variable j  at each moment of time is given by the value 

of the random variable j . Based on the assumption that 

the distribution law of the values of the stochastic flow is 

the same for each implementation of the stochastic 

process ( )   and can be determined by a single 

implementation, let us determine the density of the 

distribution ( )j jf   of the random variable j . The 

task of constructing the density of the distribution 

( )j jf   of the random variable j  in this case is 

reduced to the determination of the expansion 

coefficients cnC  and snC , which can be the most optimal 

approximation of the experimental distribution law of the 

values of the input flow of the material in accordance 

with the given optimality criterion was obtained. The 

zero approximation, when the expansion (41) is 

represented only by the first term, corresponds to the 
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distribution density ( )j jf   of the random variable 4 in 

the form of the law of uniform distribution (42). The 

approach using the uniform distribution law of the 

random variable j  is a simplified approach for 

approximating the stochastic process by the canonical 

representation of the form (25). In this study, we consider 

the approximation when the distribution function is 

represented by the bounded expansion (41): 

3 3
1

( ) sin(3 ) cos(3 ).
2

j j s j c jf  C C = +  + 


   () 

Coefficients snC , cnC  are determined from the system 

of equations: 
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  −   →










 



 () 

Coefficients snC , cnC  must ensure that the 

distribution density ( )j jf   is non-negative, namely, 

satisfy the inequality: 

 ( ) 2 2
3 31 2 ,s cC C +  () 

which follows from the transformation from canonical 

form (19) to canonical form (25). Having calculated the 

first integral from the system of equations (46): 

( ) ( )

( )

22
3 0

2
3 0
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 +  −   +
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
   () 

we obtain expressions for determining the coefficient Csn: 

( ) ( )
( )  

0 3 3

3 0

2 3 , 3 2 1 ,

1 2 , 1/ 3; 1/ 3 .

j s j s j

s j

C C
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  − +

     

   
() 

The mathematical expectation of random variable 

j  is bounded by interval  0 1/ 3; 1/ 3j  − +   , 

which is determined by the chosen approximation of the 

distribution density (45). By calculating the second 

integral from the system of equations (46): 

3 3 2
0 0 0

3 3

(2 ) 4 44
0,

6 6 9 3

j j j
c sC C

− −
+ + + →

    

 
 () 

an expression for determining the coefficient 3 0cC =  is 

obtained. For example, for a random variable with value 

j =  , we obtain the expansion coefficients of the 

distribution function: 
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 () 

        Distribution densities (42) and (51) have the same 

mathematical expectation value of M[Фj] =  However, 

as expected under conditions (46), the square of the 

standard deviation for the distribution density of type 

(51), the smallest of the possible distributions with 

canonical form (45), is ( ) ( )
2 23 2 9jM

 
 − = −

  
  , 

instead of ( )
2 23 9jM

 
 − =

  
   for the distribution 

density of type (42). One of the limiting cases of 

representing the distribution density ( )j jf   of random 

variable j  as a delta function ( )j j −   

( )

1

( ) ( ) 1

cos( )cos( ) sin( )sin( ),

j j j j

j j j jn

f 2

n n n n


=
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 
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which is nonnegative ( ) 0j j −    and has the 

statistical characteristics: 
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However, since the expansion coefficients 

sin( )sn jC n=  , cos( )cn jC n=   for n = 1.2 are not 

equal to zero, as is ensured for the distribution density 

(41), the transition conditions (32), (33) are not satisfied. 

The condition that the random variables cj , sj  (26) 

are centered with zero mathematical expectation is also 

not satisfied. This limiting case corresponds to 

representing the material flow as a deterministic process 

with a constantly repeating single realization of the 

process. The second limiting case of representing the 

stochastic material flow is the approach in which random 

variables are represented as dependencies: 

 
( ) ( )
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1 1

1 1

mod 2 ,

1, ( ) 1 2 .
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j f

 =  + −
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
 () 

This representation is equivalent to a random phase 

shift of the initial realization of the stochastic material 

flow and can be used to model material flow in 

optimization problems for transport system flow 

parameters.  

For the transformation of random variables j , 

canonical representation (25) reduces to the form: 

 

( )

( )( )
1 1 1

1 1
2

( ) cos

cos ,j j j
j

A

A


=

= −  +

+ −  + −

   

   
 () 

in which the realization of the input material flow is 

generated by a random shift of a single experimental 

realization of the input material flow.  

