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A NEW APPROACH TO BUILDING ENERGY MODELS OF NEURAL NETWORKS  
 

Abstract .  Relevance. Modern artificial neural network models require significant energy and other resources for training 

and operation. Training generative models involves vast amounts of data. At the same time, these models face challenges 

related to the trustworthiness of the information they generate. An alternative to current paradigms of building and training 

neural networks is the development of energy-based models, which could potentially overcome these shortcomings and bring 

information processing closer to biologically and physically grounded processes. However, existing energy-based models 

differ little from classical models in terms of their limitations and drawbacks. Therefore, developing new approaches to 

modeling energy-based information processing in neural networks is highly relevant. The object of research is the process 

of information processing in artificial neural networks. The subject of the research is the mathematical models for the 

construction and training of artificial neural networks. The purpose of this paper is to develop and experimentally validate 

a theoretical framework that postulates the energetic nature of information and its role in the self-organization and evolution 

of complex information systems. Research Results. A fundamental theory is proposed, describing information as a structure 

of perceived external energy parameters that govern the processes of forming the internal energetic structure of a system—

its model of the external world. This theory encompasses concepts of energy landscapes, principles of energy-based structural 

and parametric reduction, and a critical analysis of existing computational paradigms. Experimental studies on the 

construction and training of the developed energy-based model confirm its high generalization ability in one-pass training 

without using the backpropagation algorithm on ultra-small training datasets. 
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Introduction 

Recent advances in the field of artificial intelligence, 

particularly in deep learning and artificial neural networks 

(ANNs), have led to significant progress in solving com-

plex problems. However, the widespread application of 

these technologies has also revealed a number of funda-

mental limitations and shortcomings. These raise ques-

tions about the feasibility of creating truly autonomous, 

adaptive, and intelligent systems capable of self-organiza-

tion and flexible interaction with a complex, dynamic en-

vironment, in a manner similar to biological organisms. 

Examples of such limitations include: the necessity 

for massive amounts of data, along with substantial time, 

computational, and human resources required for training 

and operating complex models [1–3]; considerable en-

ergy consumption and the use of potable water for device 

cooling, resulting in environmental damage [4, 5]; and 

the frequent occurrence of errors and "hallucinations" in 

generative models, which significantly reduce trust in 

their outcomes, necessitate additional validation efforts, 

and severely limit their practical applications [6, 7]. 

We believe that these limitations stem from inherent 

constraints within the existing conceptual framework, 

which are not temporary but fundamental in nature. This 

assumption aligns with the views of several prominent re-

searchers, including Yann LeCun, Gary Marcus, Anthony 

M. Zador, and others [8-10]. The findings of these and 

many other studies indicate that the primary fundamental 

limitations of modern ANNs are rooted in their statistical 

nature of learning and the rigid architecture of the systems. 

These are weakly connected to the deep physical principles 

of information processing and world modeling. In partic-

ular, these limitations lead to the fundamental phenome-

non of the “entropy gap” in generative models. At the 

core of this phenomenon lies a significant disparity be-

tween the probabilities of statistically frequent events and 

rare but meaningful ones. This “probability gap” is also 

reflected in Shannon's information entropy. Low entropy 

indicates a distribution concentrated around frequent pat-

terns, resulting in high accuracy but little novelty (i.e., 

little information). High entropy broadens the space of 

possible outcomes, generating highly informative, “crea-

tive,” but often false or hallucinatory responses. 

Some AI researchers have suggested that the availa-

ble training data for AI models is already exhausted and 

propose continuing model development through the use of 

synthetic data generated by the models themselves. How-

ever, information entropy clearly indicates that such a data 

inbreeding approach would rapidly lead to information 

degradation and model collapse. This phenomenon is also 

known as model autophagy disorder (MAD) [11, 12]. 

We argue that a possible solution to many of these fun-

damental limitations lies in the creation of an adaptive open 

system based on mechanisms that take into account the 

physical nature of information and computational processes. 

This requires abandoning computations based on abstract 

symbols from an internal system alphabet and the statistical 

construction of complex separating hypersurfaces. Instead, 

it calls for feature generalization based on the formation and 

transformation of the system’s internal energy structure. Un-

like traditional approaches, our concept regards information 

as a structure of subjectively measured parameters of exter-

nal energy, which forms the system’s internal energy land-

scape — a model of the external world. Information controls 

the processes of self-organization and system evolution by 

minimizing its internal energy, forming a set of intercon-

nected local energy attractors corresponding to individual 

classes or patterns. This approach is consistent with the prin-

ciples of construction and functioning of both physical and 

biological systems, where external energy is transformed 

into internal energy during the stages of sensory perception 

and processing, thereby governing the dynamics and struc-

ture of the system. 
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Such a perspective makes it possible to bridge in-

formation theory, physics, and neuroscience, offering a 

unified framework for understanding complex systems. 

Overall, this research is intended to bridge the existing gap 

between theoretical physics, which views computation as 

a physical process involving thermodynamic costs, and 

computer science, which treats it as the manipulation of 

abstract symbols within a system’s internal alphabet. 

Energy Landscape of the Information System 

The idea of converging the understanding of the gen-

eral nature of energy and information can be realized by 

applying the concept of the energy landscape to both ener-

getic (thermodynamic, dissipative, quantum, etc.) and in-

formational, biological, economic, or social systems. 

In physics, an energy landscape is a concept that de-

scribes how a system evolves in state space, striving toward 

a state of minimal energy. For example, in mechanics, an 

energy landscape can be a representation of a system’s po-

tential energy as a function of its spatial coordinates, while 

in thermodynamics, it reflects free energy as a function of 

system parameters (such as temperature, pressure, concen-

tration, etc.). In such landscapes, the minima—either local 

or global—correspond to stable states of the system, while 

maxima and saddle points represent unstable states. The dif-

ferences between global and local minima determine the 

complexity of the system’s dynamics or evolution. 

