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INPUT MATERIAL FLOW VALUES GENERATOR OF A CONVEYOR
WITH A GIVEN CORRELATION FUNCTION AND DISTRIBUTION LAW

Abstract. The object of this study is a stationary stochastic input flow of material arriving at the input of an industrial
conveyor transport system. The goal of this research is to develop a universal, statistically mathematical model of the input
flow of materials, fully identifiable from a single long-term experimental implementation, as well as to create a multi-level
system of dimensionless stochastic similarity criteria, enabling the objective classification and comparison of heterogeneous
flows with similar structural properties. The results obtained. A simplified canonical decomposition of a stationary ergodic
process with a minimum number of random coefficients is proposed, reproducing the specified mathematical expectation,
variance, correlation function, and one-dimensional probability density of flow values. Analytical expressions are derived
for approximating the distribution density of random coefficients with guaranteed fulfillment of the conditions of centering,
normalization, and non-negativity. A multilevel system of stochastic similarity criteria is developed, including aggregated
dimensionless criteria, a functional similarity criterion based on a normalized autocorrelation function, and a functional
criterion based on quantile-quantile diagrams. A dimensionless flow normalization method is proposed, ensuring model
transferability between conveyor systems differing by orders of magnitude in throughput and time scales. Using six
independent long-term implementations of real conveyor systems in the mining and processing industries, the accuracy of
the developed stochastic input flow generator using an analytical approximation of random coefficients is demonstrated.
Conclusion. The developed methodology enables the classification and comparison of material input flows in transport
systems and serves as the basis for a universal approach to constructing mathematical models and flow control algorithms
under stochastic uncertainty.
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Introduction

Modern industrial transport and processing systems
are characterized by a high degree of complexity and the
stochastic nature of the processes that determine their
operation. One of the key elements of such systems is
conveyor transport lines, which ensure the continuous
supply and redistribution of material flows. Their
operational efficiency directly depends on the nature and
structure of the input material flow, which in real
conditions is stochastic due to fluctuations in the
productivity of previous process units, uneven supply,
and variations in the physical and mechanical properties
of the transported material.

Reducing overall costs in the extraction and
processing of minerals is largely determined by the
optimization of transport processes, in particular, by
reducing the specific costs of moving raw materials [1].
One of the most common ways to improve efficiency is to
ensure uniform distribution of material along the conveyor
line, which facilitates more efficient use of transport
capacity and increases system productivity [2-4].
Improving the uniformity of conveyor loading not only
increases productivity but also reduces operating costs
associated with equipment wear and maintenance [5-7].
The stable operation of transport systems depends largely
on the nature of the incoming material flow, which is
affected by stochastic feed fluctuations, uneven supply
from adjacent process units, and control features.

However, fluctuations in the incoming material
flow, caused by a number of factors, remain a significant
obstacle to stable system operation. These include, first
and foremost, the stochastic nature of the incoming
material flow entering the system [8]. Furthermore, the
operation of control subsystems, including belt speed

control mechanisms [9-11] or material feed from storage
bins [12], has a significant impact. Accurate modeling of
both stationary and non-stationary stochastic input
material flows is critical for developing effective
strategies to control the flow characteristics of conveyor
lines, performing comparative evaluations of alternative
routing schemes in extensive transportation networks
[13,14], and improving the overall stability and
reliability of such systems [15-17].

The design and subsequent tuning of the
characteristics of such systems require a thorough
analysis of the statistical patterns of input material flows
[18]. In real-world conditions, these flows exhibit
significant  stochastic ~ fluctuations and temporal
variability, which creates significant obstacles to the
development of their mathematical descriptions. The
presence of correlated random factors, as well as the
heterogeneity and variability of flow properties,
necessitates the development of more universal and
accurate modeling methods that take into account the
actual mechanisms for generating stochastic input
material flows in conveyor transport systems [19].

Control subsystems also play an important role,
including belt speed control mechanisms [9, 10, 11, 20]
and systems for metering material feed from storage bins
[12]. These factors create a complex dynamic flow
structure, which introduces additional fluctuations and
complicates the problem of maintaining a stable transport
mode. Adequately describing the behaviour of conveyor
systems requires correct modeling of the input material
flow as a stochastic process with specified statistical
characteristics. This requires not only determining the
mathematical expectation and variance, but also
accounting for correlations between successive flow
values and the shape of its distribution. Traditional
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models based on the assumption of normality or
independence of random effects do not reflect the real
characteristics of stochastic flows, leading to errors in the
analysis of the dynamic and energy parameters of
transport systems.

In recent years, there has been growing interest in
the use of stochastic modeling methods that allow the
statistical properties of real material flows to be
reproduced based on experimental data. However, the
practical application of such models requires taking into
account the limited scope of observations and preserving
physically meaningful statistical characteristics. A
promising solution to this problem is the use of a
canonical decomposition of a stochastic process into
orthogonal coordinate functions, which allows the input
flow to be formed as a superposition of deterministic and
stochastic components. This approach enables direct
comparison of the model's statistical characteristics with
experimental data and allows for the inclusion of
aggregated similarity criteria linking the mathematical
expectation, standard deviation, correlation time, and
characteristic time of flow property change.

This paper proposes a model of a stochastic
stationary input material flow constructed using the
canonical decomposition of a stochastic process and an
approximation of the distribution density of its random
components. Analytical relationships for determining the
canonical decomposition coefficients that ensure the
centering and non-negativity of the distribution density
are considered. It is shown that a limited representation
of the distribution density using a small number of terms
ensures satisfactory accuracy while preserving the
physical meaning of the model. In recent years, the
application of artificial neural networks has been rapidly
developing, both for diagnosing the condition of
conveyor belts and rollers [21, 22, 23, 24], and for
improving the efficiency and stability of mining process
control [25], forecasting the flow parameters of multi-
section conveyor systems [26], and constructing
intelligent control systems based on embedded artificial
intelligence [1, 22, 27]. This confirms the high potential
of neural network methods for solving the problem of
accurately approximating the distribution density of
random coefficients in the canonical decomposition of a
stochastic input flow.