The realization thus generated has the same statistical 

characteristics (21)–(22) as the initial realization (20), and, 

in addition, the distribution function of the input material 

flow values exactly corresponds to the initial experimental 

realization, since a constant phase shift between the 

harmonics of the canonical expansion of the random process 

is ensured. 
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Representation (45) allows one to generate a stochastic 

material flow with given statistical characteristics, a 

correlation function, and an approximate distribution 

density of the input material flow values. Constructing a 

more accurate approximation for the distribution density 

requires using more terms in the expansion of the 

distribution density (41). This complicates the calculation of 

the expansion coefficients due to the imposition of the non-

negativity condition on the distribution density. In this case, 

an alternative approach is to use a neural network to 

determine the coefficients of the canonical expansion: the 

coefficients of the canonical expansion (3) with the 

expansion coefficients 0 , cj , sj . Using an affine 

transformation, we represent the centered random variables 

cj , sj  as follows: 

 ,m =  −        ,M m =  () 

where   is a random variable that has a Beta distribution 

with parameters ,   of the Beta function ( ),B   : 
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with a mean of m  and a variance of 2
  of the random 

variable  : 
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to calculate the parameters ,   of the Beta function 

( ),B   : 
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As in the case of approximation (41), the problem 

of determining the distribution law of the values of the 

input material flow is reduced to the selection of values 

m  to determine the distribution law of the random 

variable .  The basic diagram for calculating the 

coefficients ,cjm  sjm  is presented in Fig. 1. 

The following constraints were introduced when 

calculating mathematical expectations: 

 0,cjm   0.sjm      () 

 

 
Fig. 1. Model for calculating the values of mathematical expectations ,cjm  sjm  (multilayer perceptron) 

 

The input parameters of the neural network are the 

density function of the distribution of input material flow 

values, constructed based on experimental data. The 

output parameters are the expected values of random 

variables cj , sj . The choice of input and output nodes 

allows the set of experimental values that form the 

distribution density ( )expf   of input material flow 

values to be assigned expected values for constructing the 

theoretical distribution density of input material flow 

values. The Pearson chi-square test was used to evaluate 

the quality of the approximation. 

This approach can be used to determine the 

coefficients cnC , snC  (41) for a large number of terms. 

The analytical approach demonstrated in this paper is 

effective for a small number of coefficients cnC , snC . 

Analysis of results 

To qualitatively demonstrate the method for 

generating a stochastic flow of material entering the input 

of a transport conveyor, a series of computational 

experiments was conducted using both published 

experimental data and synthetic sequences generated 

with predefined statistical properties. Six representative 

material flow realizations, taken from independent 

studies of conveyor systems in the mining and processing 

industries [11, 19, 31–34], were used as input data 

(Fig. 2). For consistency of presentation and ease of 

reference in the subsequent analysis, the experimental 

material flow realizations are designated as A-flow, B-

flow, C-flow, D-flow, E-flow, and F-flow, respectively. 

Previously, a fragmented statistical analysis of two 

flows—A-flow and C-flow—was performed in [29, 35] 
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as part of developing methods for piecewise linear and 

harmonic approximation of input signals. In this paper, 

the ergodicity assumption is adopted for all six flows, 

which is justified by using a single long-term realization 

at each site.  

This approach allows us to replace ensemble 

averaging with temporal averaging over a single 

trajectory, yielding statistically significant estimates of 

characteristics without the need for additional 

experimental data. 

The first stage of the analysis involves normalizing 

all six experimental realizations of the input material 

flows, converting them to dimensionless form using 

parameters (4) – (5), which enables a unified comparison 

of disparate data. 

This procedure ensures the unification of disparate 

data sets, eliminating the influence of the absolute scales 

of the input material flow values and the observation time 

interval for different process objects. As a result, each 

flow is represented as a stationary process with unit 

variance and a normalized time interval of 1, creating a 

unified coordinate space for the correct application of 

aggregated similarity criteria (1), comparative analysis of 

statistical and correlation properties, and model 

validation, regardless of the initial physical units and 

operating conditions. 

Fig. 3 shows six experimental realizations of input 

material flows in dimensionless form (black color – 1).  