The concept of an energy landscape is widely used 

in chemistry and biophysics (e.g., in protein folding and 

catalysis), as well as in statistical and quantum mechan-

ics. Undoubtedly, real physical systems possess a com-

plex energy landscape that describes the system’s energy 

across various states. 

In the general case, the total energy of a system, Uto-

tal, includes both the local energies of i-th structural ele-

ments (units) of the system Ulocal,i, and the interaction en-

ergies between units i and j, denoted as Ubond,ij: 

𝑈𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑈𝑙𝑜𝑐𝑎𝑙,𝑖 + ∑ 𝑈𝑏𝑜𝑛𝑑,𝑖𝑗 .

𝑖<𝑗

           

𝑖

   (1) 

The energy landscape describes the dependence of 

the total energy Utotal on the configuration of the system. 

The bonding energy Ubond characterizes the interactions 

between system elements and plays a key role in shaping 

the energy landscape. Examples of such interactions 

include: covalent or ionic bonds in chemical compounds, 

Van der Waals intermolecular forces, elastic interaction 

energy in solids (e.g., in crystals or molecular lattices), 

and the energy of magnetic or electric dipoles in systems 

with magnetic moments or polar molecules. These 

interactions are often nonlinear, and their energy depends 

on the distance between structural points. 

Fig. 1 presents the general structure of the system’s 

energy landscape, which is described by equation (1). In the 

general case, a stable internal energy landscape El of an 

open energy system is defined as the distribution of internal 

energy across structural elements (units) Ui and the 

connections between them Wij, without considering the 

processes of irreversible heat dissipation ΔT, which are 

associated with energy fluctuations of the units around their 

stable state, and without accounting for external energy or 

energy fluxes between the system and the environment. 

 
Fig. 1. General structure of the energy landscape 

of the system 
 

𝐸𝑙𝑟𝑒𝑠𝑡 = 𝑚𝑖𝑛(∑ 𝑈𝑖 + ∑ ∑ 𝑊𝑖𝑗) = 𝑇𝑟1 .        (2)

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1

 

In this formulation, we refer to this energy landscape 

as the landscape of the system at rest or the energy 

equilibrium landscape Elrest, and the total energy of the 

system in this state as the rest threshold Tr1. In this state, 

the system reaches maximum entropy for a given 

macrostate, where no energy, mass, or substance flows are 

observed. For example, in thermodynamic equilibrium, all 

thermodynamic forces, such as temperature, pressure, or 

chemical potential gradients, are zero, and all internal 

processes that could occur within the system (e.g., 

chemical reactions, heat transfer) are complete. 

Even if energy fluctuations at the microscopic level 

continue—such as changes in internal energy parameters 

(e.g., particle motion)—the system remains in an 

equilibrium (rest) state. This state defines the maximum 

number of possible microstates for a given macrostate 

that do not lead to its change. In other words, when the 

structure stabilizes and its internal energy is minimized, 

we describe the system as having reached its maximum 

entropy level for a given macrostate. 

The rest or equilibrium state of a system is an 

idealized concept for a closed thermodynamic system. 

When such a system reaches a state of rest, it possesses 

maximum entropy. If we consider an open system that 

continuously receives external energy, allowing it to 

maintain a non-equilibrium state and create ordered 

structures, such a system—referred to as a dissipative 

system—experiences a local decrease in its internal 

entropy due to structuring, leading to the formation of 

dissipative structures. At the same time, the overall 

macrostate of the system may remain unchanged, which 

still results in an increase in total thermodynamic entropy, 

in accordance with the second law of thermodynamics. 

These processes form the foundation of Prigogine’s theory 

of dissipative systems [13]. 

Examples of systems in a rest state, depending on the 

interpretation of energy, include: a gas in a closed, isolated 

vessel that has reached thermodynamic equilibrium 

(where temperature, pressure, and density are uniform 

throughout the volume); a molecule in vacuum; an isolated 

biological neuron in a resting state; an artificial neural 

network in a resting state (i.e., in the absence of input 

signals and changes in internal parameters). 
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Analogies (metaphors) can also be drawn for 

economic or social energy at rest, such as a company’s 

financial reserves stored in a bank or a society’s system 

of cultural and moral values. 

However, it is important to note that this state 

indicates a fundamental limit—the rest energy threshold 

of the system, which defines the minimum internal energy 

of the system and the maximum entropy for a given 

structure and a specific set of macrostates. The energy 

landscape of a system at rest depends on its internal 

physical structure. Thus, this landscape forms the 

energetic foundation of the system, which determines its 

resilience to external energetic influences. 

The minimum energy of the rest-state landscape is 

ensured by minimizing the physical structure of the 

system and/or minimizing the internal (potential) energy 

of the units and their interconnections. Structural 

minimization can be associated with its dynamic 

adaptation in response to changes in external energy 

influences or with evolutionary structural changes, as 

observed in bifurcation points of dissipative systems or 

in biological systems. However, if we speak about 

minimizing the internal energy of the units and their 

interconnections, we must recognize that this energy 

itself has a structure. Examples of describing such 

energy structures can be found in quantum mechanics 

and quantum chemistry, such as Schrödinger’s equation, 

the Hartree-Fock method, the Lennard-Jones potential, 

and density functional theory (DFT), among others. 

From quantum mechanics, the bond energy Ebond 

reduces the total energy of individual atoms Eatoms within 

the overall molecular energy structure Emolecule: 

𝐸𝑏𝑜𝑛𝑑 = ∑ 𝐸𝑎𝑡𝑜𝑚𝑠 − ∑ 𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 .             (3) 

This implies that part of the potential energy of the 

units is used to create interconnections between them. 

Thus, the energy landscape of the system at rest consists of 

"wells" of potential energy, represented by the units, and 

"channels" for potential energy transitions between wells, 

represented by interconnections (Fig. 1). The potential 

energy within these wells and channels has an internal 

structure, consisting of energy levels or sublevels. These 

potentials effectively determine the energy capacity of the 

system and indicate the "bottom level" of this capacity 

relative to some reference point (the "plateau" of the 

landscape). For example, in an atom, the potential energy 

of an electron in the nucleus's field defines the "bottom" of 

its energy state relative to the nucleus's energy. 