To improve the accuracy of approximation for
complex distributions, a neural network approach is
discussed, based on the use of a multilayer perceptron for
calculating mathematical expectations and
approximation parameters based on experimental data.
The developed model enables the generation of
stochastic input material flows with specified statistical
characteristics, a correlation function, and an
approximate distribution density of values, which makes
it suitable for use in the analysis and optimization of flow
parameters of conveyor systems. The proposed approach
facilitates a more accurate reproduction of real-world
operating conditions of transport lines, as well as the
creation of digital twins of technological processes that
take into account the stochastic nature of material flows.

The aim of this article is to develop and
theoretically substantiate a model of a stochastic

stationary input material flow based on the canonical
decomposition of a stochastic process, with an analytical
determination of the parameters for approximating the
distribution density of random coefficients. The proposed
model is intended to create a generator of input material
flows that reproduces a given correlation function and the
distribution density of wvalues corresponding to
experimental data.

The results of this article can be used to improve the
accuracy of modeling, forecasting, and optimization of
the operating modes of transport and processing systems.

Statement of the problem

Based on an analysis of modern industrial transport
and technological systems characterized by a highly
stochastic input material flows, this article formulates the
problem of developing a mathematical model of a
stationary stochastic material flow entering a conveyor
line. The model must adequately reflect the physical
mechanisms of fluctuation formation caused by uneven
raw material supply from previous process links, the
presence of correlated random disturbances, and the
influence of control subsystems (belt speed control,
metered feed from storage bins). A key requirement is to
ensure accurate reproduction of a complete set of statistical
characteristics — the mathematical expectation, variance,
correlation function, and distribution density function —
based on a limited set of experimental realizations.

Formally, the problem is reduced to constructing a
canonical decomposition of a stationary ergodic process.

The problem statement includes solving the
following interrelated subproblems:

a) determining the statistical characteristics of the
input material flow based on experimental realizations;

b) evaluation of aggregated similarity criteria for
the input material flow;

¢) construction of a simplified canonical
decomposition of the stochastic input material flow;

d) analytical approximation of the distribution
density of random coefficients in the canonical
decomposition of the stochastic input material flow;

d) development of a generator of realizations of the
stochastic input material flow.

The solution to this problem will ensure the creation
of a universal tool for stochastic modeling of input flows,
applicable to the optimization of conveyor system
operating modes, taking into account real-world
stochasticity.

Model of stochastic stationary
input material flow

The key parameters in modeling a stochastic
stationary flow of material A(t) arriving at the input of a
te[0ty] are the
mathematical expectation m, , the standard deviation
o, , the correlation time 7, of the input material flow
values, and the characteristic time t; , which determines

the scale of change in the statistical properties of the
material flow. Taking into account the similarity criteria
for a stochastic stationary material flow:

transport conveyor at time
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the model of a stochastic stationary flow of material,
taking into account the canonical expansion in the

coordinate functions on the interval 7 €[0,74],79 <74
can be represented in the following form [28]:

t; <ty, Y

Yin(r)=m +y(7), wj=2rj/tg, 1979, (2)

Oy <
y(7) = - pNCE cos(

j=L

a)Jz')+®SJ sm(a)Jr), 3)

with dimensionless parameters:

ro bl g g
TN 9} t N4
2 A-M[A] i-m
Yin=—, 7= 4] 4, (5)
o ) oy
_ 2 _
M [(r)] =0, M[;f (T)J =1, (6)

The coefficients of the canonical decomposition @g,
Og, ©g are centered random variables with the

mathematical expectation:
M[©g]=M[Og]|=M[0g =0, 7)

and the standard deviation:
[@0/4} o2, M[@é}zM[@EjJ:a?. ®)
The model of a stochastic stationary material flow
(2) is represented by the sum of a deterministic term 7,
and a stochastic term y(z). The aggregated similarity
criteria of the input material flow (1) determine the
relationship between the general statistical characteristics
m,, o,, n,; without directly answering the questions
of which distribution function and correlation function
represent the input material flow. The similarity criterion
7w, IS a time scaling factor that determines the
characteristic time interval for comparative analysis as a
ratio t; = 7,7 ;. When modeling a stochastic stationary
input material flow, a good choice is the value 7z, >10.
If possible, the maximum permissible value of the
similarity criterion 7, should be selected, which allows
the use of a rich set of experimental data for the analysis.
In the comparative analysis of stochastic stationary
material flows, the characteristic time for each n-th
material flow is selected based on condition
tin = 7om 45, Where the similarity criterion value 7, is
the same for all material flows and is the maximum
possible value provided condition t;, <ty,, n=1..N is
met. In some cases, assumption t;, >ty,, may be

adopted, whereby additional data are added to time
interval te[ty,.t;,] through extrapolation or other

methods.

In the analysis of stochastic stationary input
material flows, the similarity criterion value 7, ~100

[28] was used. A lower similarity criterion value could
have been chosen in this article. However, this would
have reduced the volume of experimental data and,
accordingly, the accuracy of the comparative analysis.