For each, the following are additionally displayed: 

a) approximated experimental realization ()  
(read color - 2), obtained by projecting the original signal 

onto an orthogonal system of coordinate functions of the 

canonical decomposition (25) with preservation of the 

first N = 32 harmonics and subsequent reconstruction of 

the deterministic component using formula (29). This 

allows for the effective suppression of additive 

measurement noise while preserving the key dynamic 

and statistical characteristics of the input material flow; 

b) generated model realization g() (green color - 

3), formed using the proposed generator based on a two-

term analytical decomposition of the distribution density 

(45) with fixed values of the similarity criteria 1, 2 

corresponding to the experimental ones. A visual 

comparison demonstrates the degree of qualitative 

correspondence between the three curves for each flow: 

the generated trajectories reproduce the characteristic 

oscillations, amplitude extremes, and temporal structure 

of fluctuations inherent in real data. 

Table 1 contains the calculated statistical 

characteristics and the values of the aggregated similarity 

criteria (1) for all six experimental material flows in 

dimensionless form. A detailed description of the 

physical recording conditions, process flow diagrams, 

and operating modes corresponding to each of the flows 

is given in the original sources [11, 31–34]. These works 

also contain data on the types of transported material, the 

design features of the conveyor lines, and the flow 

measurement methods, which allows us to interpret the 

observed statistical differences from the standpoint of 

production factors.  

A comparative analysis of the statistical 

characteristics and aggregated similarity criteria (Table 

1) provides a qualitative and quantitative understanding 

of the degree of similarity and differences between the 

six experimental implementations of the input material 

flows. 

In particular, the C- and D- flows demonstrate a 

high degree of similarity according to the aggregate 

criterion 1. The similarity criterion allows us to consider 

the material flows as representative examples of one class 

of transport modes with moderate variability, typical for 

systems with buffer storage and adjustable feed. 

     
a – A-flow [11, 29]                                       b – B-flow [31]                                        c – C-flow [32, 35] 

  
d – D-flow [33]                                            e – E-flow [34]                                              f – F-flow [19] 

 

Fig. 2. Experimental implementations of input material flows 



ISSN 2522-9052 Сучасні інформаційні системи. 2026. Т. 10, № 1 

29 

 

 
a – A-flow [11, 29]                                       b – B-flow [31]                                        c – C-flow [32, 35] 

 

 
d – D-flow [33]                                            e – E-flow [34]                                              f – F-flow [19] 

 

Fig. 3. Dimensionless realizations of input material flows: () – experimental realization (black color – 1);  

() – approximated experimental realization (read color –2); g()– generated realization (green color – 3) 

 

 

Table 1 – Statistical characteristics and values of similarity criteria of input material flows 

Parameter  

Experimental realization of the input material flow 

A-flow 

[11, 29] 

B-flow 

[31] 

C-flow 

[32, 35] 
D-flow [33] 

E-flow 

[34] 

F-flow 

[19] 

Mathematical expectation m 8.51 74.85 0.05 4663.60 394.08 18.52 

Standard deviation  1.32 1.83 0.0153 1469.80 171.65 6.61 

min [(t)] 4.00 71.21 0.0 0.0 0.0 38.98 

max [(t)] 12.70 78.82 0.0727 6542.80 870.00 5.86 

Aggregate similarity criterion 1 6.5 41.0 3.3 3.2 2.30 2.80 

Aggregate similarity criterion 2 100 77 44 77 71 20 

 
To quantitatively assess the temporal structure of 

fluctuations in each of the six streams, empirical 

correlation functions k() were constructed using 

formula (22) based on a single implementation (Fig. 4).  

To calculate the aggregated similarity criterion 2 

the characteristic correlation time of each input material 

flow is determined based on the graphs of normalized 

correlation functions (Fig. 4). Similarity criterion 2 is 

calculated as the ratio of the total experimental 

measurement interval during which the experimental 

measurements were conducted to the characteristic 

correlation time of the input material flow values. 

This time interval is used as the decomposition period 

when representing each experimental realization of the 

input material flow as a Fourier series, in accordance with 

the canonical decomposition of the stochastic process 

described in equation (19). This interval is used to 

decompose the input material flow realizations into a 

Fourier series in accordance with the canonical 

representation of the input material flow (15). The 

aggregated similarity criterion 2 acts as a scaling factor, 

ensuring the correct comparison and comparative 

analysis of disparate input material flows. 