Metaphorically, we can visualize this level as the geodetic 

height of a point in an energy landscape above sea level. 

Thus, the formation of stable structures leads to a 

decrease in the internal energy of the system in a resting state. 

If we apply this description of the rest-state energy 

landscape to ANNs, we see that: 

1. For most types of models, the rest-state energy 

landscape is static and, as it might seem, consists solely 

of weight coefficients, which we can interpret as the 

energies of interconnections between neurons (units). In 

these models, the energy is considered in only one 

direction for signal propagation. However, this is not the 

case, because in ANNs, the interconnections exist 

"physically," but they do not exist as distinct energy 

elements. If we look at the McCulloch-Pitts model, which 

forms the foundation for most neural models in ANNs: 

𝑌 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑄
𝑛

𝑖=1
),                      (4) 

where Y is the neuron’s output (response), f is the 

activation function, wi is the weight coefficient of the i-th 

neuron input, xi is the input signal to the i-th input, Q is the 

activation threshold of the neuron. When, we see that the 

weight coefficients serve as modulators of the input signals 

(input energy) of the neuron, rather than independent 

energy elements of interconnections. However, if we 

consider that the input signals correspond to the values of 

bits (as in the classical model), then from an energy 

perspective, the sum of the weight coefficients could 

determine the energy structure and the possible depth of 

the potential "well" of the unit's energy landscape in the 

ANN and, consequently, the overall energy landscape of 

the system in its resting state (2). That is 

𝑈𝑗𝑟𝑒𝑠𝑡 = ∑ 𝑤𝑖𝑗  ;
𝑁

𝑖=1
                             (5) 

𝐸𝑙𝑟𝑒𝑠𝑡 = ∑ 𝑈𝑗𝑟𝑒𝑠𝑡

𝑁

𝑗=1
= ∑ ∑ 𝑊𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1
,       (6) 

where Ujrest is the energy of the j-th unit (neuron) in the 

resting state. 

Indeed, if the input xi = 0, then this input energy 

does not leave the i-th sublevel of the unit's potential 

"well," with wijxi = 0. However, if xi = 1, the energy 

output from this sublevel equals wij, meaning that the sum 

of weight coefficients in this case determines the 

maximum "depth" of the potential "well." 

In general, drawing an analogy with an energy 

system, such as an atom, we could compare the operation 

of a neuron to the ionization process of an atom, where 

the linear combination of inputs ∑wixi+Q models the 

release of an electron from the atom, i.e., the generation 

of free energy. Meanwhile, wixi models the transition of 

an electron to another energy sublevel, where wi defines 

the energy of the sublevel in the resting state. However, 

this is merely a conditional analogy that, in this case, 

lacks a common energetic foundation. 

Thus, the formal neuron model is an informational 

model based on the mathematical, or more precisely, 

statistical abstraction of information processes and, in its 

classical interpretation, is far from describing 

thermodynamic processes. 

2. The values of individual weight coefficients in most 

ANN models could be interpreted as a conditional internal 

energy of the system, which lacks structure and is not 

connected to the system's input energy. Indeed, each neuron 

simply distributes (duplicates) its output energy evenly 

across all neurons in the next layer. This energy distribution 

can be compared to its dissipation. However, in reality, such 

"dissipation" in an ANN (if one considers its physical 

implementation) is associated with additional energy costs 

required to maintain the energy level of the neuron's 

response at the inputs of multiple neurons in the next layer. 

The weight coefficients of inputs are associated 

with a different type of energy—pseudo-energy. 

However, this pseudo-energy does not govern the 



ISSN 2522-9052 Сучасні інформаційні системи. 2025. Т. 9, № 4 

103 

distribution of external energy across the system's 

internal energy landscape, as it might seem. Instead, it 

determines the coordinated potential contributions of 

individual elements of the neurons' input energy, directed 

at overcoming their activation thresholds. This pseudo-

energy represents the error energy, which is minimized 

during the iterative learning process. 

Thus, the weight coefficient formally defines the 

"correct" contribution of input energy to overcoming the 

activation threshold, from the perspective of minimizing 

error energy. In other words, it determines the release of 

energy from the "potential well" to achieve the required 

response of both the neuron and the ANN as a whole. 

3. The input energy of an ANN is normalized and 

constrained by a representation system, which can 

conditionally be compared to sensory perception that 

segments and transforms external energy into internal 

energy. Thus, both input and output energies are 

represented as another type of pseudo-energy, expressed 

in the symbols of the system’s internal alphabet, for 

example, in binary or decimal numerals. 

Such a representation of input energy, along with 

other specified constraints, leads to the formation of a 

deterministic set of possible microstates of the system. In 

ANNs, these microstates are determined by the sets of 

weight coefficients in the resting state and the 

distribution of input energy across the network, i.e., the 

responses of neurons during information processing. 

The set of macrostates of an ANN is then defined 

by the responses of the output layer neurons and, from an 

energetic perspective, forms the system's free energy. In 

this sense, the network’s output reflects a new stable state 

of the system (in which it has minimized its energy), 

conditioned by the interaction of input energy (the input 

signal vector) with the energy landscape. 

One could say that an ANN in the inference state 

(the operation of a trained network) is in a state of stable 

energetic nonequilibrium. In this state, the system exits 

its resting state, but the structure of its internal energy 

landscape remains unchanged. The system maintains a 

stable internal (physical) structure and dynamics, as well 

as predefined macrostates. 

This state is associated with the existence of a 

second fundamental threshold—the system's activation 

threshold Tr2. This threshold defines the system’s 

internal metric, allowing for the determination of the 

depth of "wells" and "channels" in the system's energy 

landscape. The magnitude of a unit’s local activation 

threshold determines the depth of its potential energy 

"well," i.e., its energy capacity, and depends on the 

internal structure of its energy. 

For example, at the quantum level, an electron must 

overcome several energy sublevels to detach from an 

atom, meaning it must surpass the ionization barrier, which 

can be considered an analogue of the activation threshold. 