The statistical characteristics of the canonical
decomposition of the stochastic centered stationary input
material flow y(z) (2), taking into account notation (8),

are defined in [28, 29] and can be represented as:
a) mathematical expectation:

m=M [1(z)]= M [0p/2]+

+i M [@Cj Jcos(a)jr)+ M [@sj Jsin(a)jr) =0;

)

b) standard deviation:
o?=M[r2@)]=m [(@0/2)2 +
+i cos® (a)jr) M [@é J+sin2 (a)jr) M [@é J = (10)
j=1

2

O'0+

2.
oi;

Ms

1

—
Il

¢) correlation function

k(9 =M [r()y(z + 9] = of +§cos(a}j9)af. (11)

j=1
It is assumed that N realizations of the random
process y(zr), n=1..N is available for constructing a

model of the stochastic input material flow. Each
realization y,(r) of the stochastic process over interval

r€[0,74], 79 =1 is expanded into a Fourier series:

6 & .
”n (T) = L0+ z chj COS(COJ' T) + QSnj Sln(a)jz'),
=t (12)
a)J = 27Z'j,
with constant expansion coefficients:
1
00 = 2j0yn (r)dz; (13)
1

Oenj = 2 jo 7n(z) cos(@j7)dr;

(14)

1 .
- :2]0 7o (z)sin(e;7)dr.

Mathematical expectation, standard deviation, and
correlation function of the input flow of material can be
calculated from N realizations of the random process

y(z) [28]:

N
:_nyn(r)dz'— zggn (15)

n=1g =1
Z‘[yn(r)dr o} +ZO'J, (16)

n=1g
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k(g)zﬁz'[o}/n(r)]/n(f‘*‘tg)d‘[:
n=1
o (17)
=o-§+20-12cos(a)1-9),
=1
(02 ] N 2
where m| o =Uggi29()_n’
L 4 _ N n=1 4
M ®Cj :Gj Eﬁzgcnj’ (18)
- n=1
2] 2 - 1 N 2
M| 0§ |=oj = 2. b

n

The obtained formulas allow to calculate the
standard deviation and the correlation function of the
stochastic stationary flow of material according to N
experimental realizations of the random process. If the
material flow is a stationary and ergodic process, then its
canonical decomposition has the form [28]:

7(r) = Z@cjcos(a) z’) Z®SJS'”(“’JT)
j=1 o :27”,1

19)

The key simplification in the analysis of such a
process is connected not so much with the absence of the
term ©q /2, but with the fact that the statistical

characteristics of the input flow of material:
mathematical expectation (15), dispersion (16) and
correlation function (17) can be estimated directly from
one realization of the random process:

n() = ileclj cos(@;j7)+6y j sin(wjr),  (20)
j=
m:I;71(r)dT:O;
0 1:1 2
1
= [n@n(e+9)dr =
o0 (22)
Jzz“l(( i+ 1j )/2)~cos(wj3),
where M [;/2(1):|20'2 - iaf -1, (23)
j=1
(9c1] +49521j)/2=con5t :012. 24)

Such an approach becomes possible due to
ergodicity, which ensures the equivalence of temporal
averaging and averaging over the ensemble of
realizations. Restrictions (24) are imposed on
coefficients ©¢, Og; of the canonical expansion (19). If

it is assumed that the coefficient © is a random
variable, then the coefficient ©; is expressed through
the random variable ©¢; in accordance with equation

(24). Constraints (24) significantly simplify the type of
canonical expansion of the initial expression for a
random process, allow the transition from the canonical
expansion (19) to the canonical expansion:

o0
y(r)zZAJ— cos(a)jr—cbj), wj=2rj, (25)
j=1
for the construction of which transformations are used [30]:
O = Ajcos(@;); Oy = Ajsin(®;);

26
®sj/®cj :tg(CDJ-), (26)

@§j +®§j = AJ2 COSZ(CDJ-)+ Aj2 sinz(d)j) = AZ, 27

A| cos(d)j)cos(a;jr)+ A| sin(cDj)sin(a;jr): o5)
= A] COS(C()J'T—CD]' ),
where @; is a random variable taking a value from the

interval [0,27] . Taking into account constraint (24), the
canonical expansion (25) is represented as:

7(T)=\/§§:UJ‘ COS(COJ'T—(DJ'), quE[O,Zﬂ']. (29)
j=1

Material flow y(z) is a centered random process

with statistical characteristics (9)—(11). Taking this into
account, we present expressions for statistical
characteristics in the form:

=M {iAj cos(a)jr—d)j)]:

i Aj COS(a)J-T)M[COS((Dj)]+ (30)

j=1
+3 A sin(a)jr)M [sin(® )] =0,

“Dj)]z =

—ZAZ [Cos (a)r O )J ZO'J

and we get the requirements:
M{cos(® ;)] =0,

M[7%(z)]= M [i A; cos( @7 -
=1 (31)

M[sin(®;)]=0, (32)

M[cos(2®)]=0, M[sin(2®;)] =0,
M[sin(® ;) cos(® )] = 0. (33)

Equation (33) is obtained from condition (31), from
which follows

M [cosz (a)jz'—<Dj )J:M [(1+cos(2a}jr—2®j))/2} =
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=1+lcos(2a) [cos 20 J+
2 2
1 1 (34)
+Esm(2a)jz-)M [sm(ztb )ng
The density of the distribution of the random
variable @; on the interval [0,27] in the form of an

expansion is sought:

fj(®j)= Ceo +chn cos(n® ;) +Cqp sin(n® ), (35)
n=1

with expansion coefficients:

1 c2n

Ceo :;joz fj(@)do, (36)
Co = % [ 02” £{(®) cos(nd)d, (37)
Cyr = % joz” £{(®)sin(nd)d. (38)

Taking into account the condition of normalization,
the density of distribution f;(®) and the equation for

calculating the average value of function p(®):

27 2
j fj(@)d® =1, j fj(<1>)p(q>)dq>=|v|[p(cpj)],(39)
0 0

as well as constraints (32), (33), the first coefficients of
the density expansion of distribution f;(®) can be

determined:
Coo =Y/,
Cy = [cos(D)] 0, Ca [sin(®)] 0, (40)
T T
[cos(2D)] [sin(2®)]
c2 ~ , Cso =
T T

The expansion coefficients of Cy, Cg;, Ceo, Cso

are equal to zero due to conditions (30), (31). These
conditions ensure that the mathematical expectation (9)
is equal to zero and the standard deviation (10) of the

centered stochastic flow of material y(z) is equal to o2,
Since the distribution density f;(®) of the random

variable @ j is for the centered stochastic flow of

material y(z) this distribution density automatically

satisfies the condition that the coefficients of the
expansion Cy, Cq, C.p, Cyo are equal to zero when

it is approximated by the canonical expansion (35). Thus,
the density of distribution f; (@) can be approximated by
the following decomposition:

fj(®j)= 21 +chn cos(n® ;) +Cqp SiN(ND ). (41)
n=3
The coefficients Cg,, Cq, are chosen from the

condition of non-negativity of the distribution density

fj(®)20. The accuracy of the approximation is

determined by the number of terms in the expansion (35).
The density of the distribution bounded by the first term
in expression (40) corresponds to the uniform
distribution of the random variable ®

fj(@)=1/(27).