Normalized correlation function k(), constructed 

in dimensionless coordinates, serves as a visual and 

quantitative criterion for the similarity of input material 

flows. The normalized correlation function k() 

integrates information about the spectral composition of 

the Fourier coefficients in the canonical expansion (19), 

(25), reflecting both the characteristic scale of correlated 

fluctuations and the form of oscillation damping at 

different time horizons. Flows with similar normalized 
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correlation functions 3() = k()can be classified as 

similar in the stochastic sense. 

Thus, the coincidence of the normalized correlation 

functions serves as a fundamental basis for identifying 

the generalized distribution law of random values of the 

input material flow.  

Fig. 5 shows the quantile-quantile diagrams (Q-Q 

plots) of all six flows (A-flow – F-flow), constructed 

based on the values of the dimensionless approximated 

realization () and the standard normal distribution, 

intended for visual and quantitative assessment of the 

degree of correspondence of the empirical distribution of 

the values of the dimensionless approximated realization 

of the input material flow to the theoretical standard 

normal distribution (0,1) . 

 
a – A-flow [11, 29]                                       b – B-flow [31]                                        c – C-flow [32, 35] 

 
d – D-flow [33]                                            e – E-flow [34]                                              f – F-flow [19] 

Fig. 4. Correlation functions k() of input material flows  

 

 
a – A-flow [11, 29]                                       b – B-flow [31]                                        c – C-flow [32, 35] 

 
d – D-flow [33]                                            e – E-flow [34]                                              f – F-flow [19] 

Fig. 5. Q-Q plots (Quantile-to-Quantile) for comparing the empirical distribution of values 

of the dimensionless approximated realization of the input material flow () with the theoretical normal distribution law 
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The theoretical quantiles of the normal law are 

plotted along the abscissa axis, and the empirical 

quantiles calculated from the sorted values of the 

approximated realization on interval  0,1  are plotted 

along the ordinate axis.  

The bisector of type y x=  (thin line) serves as the 

base trajectory, the deviation from which indicates 

systematic deviations from the normal distribution law. 

Just as the normalized correlation function ( )k   serves 

as a functional similarity criterion ( )3  , reflecting the 

spectral composition of the coefficients of the canonical 

expansion (19)–(25), the quantile-quantile diagram  

( )sample theoretical    

serves as an independent functional similarity criterion  

( ) ( )4 theoretical sample theoretical=    , 

assessing the differences in the distribution laws of the 

random values of the input material flows. In 

comparative analysis, input flows should be considered 

stochastically similar if the following conditions are 

simultaneously met: 

a) close values of the aggregated similarity criteria 

1, 2; 

b) similar behavior of functional similarity criterion 

( )3   (nearly identical normalized autocorrelation 

functions); 

c) similar behavior of functional similarity criterion  

( )4 theoretical  ,  

which characterizes the similar nature of the deviation of 

the Q-Q function of type  

( )sample theoretical    

from the bisector (the same bending shape, similar 

systematic deviations in the central region and tails). 

Satisfaction of these conditions means that the 

flows are generated by the same statistical mechanism 

and allow the use of a single generalized distribution law 

for the random coefficients of the canonical 

decomposition. 

In particular, the high degree of coincidence 

between the Q-Q diagrams of the C-flow and D-flow 

flows (Fig. 5) confirms the validity of applying the same 

distribution density approximation to them—both the 

analytical binomial (45) and the parametric beta 

distribution with identical parameter values (59). This 

allows us to classify these material flows into a separate 

class, which will enable the use of generalized models for 

modeling such material flows.  

A similar similarity in Q-Q plots is also observed 

for the B-flow and E-flow pair, suggesting that these 

flows belong to the same subclass with pronounced 

heavy tails. 

Thus, the combined use of the normalized 

autocorrelation function and Q-Q plots forms a 

comprehensive multi-component system of functional 

similarity criteria, significantly superior in information 

content to traditional scalar indicators and enabling an 

objective classification of input material flows even with 

limited experimental data. 