Different systems will have different activation thresholds: 

for biological neurons, it is the action potential; for an 

artificial neuron, it is the activation function. In dynamic 

systems, the activation threshold may be described by 

Lyapunov function or functional. Depending on the type 

of system, the complexity of interactions, and system 

properties, other methods may be used, such as Jacobian 

matrices, phase diagrams, energy barriers, feedback 

mechanisms, statistical methods, critical phenomena, and 

more. Thus, the type and structure of internal energy 

define the rules or conditions for the system's activation. 

In the general case: 

𝐸𝑎𝑐𝑡(𝑖) = (𝑈𝑚𝑖𝑛(𝑖) + ∆𝑈𝑖) > 𝑇𝑟2𝑖;                  (7) 

∆𝑈𝑖 = 𝐹(𝑋).                                   (8) 

where Eact(i) – activation energy of the i-th unit, Umin(i) – 

potential resting energy of the i-th unit, ΔUi – additional 

energy of the i-th unit, Tr2i – activation threshold of the 

i-th unit – the limit of its potential capacity, F(X) – 

function of input energy distribution across units. 

Let us imagine a surface with pits connected by 

hollows or channels, and possibly hills. If we pour water 

onto this surface, we will observe the process of energy 

distribution across the energy landscape of the system, 

filling the pits and channels. This representation vividly 

illustrates the process of energy distribution across the 

energy landscape of the system. 

If there is an influx of energy into the system and no 

effective outflow, the energy will overflow the system’s 

capacity, and the energy connections between the units 

may be destroyed, as their potential capacity is much 

smaller than that of the units themselves. This connection 

capacity determines the third fundamental threshold of 

structural stability or system resilience Tr3. 

𝐸𝑠𝑡𝑟(𝑖𝑗) = (𝑊𝑚𝑖𝑛(𝑖𝑗) + ∆𝑈) ≤ 𝑇𝑟3𝑖𝑗 ,                 (9) 

where Estr(ij) – energy of the stable connection between 

units i and j, Wmin(ij) – minimum potential energy of the 

connection between units i and j, Tr3ij – threshold of 

structural stability for this connection. 

If the destruction of connections exceeds the 

structural stability threshold of the entire system, this 

may define the bifurcation point of the system, i.e., the 

point of its state change or further development, as well 

illustrated in Prigogine’s theory of dissipative systems. 

In an ANN, the activation threshold is represented 

by a rule or function that defines the artificial neuron’s 

response. In most modern neuron models, this activation 

function (e.g., sigmoid or ReLU) is related to response 

normalization and does not reflect the level of threshold 

exceedance. However, it can serve as an analog of the 

neuron’s potential energy level in the activated state. 

The existence of two thresholds, Tr1 and Tr2, 

determines the stability of any system against 

fluctuations within the inter-threshold space. Exceeding 

the activation threshold by a certain magnitude results in 

the same stable system response, for example, at the 

system’s output. To transition the system into an unstable 

state, external energy is required to alter the resting 

energy, the activation threshold, or to surpass the 

structural stability threshold. 

Since the energy landscape consists of multiple 

components, an energy fluctuation that disrupts local 

elements of the Tr3 threshold may not lead to the 

complete collapse of the entire landscape. However, an 

increase in the number of such fluctuations can bring the 

system to a bifurcation point. This approach to analyzing 

state changes in the system’s energy landscape offers a 

new perspective on system classification: 
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- If the system can adapt to changing conditions by 

modifying its thresholds or internal energy parameters, 

it is classified as adaptive. 

- If adaptation occurs through the restructuring of 

its resting energy landscape, which involves changing its 

internal structure, the system is evolutionary. 

- If the system can create a new resting energy 

landscape by synthesizing its internal structure, it is 

classified as self-organizing. 

Thus, the activation threshold defines the maximum 

allowable fluctuation of internal energy for maintaining 

a resting (equilibrium) state. If this limit—determined by 

the structure of internal energy—is exceeded, the system 

transitions into a stable nonequilibrium state. 

The bifurcation threshold depends on the system's 

structure, its resting and activation thresholds. If system 

response stability deteriorates with increasing 

fluctuations, this may indicate proximity to the 

bifurcation threshold. 

The system may then transition either to adaptation 

through self-organization or to a state of degradation, 

meaning a nonequilibrium state with a disruption of its 

internal energetic and physical structure. 

An important conclusion can be drawn: the structure 

of energy serves as the foundation not only for shaping the 

system's internal energy landscape but also for its 

processes of adaptation, evolution, and self-organization. 

If we consider that system adaptation can occur not 

only through feedback but also through deep internal 

mechanisms of energy transformation, which involve 

changes in thresholds and the energy landscape, this 

could significantly expand system theory and 

cybernetics. Moreover, it could transform our 

understanding of learning in artificial neural networks, 

paving the way for a new perspective on their self-

learning capabilities. 

A look at the energy content of the Hopfield model 

and other energy-inspired ANN models 

The first and most well-known ANN model that 

utilizes the concept of an energy landscape and an energy 

function is the Hopfield model [14, 15]. This model 

represents an attempt to bridge the gap between 

information theory and physics. Let us analyze how well-

founded this convergence is. From the perspective of the 

energy states in the model, the most well-known physical 

interpretations of Hopfield’s concept assert the following: 

1. The energy landscape is interpreted as the set of 

all possible states of neurons. 

2. The minimization (or rather, reduction) of energy 

during state changes, both in individual neurons and in 

the network as a whole, is illustrated by the Hopfield 

energy function. 

3. A local attractor, which defines the “correct” state 

of a single neuron as an element of a global attractor, has 

a “basin of attraction”. This basin is determined by the 

states of the neuron that converge toward a stable value, 

which corresponds to a stored pattern element. Failure of 

a neuron to reach the local attractor state is characterized 

as an undesirable phenomenon—a “trap” in a local 

energy minimum. This effect can arise due to 

interference between stored patterns. 

4. Based on these assertions, it follows that there 

exists a set of global attractors with minimal energy, each 

of which corresponds to a stored pattern. 