In general, it is impossible to unambiguously restore
the density of distribution f;(®) from one realization of

(42)

stochastic process y(r) (29). The density of the

distribution of a stochastic process is determined by the
superposition of the functions of random variables @ .

Since in one implementation of the stochastic process
r(r) the variable @ ; takes a random value ¢;, which

does not depend on time, then the values of the function:

7j () = Ajcos(jr—0; ), (43)

when decomposing the implementation of the stochastic
process y(z) (25) with a uniformthe sample for time ¢

for the full period gives the same theoretical density of
the distribution of values regardless of the value ¢; :

) =Y (7[aE =13 ).

The value of the flow of material »(z) at each
moment of time 7 is determined by the superposition

oi=Aj/2. (44

y(r) = Zj.o:lyj (r) of the values of functions 7 (z). A

uniform over time z sampling of the values of these
functions over a full period gives the arcsine law of the
distribution density (44). The superposition of the values
of the functions y;(r) for one implementation

determines the law of distribution of the random value of
the flow of material y(z).

Each realization y;(z) (43) corresponds to the

value ¢; of the random variable @; with the

distribution density (41). Thus, the value of the random
variable y; ateach moment of time is given by the value

of the random variable @ ; . Based on the assumption that

the distribution law of the values of the stochastic flow is
the same for each implementation of the stochastic
process y(r) and can be determined by a single

implementation, let us determine the density of the
distribution f;(®;) of the random variable @;. The

task of constructing the density of the distribution
fj(®;) of the random variable ®; in this case is

reduced to the determination of the expansion
coefficients C¢, and Cg, , which can be the most optimal

approximation of the experimental distribution law of the
values of the input flow of the material in accordance
with the given optimality criterion was obtained. The
zero approximation, when the expansion (41) is
represented only by the first term, corresponds to the
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distribution density f;(®;) of the random variable 4 in

the form of the law of uniform distribution (42). The
approach using the uniform distribution law of the
random variable @; is a simplified approach for
approximating the stochastic process by the canonical
representation of the form (25). In this study, we consider
the approximation when the distribution function is
represented by the bounded expansion (41):

1 .
fj(cDJ): Z+Csssln(3®1)+CC3COS(3CD]) (45)

Coefficients Cg,, C¢, are determined from the system
of equations:

2r
(poj:jo Of  (@)dD — ;, )
2z 2
jo (G)—(ooj) f;(@)d® — 0.

Coefficients Cg,, C., must ensure that the
distribution density f;(®;) is non-negative, namely,
satisfy the inequality:

1Y(27) 2 4/C& +C,

which follows from the transformation from canonical
form (19) to canonical form (25). Having calculated the
first integral from the system of equations (46):

(47)

2 (47)+Cy3 (sIn(30) /9~ D cos(3D)/3)" +

. 2z (48)
+C¢3(Psin(3d)/3—cos(3D)/9) 0 P

we obtain expressions for determining the coefficient Cgp:

Qol =7z'—C53(272'/3)—>(PJ:CS3_)3/2(1_¢J /ﬂ.)’

(49)
1(27)2|Cs3|, @oj €[7-1/37+1/3].

The mathematical expectation of random variable
®; is bounded by interval gy e[z-1/3;7+1/3],
which is determined by the chosen approximation of the
distribution density (45). By calculating the second
integral from the system of equations (46):

@7-00))° w0  an . Azpj-4r°
+ . —

+Ci3—+C
67 6 o9
an expression for determining the coefficient C.3 =0 is

obtained. For example, for a random variable with value
@j =, we obtain the expansion coefficients of the

0, (50)

distribution function:

3r 1 1
Cs3 =0, CCEZ_T_) or gzlcsiéll

(@) =(1/(27))(1-cos(®))).

Distribution densities (42) and (51) have the same
mathematical expectation value of M[®;] = n. However,
as expected under conditions (46), the square of the
standard deviation for the distribution density of type
(51), the smallest of the possible distributions with

canonical form (45), is M [((DJ— —72')2:|:(37Z'2 —2)/9,

2
instead of M [(dbj ~7) }:37#/9 for the distribution

density of type (42). One of the limiting cases of
representing the distribution density f;(®;) of random
variable @ ; as a delta function 5(®; —¢;) :

+> o c0s(ng;) cos(n® ;) +sin(ng; ) sin(n® ),

which is nonnegative 5(®;-¢;)=0 and has the
statistical characteristics:

.[02”5((1)—401-)d(1)51,

27
o) =[] D@ -p))dD=g;, (53)
2 2r ) 2 . _
%, _jo (©-poj) 8(@-pj)d@=0.
However, since the expansion coefficients

Csn =sin(ng;), C¢n =cos(ng;) for n = 1.2 are not

equal to zero, as is ensured for the distribution density
(41), the transition conditions (32), (33) are not satisfied.
The condition that the random variables O, O (26)

are centered with zero mathematical expectation is also
not satisfied. This limiting case corresponds to
representing the material flow as a deterministic process
with a constantly repeating single realization of the
process. The second limiting case of representing the
stochastic material flow is the approach in which random
variables are represented as dependencies:

q)J =(q)l+¢j—¢l> mod (27[),
fl(q)l) = ]7/(272')

This representation is equivalent to a random phase
shift of the initial realization of the stochastic material
flow and can be used to model material flow in
optimization problems for transport system flow
parameters.