Fig. 6 shows the distribution histograms of 

instantaneous values of the dimensionless material flow 

for all six studied modes (A-flow – F-flow). For each A-

flow – F-flow, three histograms are given in a single 

coordinate field: 

a) a histogram constructed directly from the original 

experimental realization of input material flow ( )  ; 

b) a histogram constructed from an approximated 

experimental realization of input material flow ( )a  ; 

c) a histogram constructed from a generated 

realization of input material flow ( )g  .  

The generation of model realizations is performed 

using a simplified canonical decomposition of the input 

material flow (25), in which the distribution density 

( )j jf   of random coefficient j  was specified by a 

two-term analytical expression (45). Random values of 

this coefficient were generated using inverse transform 

sampling, which guarantees strict adherence to the target 

distribution law while maintaining all the required 

statistical properties of the process. 

The conducted histogram analysis (Fig. 6) confirms 

the high efficiency of the proposed approach. As 

expected, a fairly close match in the distribution shape is 

observed between the original experimental 

implementation ( )   and its approximated version 

( )a  , indicating the correctness of the noise filtering 

procedure and the selection of the number of retained 

harmonics of the canonical decomposition. The 

correlation functions of the approximated experimental 

implementation ( )a   and the generated implementation 

( )g   coincide, which is a direct consequence of the 

orthogonality of the basis functions and strict fulfillment 

of the centering conditions in the decomposition (25). 

The observed differences between the histograms of 

approximated experimental realization ( )a   and 

generated realization ( )g   are systematic and are fully 

explained by the chosen level of approximation of the 

distribution density ( )j jf   of the random coefficient Фj. 

In this article, the analytical decomposition (45) is 

used, which, being the minimally possible non-constant 

representation, necessarily limits the class of 

reproducible distributions.  

Increasing the number of terms in the 

decomposition or switching to more flexible parametric 

forms (beta distribution, mixtures of distributions, neural 

network approximation) leads to an asymptotic 

convergence of the model and empirical histograms in 

accordance with theoretical convergence estimates 

following from conditions (46). 

Thus, the achieved level of agreement, even with 

just two terms, should be considered satisfactory, 

especially considering that the model parameters were 

identified based on a single experimental realization of 

each flow. 
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a – A-flow [11, 29]  

 
b – B-flow [31] 

 
c – C-flow [32, 35] 

 
d – D-flow [33] 

 
e – E-flow [34] 

 
f – F-flow [19] 

Fig. 6. Histograms of the distribution of values of the input material flows: experimental implementation ( )  ;  

approximated experimental implementation ( )a  ; generated implementation ( )g   
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So, the methodological complex developed in this 

article enables the solution of a number of fundamental 

and applied problems.  

The research includes: 

1) dimensionless normalization of heterogeneous 

material flows differing by orders of magnitude in 

average productivity, variance, and characteristic time 

scales, enabling their direct comparison and 

classification; 

2) quantitative assessment of the degree of 

stochastic similarity based on a system of aggregated 

scalar criteria and functional similarity criteria (focused 

on the normalized correlation function of the Q-Q 

diagram), significantly expanding traditional 

approaches; 

3) approximation of experimental records; 

4) determination of the type and parameters of the 

distribution law of random coefficients of the canonical 

expansion based on a single realization without the use 

of ensemble data; 

5) development of a highly accurate generator of 

stochastic stationary input flows capable of reproducing 

not only the first two moments and the correlation 

structure, but also the full one-dimensional distribution 

density of instantaneous values with controlled error. 

The use of dimensionless modeling in combination 

with a developed system of similarity criteria enables, 

for the first time, the transition from a set of individual, 

object-specific empirical observations to a universal, 

scalable, and transferable physical and mathematical 

model of a stationary stochastic input material flow, 

suitable for a wide range of conveyor systems, 

regardless of their nominal throughput, type of raw 

material transported, route length, and the control 

systems used. 

Conclusion 

This research addresses the pressing scientific and 

practical problem of creating a universal mathematical 

model of a stationary stochastic input material flow for 

industrial conveyor transport systems. A modeling 

approach based on a simplified canonical 

decomposition of a stochastic process with analytical 

and parametric specification of the distribution density 

of random coefficients is proposed and theoretically 

substantiated.  