As a prototype for the Hopfield model, the Ising 

model is used to describe the properties of ferromagnetic 

materials [16]. The Ising model is a physical model, and 

its primary characteristics include energy, entropy, and 

temperature, which are used to describe the behavior of a 

system consisting of a large number of interacting spins 

in magnetic materials. In these materials, interactions 

between magnetic moments (spins) lead to complex and 

disordered states. 

Spins represent the orientation of atomic magnetic 

moments and are associated with the energy of their 

interactions. The Ising model was developed to understand 

how local interactions between neighboring spins can lead 

to global ordering in systems, such as the phase transition 

of a ferromagnet. This ordering depends on temperature: 

at low temperatures, spins tend to align in the same 

direction (ordered state), and at high temperatures, spins 

become randomly oriented (disordered state). This model 

does not account for all forms of energy, nor does it 

describe energy dissipation or free energy formation, 

meaning it is not a complete thermodynamic model. 

If we analyze the model in more detail, it studies the 

collective behavior of spins Si, which can take values ±1. 

The interaction between spins is described by a matrix of 

constant or random values Jij. This Jij can be interpreted 

as the conditional interaction energy, which can reflect 

spin correlation: a positive value corresponds to parallel 

spin orientation, or a negative value corresponds to spin 

misalignment (disorientation). 

It is crucial to note that Jij represents the interaction 

energy rather than the internal energy of a single unit (atom). 

However, in the classical Ising model, all Jij values are set to 

+1, meaning it is axiomatically assumed that spin states tend 

to converge toward a single stable state with parallel 

alignment. The current states of spins depend on 

temperature, which influences the probability of spin 

reorientation according to the Boltzmann distribution: the 

lower the temperature, the higher the probability of parallel 

spin alignment. During the dynamic change of spin states, a 

complex energy landscape of the system is formed. The 

dynamics of the Ising model are described through the 

energy functional, the Ising Hamiltonian H: 

𝐻 = −
1

2
∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗

𝑖𝑗
− ∑ ℎ𝑖𝑆𝑖

𝑖
,          (10) 

where hi is the external field. 

As the system evolves, its energy decreases until it 

reaches a minimum, characterizing a stable state with 

parallel spin orientations. In the absence of an external 

field (hi = 0), this state is fully defined by the matrix of 

spin interaction weights. Thus, in the stable equilibrium 

state of the system, the energy landscape, according to 

equation (10), is represented by the weight matrix with 

values of +1, reflecting the state of the system with 

minimum energy and maximum thermodynamic entropy. 

The Ising Hamiltonian is a discrete analog of the 

Lyapunov function, which is used to describe continuous 

stable states of dynamic systems [17]. In the Hopfield 

model, the Ising model's concept is adapted to solve the 
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problem of building associative memory. The energy 

function of the Hopfield model, which decreases with 

each step of neuron state updates, is described by the 

following functional: 

𝐸 =  −
1

2
∑ 𝑤𝑖𝑗𝑠𝑖𝑠𝑗

𝑖𝑗
− ∑ 𝜃𝑖𝑠𝑖 ,

𝑖
        (11)   

where si are the neuron states (+1 or -1), wij are the 

connection weights between neurons, and θi are the 

threshold values. 

One of the key differences between these models is 

that in the classical Ising model, the changes in spin states 

occur randomly using the Metropolis algorithm (a Monte 

Carlo method) [18], which models the relationship 

between the external and internal energy of the system. In 

contrast, in the Hopfield model, changes in neuron states 

occur deterministically based on comparing input signals 

with the signs of mutual correlations, represented by the 

sum of connection weights. The changes in neuron states 

aim to restore a specific state (pattern) due to the recurrent 

architecture of the model. That is, the architecture of 

recurrent connections in the Hopfield network acts as a sort 

of "broom" to maintain its dynamics. 

In the Ising model, the threshold for the spin "flip" 

depends on the temperature T and the change in energy 

ΔE. This threshold is defined by the probability P with 

which the system "decides" whether to adopt a new state 

that might have a higher energy: 

𝑃(∆𝐸) ∝ 𝑒−∆𝐸/𝑘𝐵𝑇 ,                             (12) 

where kB is the Boltzmann constant. 

The probability P, according to the Boltzmann 

distribution, serves as an analog to the energy threshold that 

determines the change in the spin state. Therefore, the 

relationship between the energy threshold and 

thermodynamic parameters defines the physical basis of the 

Ising model. We can see that in the Ising model, this 

threshold is dynamic, while in the classical Hopfield model, 

the threshold θi for changing the state of the neuron is static 

and equal to 0. This threshold, along with other parameters 

of the Hopfield model, is not related to thermodynamics, 

which defines the Hopfield model as informational. 

Let us pay attention to the fact that the Hopfield 

model uses the concept of the system's "energy 

landscape" as the set of the neurons' states, but does not 

provide its definition for the equilibrium resting state. 

However, if this is an energetic system, then there must 

exist a landscape in the resting state. 

It is easy to see that, according to the Hopfield 

energy function, the energy landscape of the system in 

the resting state is formed by the sum of the weight 

coefficients at the neuron inputs. In other words, the 

weight coefficients acquire the meaning of the internal 

energy of the network in the resting or equilibrium state. 

Indeed, according to the Hebbian learning rule, these 

weight coefficients are formed once during the learning 

process and are not dynamically updated afterward: 

𝑤𝑖𝑗  =  
1

𝑁
∑ 𝑥𝑖

𝑘𝑥𝑗
𝑘

𝑝

𝑘=1
,                          (13) 

where 𝑥𝑖
𝑘 is the response value of the i-th neuron in the 

k-th sample, N is the number of neurons in the network, 

and p is the number of patterns to be memorized. Thus, 

in the Hopfield model, the weights wij are formed based 

on the correlation of patterns that the network must 

memorize, rather than on the basis of fundamental energy 

interactions. 