For the transformation of random variables @,

(54)
i>1

canonical representation (25) reduces to the form:
y(z) = A cos(ant — g )+

+i Aj Cos(a)jr—((Dl+¢)j —gol)),
j=2

(55)

in which the realization of the input material flow is
generated by a random shift of a single experimental
realization of the input material flow.

The realization thus generated has the same statistical
characteristics (21)—(22) as the initial realization (20), and,
in addition, the distribution function of the input material
flow values exactly corresponds to the initial experimental
realization, since a constant phase shift between the
harmonics of the canonical expansion of the random process
is ensured.
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Representation (45) allows one to generate a stochastic
material flow with given statistical characteristics, a
correlation function, and an approximate distribution
density of the input material flow values. Constructing a
more accurate approximation for the distribution density
requires using more terms in the expansion of the
distribution density (41). This complicates the calculation of
the expansion coefficients due to the imposition of the non-
negativity condition on the distribution density. In this case,
an alternative approach is to use a neural network to
determine the coefficients of the canonical expansion: the
coefficients of the canonical expansion (3) with the
expansion coefficients ©g, O, ©g. Using an affine

transformation, we represent the centered random variables
O, O as follows:

0=Q-mg, M[Q]=mq, (56)

where Q isarandom variable that has a Beta distribution
with parameters «, 8 of the Beta function B(a, 3):

f(Q)=0"(1-0)" " /B(a.p),

B(a,p)= [0 (1-Q) d,

(537

with a mean of mq, and a variance of o-é of the random
variable Q:

mg =af(a+p),
ot =apf((@+p) (a+p+1))
to calculate the parameters «, of the Beta function
B(a,B):
a Z(mgzz (l_mQ)_mQGSZI)/UQ’

p=(ma (1-mq)* ~(1-mq)o? ) /.

As in the case of approximation (41), the problem
of determining the distribution law of the values of the
input material flow is reduced to the selection of values
Mo to determine the distribution law of the random
variable Q. The basic diagram for calculating the
coefficients mgj, Mg is presented in Fig. 1.

(58

(59)

The following constraints were introduced when
calculating mathematical expectations:

mQCJ' >0, mQSJ' > 0. (60)

5 ﬂ?[)sl
2¢2> Mg
> Mog

M2y

Fig. 1. Model for calculating the values of mathematical expectations Mg, Mogj (Multilayer perceptron)

The input parameters of the neural network are the
density function of the distribution of input material flow
values, constructed based on experimental data. The
output parameters are the expected values of random
variables ©;, ©; . The choice of input and output nodes

allows the set of experimental values that form the
distribution density fey, (2) of input material flow

values to be assigned expected values for constructing the
theoretical distribution density of input material flow
values. The Pearson chi-square test was used to evaluate
the quality of the approximation.

This approach can be used to determine the
coefficients C,, Cg, (41) for a large number of terms.

The analytical approach demonstrated in this paper is
effective for a small number of coefficients C, , Cq, .

Analysis of results

To qualitatively demonstrate the method for
generating a stochastic flow of material entering the input
of a transport conveyor, a series of computational
experiments was conducted using both published
experimental data and synthetic sequences generated
with predefined statistical properties. Six representative
material flow realizations, taken from independent
studies of conveyor systems in the mining and processing
industries [11, 19, 31-34], were used as input data
(Fig. 2). For consistency of presentation and ease of
reference in the subsequent analysis, the experimental
material flow realizations are designated as A-flow, B-
flow, C-flow, D-flow, E-flow, and F-flow, respectively.
Previously, a fragmented statistical analysis of two
flows—A-flow and C-flow—was performed in [29, 35]
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as part of developing methods for piecewise linear and
harmonic approximation of input signals. In this paper,
the ergodicity assumption is adopted for all six flows,
which is justified by using a single long-term realization
at each site.

This approach allows us to replace ensemble
averaging with temporal averaging over a single
trajectory, yielding statistically significant estimates of
characteristics without the need for additional
experimental data.

The first stage of the analysis involves normalizing
all six experimental realizations of the input material
flows, converting them to dimensionless form using
parameters (4) — (5), which enables a unified comparison
of disparate data.

This procedure ensures the unification of disparate
data sets, eliminating the influence of the absolute scales
of the input material flow values and the observation time
interval for different process objects. As a result, each
flow is represented as a stationary process with unit
variance and a normalized time interval of 1, creating a
unified coordinate space for the correct application of
aggregated similarity criteria (1), comparative analysis of
statistical and correlation properties, and model
validation, regardless of the initial physical units and
operating conditions.

Fig. 3 shows six experimental realizations of input
material flows in dimensionless form (black color — 1).

For each, the following are additionally displayed:

a) approximated experimental realization 7q(t)
(read color - 2), obtained by projecting the original signal
onto an orthogonal system of coordinate functions of the
canonical decomposition (25) with preservation of the
first N = 32 harmonics and subsequent reconstruction of
the deterministic component using formula (29). This
allows for the effective suppression of additive

measurement noise while preserving the key dynamic
and statistical characteristics of the input material flow;

b) generated model realization yy(t) (green color -
3), formed using the proposed generator based on a two-
term analytical decomposition of the distribution density
(45) with fixed values of the similarity criteria m, m»
corresponding to the experimental ones. A visual
comparison demonstrates the degree of qualitative
correspondence between the three curves for each flow:
the generated trajectories reproduce the characteristic
oscillations, amplitude extremes, and temporal structure
of fluctuations inherent in real data.