The key results of this study are: 

1) a simplified canonical decomposition of a 

stationary ergodic input material flow is developed, 

allowing for the reproduction of the specified 

mathematical expectation, variance, and correlation 

function from a single experimental realization with a 

minimum number of random coefficients; 

2) analytical expressions is defined for 

approximating the distribution density of a random 

coefficient with guaranteed fulfillment of the 

conditions of centering, normalization, and non-

negativity; 

3) the system of multilevel criteria for stochastic 

similarity of input material flows is expanded, 

including: the previously used aggregated scalar 

similarity criteria [28]; a functional similarity criterion 

based on a normalized correlation function; a functional 

similarity criterion based on quantile-quantile 

diagrams. The combined application of these criteria 

enables objective classification of heterogeneous input 

material flows and identification of classes of 

stochastically similar modes, even with only one long-

term implementation. 

4) based on six independent experimental 

implementations of real mining conveyor systems (A-F 

flows), the accuracy of the proposed generator of 

stochastic input material flows is demonstrated. 

Qualitative and quantitative agreement between the 

generated trajectories, correlation functions, and one-

dimensional distribution densities with experimental 

data is demonstrated. 

5) an effective method for dimensionless 

normalization and unification of heterogeneous flows 

differing by orders of magnitude in productivity and 

time scales is developed, enabling model transfer 

between facilities of varying capacity, configuration, 

and type of transported raw material. 

The proposed approach enables the construction of 

a generator of stationary stochastic input material flow, 

completely determined by a single process 

implementation.  

The results of this work provide a solid foundation 

for the further development of stochastic modeling 

methods, the synthesis of robust conveyor line control 

systems, and the optimization of buffer capacities and 

routing in extensive transport networks. The proposed 

model and generator can be directly used in simulation 

systems and digital management platforms for mining 

enterprises. 

A promising direction for further research is to 

expand the proposed approach to non-stationary 

processes and adapt similarity criteria to 

multidimensional or branching material supply systems. 
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Генератор значень стаціонарного вхідного потоку матеріалу для конвеєрних систем 

із заданою функцією кореляції та одномірним законом розподілу 

О. М. Пігнастий, Г. К. Кожевніков, М. О. Соболь 

Анотація .  Об’єкт дослідження – стохастичний стаціонарний вхідний потік матеріалу транспортної системи 

конвеєрного типу. Предмет дослідження - метод генерації реалізацій стаціонарного стохастичного вхідного потоку 

матеріалу на основі експериментальних даних. Мета дослідження - розробка генератора випадкових значень для 

побудови реалізації вхідного потоку матеріалу транспортного конвеєра, який має задані статистичні характеристики, 

розраховані за результатами попередньо проведених експериментальних вимірювань. Отримані результати. 

Стаціонарний стохастичний вхідний потік матеріалу представлений канонічним розкладанням як сума гармонійних 

коливань з випадковими амплітудами на різних невипадкових частотах. Запропоновано двоетапний підхід до формування 

реалізацій вхідного матеріального потоку. На першому етапі за допомогою канонічного розкладання по заданих 

координатних функціях апроксимується експериментальна реалізація потоку вхідного матеріалу для заданого інтервалу. 

На другому етапі розраховуються статистичні характеристики реалізацій вхідного матеріального потоку. Проведений 

аналіз показав, що застосування методу згладжування реалізацій матеріального потоку, заснованого на канонічній 

декомпозиції реалізацій вхідного матеріального потоку, забезпечує достатньо точне відтворення статистичних 

характеристик такого потоку, що важливо при проектуванні ефективних систем управління потоковими параметрами 

транспортної системи. Проведено порівняльний аналіз кореляційних функцій для експериментальної, апроксимованої та 

згенерованої реалізацій вхідного матеріального потоку. Обґрунтовано тривалість інтервалу часу, необхідного для 

проведення експериментальних змін потоку вхідного матеріалу. Висновок. Запропоновані в роботі методи генерації 

вхідних потоків на основі експериментальних даних дозволяють підвищити точність моделювання та керування 

конвеєрними системами, що в перспективі може призвести до зниження експлуатаційних витрат та підвищення 

продуктивності транспортних конвеєрних систем. 

Ключові  слова:  потік матеріалу; стохастичний стаціонарний процес; канонічне розкладання; безрозмірні 

критерії подібності; конвеєр; транспортні системи. 
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