Then, according to formula (11), the minimum 

energy of the network in the equilibrium state Emin, i.e., 

theoretically, if all the states of the neurons (their 

responses) were perfectly correlated with each other 

based on their weight coefficients, will be: 

𝐸𝑚𝑖𝑛  =  −
1

2
∑ 𝑤𝑖𝑗

𝑖≠𝑗
,                       (14) 

Thus, the network has one global minimum energy 

in the resting state, which is a theoretical limit, and 

practically, in a working network, this is not achievable 

due to the various types of correlations for different 

signals and the peculiarities of the weight coefficient 

formation algorithm. One can conclude that, indeed, for 

each memorized pattern, there will be its own minimum 

value of the energy function, which, in practice, will 

depend on the degree of distortion of the memorized 

patterns. This can be interpreted as the existence of global 

energy minima for each memorized pattern. 

This is explained by the fact that the signs of the 

sums of the weight coefficients of a neuron indicate the 

"correct" or "desired" correlation of the input signals with 

the memorized patterns—either positive or negative. The 

sum of the weighted input signals of a neuron can be 

interpreted as a "correlational vote," as a result of which 

a decision is made to change or maintain the current state 

of the neuron. The result of this "voting," reflecting the 

maximum possible correlation of signals, will depend not 

only on the values of the weight coefficients but also on 

the current states of the neurons. 

If complete correlation according to the weight 

coefficients is not achieved, then the system will not 

reach the desired global minimum corresponding to the 

memorized pattern, which will be reflected in the energy 

formula as an undesirable phenomenon of a local energy 

minimum. Therefore, in the Hopfield model, the energy 

function can increase at the level of individual neurons if 

local correlations are disrupted. However, the global 

dynamics of the network, taking into account possible 

constraints, will aim to reduce the overall energy 

function. This emphasizes that the Hopfield model works 

with a global energy function, and local deviations in 

individual elements can be compensated by the overall 

behavior of the system. 

Thus, the following conclusions can be drawn: 

1. The Hopfield model, unlike the Ising model, is 

informational, meaning it is abstracted from any 

thermodynamic or other energetic interpretation. 

Therefore, when considering it, it would be more 

appropriate to use the term "conditional" or "pseudo" 

energy. However, the use of concepts such as "energy 

landscape" and "energy function" still represents powerful 

conceptual steps. The minimum of the Hopfield energy 

function demonstrates the attainment of a stable state and 

a reduction in the system's informational entropy. 

2. The classical Hopfield model has a spatially linear 

energy landscape of the system in its resting state, 
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represented by the sum of the weight coefficients of the 

neurons. This is explained by the physical structure of the 

network. In the Ising model, this landscape reflects the 

lattice structure of atoms. When considering the Hopfield 

model, a dilemma arises regarding the interpretation of the 

energy of the weights: they could be attributed to the 

elements of the internal energy of neurons (Equation (2)) 

or to the energy of neural interactions (Equation (6)), since 

they are a function of the reference values of their internal 

states according to Equation (13). However, due to the 

structure of the McCulloch-Pitts model (Equations (4), (5), 

(6)), they should still be attributed to the elements of the 

internal energy of the units (neurons). In this case, the 

coefficient ½ in the Hopfield energy formula (Equation 

(11)) is redundant, unlike in the Ising Hamiltonian 

(Equation (10)), where the weight coefficients indeed 

represent the interaction energy of atoms. 

3. The Hopfield energy function is separate from the 

process of governing the network's dynamics and serves 

only as an illustration of the process. Therefore, the 

metaphor of "attractors," whether informational or 

energetic, is incorrect, as there is no energy or energetic state 

in the model that "attracts" other energetic or informational 

states. That is, the figurative representation of the network's 

operation as a ball moving along the surface of an energy 

landscape and falling into a "well" with minimal energy 

does not correspond to real processes. 

This assertion is justified by the fact that the 

metaphor of an "element of a global attractor" could only 

apply to the sum of the weight coefficients of each neuron 

as the only explicit, rather than virtual, constant value. 

However, the problem is that this sum serves the same 

role for all "global attractors," and all correlations 

between "elements of the global attractor" are 

interconnected by the matrix of these weight coefficients. 

The decision to change the state of a neuron depends on 

the values of incoming signals, meaning the "attractor" 

must be dynamic and change depending on the input 

signals. It should be noted that in dynamical systems 

theory and nonlinear dynamics, there are concepts that 

describe such phenomena, but for this, a system must 

have: multistable states and a switching mechanism 

between them; or attractor metamorphosis with gradual 

or sudden changes in the shape or type of the attractor; or 

chaotic evolution of the attractor, among others, which is 

possible in complex systems with changing parameters 

or interactions. Therefore, it is more appropriate to 

consider not the metaphor of an "attractor" but the true 

correlational nature of these weight coefficients and their 

sum. This process can be called correlational voting, 

where the majority of weighted input signals "vote" for a 

positive or negative correlation of the output signal, i.e., 

for making a decision to transition to state +1 or -1. 

4. If the energy function of the Hopfield model (11) 

indicates a decrease in conditional energy associated with 

a reduction in informational entropy, then the analogous 

energy function of the Ising model (10) also points to 

this. Thus, it can be concluded that a physical spin-glass 

system produces not only thermodynamic but also 

informational entropy. This is consistent with the theory 

of quantum informational entropy and Prigogine's theory 

of dissipative systems. 

Overall, the functioning of the Hopfield model could 

be described more simply and accurately without using 

energetic terminology: the final stable state of the system 

depends on the initial state (input signal vector) and the 

correlation matrix defined by the weight coefficients of 

correlation. The process of state changes in the system is 

iterative and determined by recurrent connections. The 

final state of the system is characterized by achieving the 

maximum possible (stable) correlation of neuron 

responses (their states) in accordance with their weight 

coefficients. The energy function (Lyapunov function) in 

this interpretation takes on a demonstrative meaning and 

reflects the system’s tendency toward a stable state or a 

reduction in internal informational entropy. 