Table 1 contains the calculated statistical
characteristics and the values of the aggregated similarity
criteria (1) for all six experimental material flows in
dimensionless form. A detailed description of the
physical recording conditions, process flow diagrams,
and operating modes corresponding to each of the flows
is given in the original sources [11, 31-34]. These works
also contain data on the types of transported material, the
design features of the conveyor lines, and the flow
measurement methods, which allows us to interpret the
observed statistical differences from the standpoint of
production factors.

A comparative analysis of the statistical
characteristics and aggregated similarity criteria (Table
1) provides a qualitative and quantitative understanding
of the degree of similarity and differences between the
six experimental implementations of the input material
flows.

In particular, the C- and D- flows demonstrate a
high degree of similarity according to the aggregate
criterion /. The similarity criterion allows us to consider
the material flows as representative examples of one class
of transport modes with moderate variability, typical for
systems with buffer storage and adjustable feed.

Alt) At) Alt)
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Fig. 2. Experimental implementations of input material flows
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Fig. 3. Dimensionless realizations of input material flows: y(t) — experimental realization (black color — 1);
v«(T) — approximated experimental realization (read color —2); y4(t)— generated realization (green color — 3)
Table 1 — Statistical characteristics and values of similarity criteria of input material flows
Experimental realization of the input material flow
P t
arameter A-flow B-flow C-flow D-flow [33] E-flow F-flow
[11, 29] [31] [32, 35] [34] [19]
Mathematical expectation my, 8.51 74.85 0.05 4663.60 394.08 18.52
Standard deviation o 1.32 1.83 0.0153 1469.80 171.65 6.61
min [A(t)] 4.00 71.21 0.0 0.0 0.0 38.98
max [A(1)] 12.70 78.82 0.0727 6542.80 870.00 5.86
Aggregate similarity criterion 6.5 41.0 33 3.2 2.30 2.80
Aggregate similarity criterion m2 100 77 44 77 71 20

To quantitatively assess the temporal structure of
fluctuations in each of the six streams, empirical
correlation functions k(9) were constructed using
formula (22) based on a single implementation (Fig. 4).

To calculate the aggregated similarity criterion =
the characteristic correlation time of each input material
flow is determined based on the graphs of normalized
correlation functions (Fig. 4). Similarity criterion = is
calculated as the ratio of the total experimental
measurement interval during which the experimental
measurements were conducted to the characteristic
correlation time of the input material flow values.

This time interval is used as the decomposition period
when representing each experimental realization of the
input material flow as a Fourier series, in accordance with
the canonical decomposition of the stochastic process

described in equation (19). This interval is used to
decompose the input material flow realizations into a
Fourier series in accordance with the canonical
representation of the input material flow (15). The
aggregated similarity criterion = acts as a scaling factor,
ensuring the correct comparison and comparative
analysis of disparate input material flows.

Normalized correlation function k(9), constructed
in dimensionless coordinates, serves as a visual and
quantitative criterion for the similarity of input material
flows. The normalized correlation function k()
integrates information about the spectral composition of
the Fourier coefficients in the canonical expansion (19),
(25), reflecting both the characteristic scale of correlated
fluctuations and the form of oscillation damping at
different time horizons. Flows with similar normalized
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correlation functions (9) = k(9)can be classified as
similar in the stochastic sense.

Thus, the coincidence of the normalized correlation
functions serves as a fundamental basis for identifying
the generalized distribution law of random values of the
input material flow.

Fig. 5 shows the quantile-quantile diagrams (Q-Q
plots) of all six flows (A-flow — F-flow), constructed

based on the values of the dimensionless approximated
realization y«(t) and the standard normal distribution,
intended for visual and quantitative assessment of the
degree of correspondence of the empirical distribution of
the values of the dimensionless approximated realization
of the input material flow to the theoretical standard
normal distribution N(0,1).
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Fig. 4. Correlation functions k(9 of input material flows
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Fig. 5. Q-Q plots (Quantile-to-Quantile) for comparing the empirical distribution of values
of the dimensionless approximated realization of the input material flow y«(t) with the theoretical normal distribution law
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The theoretical quantiles of the normal law are
plotted along the abscissa axis, and the empirical
quantiles calculated from the sorted values of the
approximated realization on interval 7 e [0,1] are plotted

along the ordinate axis.
The bisector of type y = x (thin line) serves as the

base trajectory, the deviation from which indicates
systematic deviations from the normal distribution law.

Just as the normalized correlation function k(g) serves

as a functional similarity criterion 73 (.9), reflecting the

spectral composition of the coefficients of the canonical
expansion (19)—(25), the quantile-quantile diagram

Vsample (Vtheoretical )

serves as an independent functional similarity criterion

74 (7theoretical ) = Ysample (7the0retical ) )

assessing the differences in the distribution laws of the
random values of the input material flows. In
comparative analysis, input flows should be considered
stochastically similar if the following conditions are
simultaneously met:

a) close values of the aggregated similarity criteria
m, 72,

b) similar behavior of functional similarity criterion
73(9) (nearly identical normalized autocorrelation

functions);
c) similar behavior of functional similarity criterion

T4 (7the0retica| ) )

which characterizes the similar nature of the deviation of
the Q-Q function of type

Vsample (Vtheoretical )

from the bisector (the same bending shape, similar
systematic deviations in the central region and tails).

Satisfaction of these conditions means that the
flows are generated by the same statistical mechanism
and allow the use of a single generalized distribution law
for the random coefficients of the canonical
decomposition.

In particular, the high degree of coincidence
between the Q-Q diagrams of the C-flow and D-flow
flows (Fig. 5) confirms the validity of applying the same
distribution density approximation to them—both the
analytical binomial (45) and the parametric beta
distribution with identical parameter values (59). This
allows us to classify these material flows into a separate
class, which will enable the use of generalized models for
modeling such material flows.

A similar similarity in Q-Q plots is also observed
for the B-flow and E-flow pair, suggesting that these
flows belong to the same subclass with pronounced
heavy tails.

Thus, the combined use of the normalized
autocorrelation function and Q-Q plots forms a
comprehensive multi-component system of functional
similarity criteria, significantly superior in information

content to traditional scalar indicators and enabling an
objective classification of input material flows even with
limited experimental data.

Fig. 6 shows the distribution histograms of
instantaneous values of the dimensionless material flow
for all six studied modes (A-flow — F-flow). For each A-
flow — F-flow, three histograms are given in a single
coordinate field:

a) a histogram constructed directly from the original
experimental realization of input material flow () ;

b) a histogram constructed from an approximated
experimental realization of input material flow y,(7);

c) a histogram constructed from a generated
realization of input material flow y4 () .

The generation of model realizations is performed
using a simplified canonical decomposition of the input
material flow (25), in which the distribution density
fj(®;) of random coefficient ®; was specified by a

two-term analytical expression (45). Random values of
this coefficient were generated using inverse transform
sampling, which guarantees strict adherence to the target
distribution law while maintaining all the required
statistical properties of the process.

The conducted histogram analysis (Fig. 6) confirms
the high efficiency of the proposed approach. As
expected, a fairly close match in the distribution shape is
observed  between the original experimental
implementation y(z) and its approximated version
7a(7), indicating the correctness of the noise filtering
procedure and the selection of the number of retained
harmonics of the canonical decomposition. The
correlation functions of the approximated experimental
implementation y,(7) and the generated implementation

74 (7) coincide, which is a direct consequence of the

orthogonality of the basis functions and strict fulfillment

of the centering conditions in the decomposition (25).
The observed differences between the histograms of

approximated experimental realization y,(r) and

generated realization y¢(r) are systematic and are fully

explained by the chosen level of approximation of the
distribution density f;(®;) of the random coefficient ®;.

In this article, the analytical decomposition (45) is
used, which, being the minimally possible non-constant

representation, necessarily limits the class of
reproducible distributions.
Increasing the number of terms in the

decomposition or switching to more flexible parametric
forms (beta distribution, mixtures of distributions, neural
network approximation) leads to an asymptotic
convergence of the model and empirical histograms in
accordance with theoretical convergence estimates
following from conditions (46).

Thus, the achieved level of agreement, even with
just two terms, should be considered satisfactory,
especially considering that the model parameters were
identified based on a single experimental realization of
each flow.

31



Advanced Information Systems. 2026. Vol. 10, No. 1

ISSN 2522-9052

f(y) 3Y)

5 6 7 8

14
a— A-flow [11, 29]
£y)

39 40 41 42 43

¥
b — B-flow [31]

fy)

1.5 4

1.0

0.5

0.0

fly) £y)

fly) fav)

e — E-flow [34]
f(y)

f— F-flow [19]

foly)

foly)

foly)

faly)

0.2 1

0.1

0.0

Fig. 6. Histograms of the distribution of values of the input material flows: experimental implementation y(t) ;
approximated experimental implementation vy, (t) ; generated implementation yg(‘c)

32



ISSN 2522-9052

CyuacHi indopmariitai cuctemu. 2026. T. 10, Ne 1

So, the methodological complex developed in this
article enables the solution of a number of fundamental
and applied problems.

The research includes:

1) dimensionless normalization of heterogeneous
material flows differing by orders of magnitude in
average productivity, variance, and characteristic time
scales, enabling their direct comparison and
classification;

2) quantitative assessment of the degree of
stochastic similarity based on a system of aggregated
scalar criteria and functional similarity criteria (focused
on the normalized correlation function of the Q-Q
diagram),  significantly ~ expanding traditional
approaches;

3) approximation of experimental records;

4) determination of the type and parameters of the
distribution law of random coefficients of the canonical
expansion based on a single realization without the use
of ensemble data;

5) development of a highly accurate generator of
stochastic stationary input flows capable of reproducing
not only the first two moments and the correlation
structure, but also the full one-dimensional distribution
density of instantaneous values with controlled error.

The use of dimensionless modeling in combination
with a developed system of similarity criteria enables,
for the first time, the transition from a set of individual,
object-specific empirical observations to a universal,
scalable, and transferable physical and mathematical
model of a stationary stochastic input material flow,
suitable for a wide range of conveyor systems,
regardless of their nominal throughput, type of raw
material transported, route length, and the control
systems used.

Conclusion

This research addresses the pressing scientific and
practical problem of creating a universal mathematical
model of a stationary stochastic input material flow for
industrial conveyor transport systems. A modeling
approach based on a simplified canonical
decomposition of a stochastic process with analytical
and parametric specification of the distribution density
of random coefficients is proposed and theoretically
substantiated.

The key results of this study are:

1) a simplified canonical decomposition of a
stationary ergodic input material flow is developed,
allowing for the reproduction of the specified
mathematical expectation, variance, and correlation
function from a single experimental realization with a
minimum number of random coefficients;

2) analytical expressions is defined for
approximating the distribution density of a random

coefficient with guaranteed fulfillment of the
conditions of centering, normalization, and non-
negativity;

3) the system of multilevel criteria for stochastic
similarity of input material flows is expanded,
including: the previously used aggregated scalar
similarity criteria [28]; a functional similarity criterion
based on a normalized correlation function; a functional
similarity criterion based on quantile-quantile
diagrams. The combined application of these criteria
enables objective classification of heterogeneous input
material flows and identification of classes of
stochastically similar modes, even with only one long-
term implementation.

4) based on six independent experimental
implementations of real mining conveyor systems (A-F
flows), the accuracy of the proposed generator of
stochastic input material flows is demonstrated.
Qualitative and quantitative agreement between the
generated trajectories, correlation functions, and one-
dimensional distribution densities with experimental
data is demonstrated.