However, if we decide to consider the operation of 

this network purely from an energetic perspective, let us 

note that the internal energy of the network, as we have 

established, corresponds to the energy of neurons 

(units) according to formulas (5, 6), whereas the energy 

of neuron interconnections remains undefined. Suppose 

the system "does not know" what a bit of information is 

and instead treats it as a value of potential energy that 

needs to be "disposed of" in some way: stored, 

distributed, dissipated, or converted into output energy. 

Then, the dynamics of neuron state changes are 

determined solely by elements of external energy 

entering the system. In our case, this energy 

corresponds to the symbols xi of the bipolar alphabet 

(+1 – maximum energy, or -1 – minimum energy). 

Indeed, if no signals are supplied to the network’s input, 

then the output of each neuron will either be zero or 

contain random energy values. 

Thus, the values of the internal energy of the 

network, expressed in the form of the weight coefficient 

matrix wij, define the threshold values of the system's 

resting state. The dynamics of state changes in the system 

are determined by the excess of external energy over 

these resting threshold values within the threshold 

activation value θi. This process should be viewed not as 

the reduction of the system’s internal energy to a minimal 

(stable) level but rather as its redistribution among local 

points of the energy landscape (units). 

An important feature of the model is that the energy 

landscape, determined by the weight coefficient matrix, is 

formed based on samples of external energy that need to 

be memorized, rather than in the form of conditional error 

energy, as in a multilayer perceptron, for example. Thus, 

the energy landscape of the Hopfield model could be 

considered as an internal model of the external world 

perceived by the system. Thus, the process of iterative 

redistribution of external energy across the local levels of 

the energy landscape is represented in the form of a 

Lyapunov function, expressed through the Hopfield energy 

function (11). The result of this redistribution indicates the 

level of external energy exceeding the internal resting-state 

energy at the local extrema of the landscape. After 

comparing this excess with the threshold value θi of the 

functional, it is reflected in the system’s output signals. 

Therefore, θi serves as the decision threshold for 

redistributing external energy among the network elements. 

According to Hopfield’s formula (11), with each 

step of energy redistribution, the total conditional energy 
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E of the network decreases, which, in accordance with 

the laws of thermodynamics, reflects an increase in the 

system’s thermodynamic entropy. That is, external 

energy diminishes as it is "dissipated" among neurons 

and fills the "wells" of potential energy in the units 

(neurons) until a state is reached where further changes 

become impossible, and the system stabilizes. 

Thus, we could also conclude that the Hopfield energy 

formula represents the dynamics of entropy change, 

inherently linking informational and thermodynamic 

entropy. However, a drawback of this description is that 

neurons must "dissipate" the accumulated potential energy 

in their "wells" before the next state update cycle. As a 

result, to maintain dynamic operation, the system will 

continuously require additional external energy. 

One of the conceptual problems of both the classical 

Hopfield model and this alternative energetic description 

of its operation is the absence of a self-halting 

mechanism. The system itself will continue running 

indefinitely without state changes (in an update loop) 

until an external stop signal is received. 

Thus, the Hopfield network, as both an energetic 

and informational system, can be classified as a system 

with a deterministic static structure, a deterministic 

static generalized energy landscape in the resting state 

(formed instantly rather than iteratively), and a 

deterministic dynamic energy landscape during the 

process of minimizing informational entropy. 

Other well-known energy-based neural network 

models, such as Restricted Boltzmann Machines (RBM), 

deep energy-based models, diffusion models, quantum 

neural networks, Energy-Based Transformers, or Latent 

Variable Energy-Based Models (LV-EBMs) of LeCun and 

his followers [19–21], are even further from describing 

physical processes than the Hopfield model. All these 

models rely on the statistical paradigm of learning. How-

ever, once we speak of the statistical nature of learning as-

sociated with some artificially introduced (pseudo) energy, 

this implies that for analyzing the statistics influencing the 

global behavior (reaction) of the system, we need an algo-

rithm external to the model itself—for example, the back-

propagation algorithm, which serves as a kind of analogue 

of Maxwell’s demon in thermodynamics. Such an ap-

proach is not physically/biologically justified, and one 

may conclude that all modern energy-based neural net-

work models are not genuinely energy-based from a phys-

ical/biological perspective, since they are not grounded in 

the consideration of the system’s internal energy and its 

dynamics (minimization) during the transition to equilib-

rium, but instead in the optimization of external functions 

employing pseudo-energy (loss functions). 

The same problem arises in Friston’s Predictive 

Coding Theory [22, 23], which employs the principle of 

free-energy minimization, but this “free energy” is in fact 

an abstract quantity related to a probabilistic (Bayesian) 

distribution, rather than to physical energy. 

Energetic interpretation of the formal neuron model 

The McCulloch-Pitts (MCP) neuron model is a 

simplified mathematical representation of a biological 

neuron, which, nevertheless, has become widely used and 

has formed the basis for the construction of modern 

ANNs. This informational model is implemented 

algorithmically; however, modeling it as an energy 

system will allow us to understand the limitations of this 

model compared to a real physical system, which a 

biological neuron undoubtedly is. 

Let us consider the MCP model as a single-layer 

perceptron in its classical version with binary signals {0, 

1}, weight coefficients in the range {−1, +1}, and a 

Heaviside activation function. The energy model of the 

MCP can be examined based on the construction of its 

energy landscape. We have already mentioned that the 

energy landscape of an MCP neuron in its resting state is 

represented by a set of weight coefficients that determine 

the energy contribution of each input to overcoming the 

"potential energy well," the depth of which is limited 

above by the activation threshold Q (4-8). 

Additionally, we have noted that the energy of the 

MCP model represents only the energy of a single unit in the 

energy landscape of a more complex system (e.g., an ANN). 

This unit (neuron) does not form energy interactions with 

other units, unlike real physical systems (1). 

Fig. 2 shows the general structure of the MCP 

energy model, where X = (x1, x2,…, xn) is the set of input 

signals representing the system’s input energy; Y is the 

response of the MCP model, representing the system’s 

output energy; W = (w1, w2,…, wk) are the weight 

coefficients representing the energy contributions of the 

inputs to overcoming the activation threshold; Σ is the 

summator of the weighted inputs, representing the 

current depth of the system’s (unit’s) "potential well"; 

and f is the Heaviside activation function, representing 

the upper threshold of the "potential well." 
 