5) an effective method for dimensionless
normalization and unification of heterogeneous flows
differing by orders of magnitude in productivity and
time scales is developed, enabling model transfer
between facilities of varying capacity, configuration,
and type of transported raw material.

The proposed approach enables the construction of
a generator of stationary stochastic input material flow,
completely determined by a single process
implementation.

The results of this work provide a solid foundation
for the further development of stochastic modeling
methods, the synthesis of robust conveyor line control
systems, and the optimization of buffer capacities and
routing in extensive transport networks. The proposed
model and generator can be directly used in simulation
systems and digital management platforms for mining
enterprises.

A promising direction for further research is to
expand the proposed approach to non-stationary
processes and adapt similarity criteria to
multidimensional or branching material supply systems.
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I'eHepaTop 3HaYeHb CTALIOHAPHOTO BXiTHOT0 MOTOKY MaTepiaay 15l KOHBEEPHUX CHCTEM
i3 3anaHo10 pyHKLI€EI KOpeasuii Ta 0JHOMIPHHM 3aKOHOM PO3NOIITY

O. M. ITirnactuit, I'. K. KosxkeBnikos, M. O. Co6oiib

AHoTanisi. O6’€KT TOCTIIKEHHS] — CTOXaCTUYHHMI CTalliOHAPHUI BXIAHHUH MOTIK MaTepialy TPAHCIHOPTHOI CHCTEMH
KoHBeepHoro tumy. IlpeaMeT mociimKeHHsI - METOA TeHepallii peaizaliif CTaliOHApPHOTO CTOXACTUYHOI'O BXiIHOTO MOTOKY
Marepiany Ha OCHOBI EKCIIEpHMEHTAIBHUX JaHMX. MeTa JOCJiIKEeHHsl - po3poOka reHeparopa BHIAJAKOBUX 3HAYEHb IS
mo0OyI0BU peai3amii BXiJIHOTO IMOTOKY MaTepially TPaHCIOPTHOTO KOHBEEpa, KU Ma€ 3alaHi CTAaTHCTHYHI XapaKTEePUCTUKH,
po3paxoBaHi 3a pe3yJNbTaTaMH IONEPEJHBO IPOBEACHHX EKCIIEpMMEHTAIPHUX BUMipioBaHb. OTpuMaHi pe3yabTaTh.
CranioHapHHI CTOXaCTHYHMI BXiIHHWH TOTIK Marepially HpeicTaBIeHHH KaHOHIYHMM pPO3KJIAJaHHSAM SK CyMa TapMOHIHHHX
KOJIMBaHb 3 BUIMaJKOBUMH aMILTITYAaMH Ha Pi3HUX HEBUIAIKOBUX YaCTOTaX. 3alPOMOHOBAHO JBOCTAIHUHN MK/ 10 popMyBaHHS
peamizariiii BXiZHOrO MaTepianbHOro MmoToky. Ha mepmiomy erami 3a JONOMOrOI0 KaHOHIYHOTO PO3KJIafaHHSA MO 3aJaHUX
KOOPANHATHUX (QYHKIISAX alpOKCUMYEThCSI eKCIIEPUMEHTAIbHA pealli3allis IIOTOKY BXiIHOTO MaTtepiaiy Uil 3aJaHOrO iHTepBay.
Ha npyromy erami po3paxoBYIOThCSI CTAaTUCTHUYHI XapaKTepHCTHKU pealti3amiil BXiHOro martepiaibHoOro motoky. IIpoBexennit
aHaJTi3 TI0Ka3aB, IO 3aCTOCYBAaHHS METONy 3IJIa/DKyBaHHsS pealli3alliii MaTepialbHOro MOTOKY, 3aCHOBAHOTO Ha KAaHOHIYHIH
JIEKOMITO3HIIIT peanizaliii BXiZHOTO MaTepiaJbHOTO TIIOTOKY, 3a0e3leduye IOCTaTHBO TOYHE BINTBOPEHHS CTATHCTHYHHUX
XapaKTepUCTUK TaKoro IOTOKY, IO BAXIMBO IPH MPOEKTYBaHHI eEKTUBHHX CHCTEM YNpPaBIiHHS NOTOKOBUMH MapameTpamMu
TPAHCIOPTHOI crcTeMH. [IpoBeieHO MOPIBHSIIBHUN aHa3 KOPENAIIHHUX QYHKIIH Ul eKCIIEPUMEHTAIBHOI, alPOKCHMOBAHOT Ta
3reHepoBaHOi peanizaliii BXiHOro MaTepiaJbHOrO0 NOTOKY. OOIPYHTOBAaHO TPHUBANICTh IHTEpBAalTy Yacy, HEOOXiJHOTrO s
MPOBEICHHS €KCIIEPUMEHTAILHAX 3MiH MOTOKY BXiZHOTrO Marepiany. BucHoBoOK. 3ampornoHoBaHi B poOOTi MeTo[u reHepamii
BXiZIHMX TIOTOKIB Ha OCHOBI EKCIIEPMMEHTAaJbHHMX [AaHMX J03BOJISIOTH IIJIBHUIIUTH TOYHICT MOJEIIIOBAHHS Ta KepyBaHHI
KOHBEEPHUMH CHCTEMaMHM, L0 B IEPCHEKTHBI MOXeE NPHU3BECTH JO 3HIKCHHS EKCIUTyaTalliiHUX BUTpaT Ta IIiJBMILCHHS
MIPOJYKTHBHOCTI TPAHCIIOPTHUX KOHBEEPHHUX CHCTEM.

KawuoBi cioBa: morik marepiany; CTOXacTHYHHI CTaliOHApHMI Hpoliec; KaHOHIYHE PO3KIagaHHs; Oe3po3MipHi
KpuTepil MoAiGHOCTI; KOHBEED; TPAHCIIOPTHI CHCTEMH.
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