 
Fig. 2. General structure of the energy model of the MCP 

 

The sum of the weighted inputs represents the 

internal energy of the system. This energy is divided into 

excitatory (activation energy), where the weight 

coefficients have a positive sign, and inhibitory 

(suppressing) energy, where the weight coefficients have 

a negative sign. 

Thus, if the "positive" total input energy exceeds the 

"negative" or inhibitory energy, the activation threshold 

Q = 0 is surpassed, and the system, using the activation 

function, decides to generate an output signal Y = 1, 

regardless of the activation potential V: 
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𝑉 = ∑ 𝑤𝑖
+𝑥𝑖

𝑖
+ ∑ 𝑤𝑖

−𝑥𝑖
𝑖

= 𝑉+ + 𝑉−,          (15) 

where wi
+ are the positive weight coefficients that 

determine the positive activation potential V+, wi
─ are the 

negative weight coefficients that determine the inhibitory 

potential V─. 

Thus, the inhibitory potential V─
rest determines the 

"depth" of the potential well and the minimum energy of 

the unit in the resting state Vrest: 

𝑉𝑟𝑒𝑠𝑡 = 𝑉𝑟𝑒𝑠𝑡
− = ∑ 𝑤𝑖

−

𝑖
.                     (16) 

This "depth" of the potential well is represented in 

the energy landscape of the unit model (formal neuron) 

in the resting state (Fig. 3). 

 
Fig. 3. Energy landscape of the MCP model in the resting state 

 

The process of normalizing the output energy of the 

system (representing it as a single-bit value based on 

Landauer's principle) can be associated both with the 

"dissipation" of energy exceeding the normalized value 

of "1" and with the use of additional energy in cases 

where V < 1. 

If |V─| > |V+|, then all the energy V+ will be 

dissipated with energy release in accordance with 

Landauer’s principle [24]. 

The model in Fig. 2 also presents "Maxwell’s 

Demon" (MD) [25]. This is an abstract thermodynamic 

concept proposed by the Scottish physicist James Clerk 

Maxwell, which is widely used in information physics 

and quantum computing. In this case, we consider it as 

an analogy to an external energy system relative to the 

given system, which implements the learning algorithm 

of the neuron. As an energy system, MD regulates the 

flow of input energy for its transformation into the 

internal energy of the system by purposefully adjusting 

the weight coefficients. 

Practically, MD minimizes the error energy at the 

system's output. This error energy represents "pseudo-

energy" relative to the system's internal and external energy. 

To consider the MCP model as a thermodynamic 

system, we must also define the system's microstates and 

macrostates. We define the system’s microstates as the 

set of weighted inputs, which correspond to specific 

system outputs—macrostates. In this model, there are 

only two macrostates: Y = {0,1}, where only the 

macrostate Y = 1 corresponds to neuron activation. 

The probability of neuron activation Pact can be 

considered as a conditional probability: 

𝑃𝑎𝑐𝑡 = ∑ 𝑃(𝑉−)𝑃(𝑉+ ≥ (𝑄 + 𝑉−)|𝑉−)
𝑉−

,      (17) 

where P(V─) is the probability that the inhibitory inputs 

sum to V─; P(V+ ≥ (Q + V─)|V─) is the conditional 

probability that the excitatory inputs sum to a value 

exceeding the effective threshold (Q + V─). 

This reflects the influence of inhibitory 

contributions: the "deeper" (i.e., the larger in magnitude 

V─ is), the higher the effective threshold for excitatory 

inputs, and thus, the lower the probability that the 

condition V+ ≥ (Q + V─) will be satisfied. If we define the 

number of microstates leading to activation as Ωact, then 

the thermodynamic entropy Stherm is given by: 

𝑆𝑡ℎ𝑒𝑟𝑚 = 𝑘𝐵 ln Ωact.                             (18) 

The number of microstates Ωact depends on how 

many combinations of weighted excitatory and inhibitory 

inputs satisfy the condition V+ ≥ (Q + V─). That is a "deeper 

well" (stronger inhibition) reduces Ωact because more 

excitation is required to overcome the threshold, leading to 

a decrease in thermodynamic entropy for this activation 

macrostate. Similar reasoning applies to the second 

macrostate Y = 0, where the number of microstates that do 

not lead to activation, Ωnon-act, is determined by the 

condition V+ < (Q + V─). Assuming an equiprobable 

distribution of all 2N microstates, where N is the number of 

inputs, the probability of activation can be expressed as: 

𝑃𝑎𝑐𝑡 = Ω𝑎𝑐𝑡 2𝑁⁄ ,                           (19) 

then 

Ω𝑎𝑐𝑡 = 2𝑁𝑃𝑎𝑐𝑡 .                            (20) 

In this case, the thermodynamic entropy for the 

activation macrostate Sact is given by: 

𝑆𝑎𝑐𝑡 = 𝑘𝐵 ln(2𝑁𝑃𝑎𝑐𝑡) = 𝑘𝐵(𝑁 ln 2 + ln 𝑃𝑎𝑐𝑡).       (21) 

Thus, as Pact increases, the thermodynamic entropy 

also increases for a fixed value of N and an equiprobable 

distribution of microstates. 

Similar reasoning applies to the determination of 

the thermodynamic entropy for the second macrostate 

Snon-act. However, during the learning process of a neuron, 

we restrict the number of permissible input combinations, 

thereby making them non-uniformly distributed for a 

given (defined) macrostate. That is, for example, to 

activate a neuron, we apply the conditional probability 

given by equation (17). In this case, we use only a 

significant subset T from the total set of 2N combinations: 

|𝑇| ≪ 2𝑁 .                                (22) 

If we assume that the distribution of combinations 

within T is uniform, then: 

𝑃𝑎𝑐𝑡 =
Ω𝑎𝑐𝑡

|𝑇|
 ,                             (23) 

which means that maintaining the same probability Pact 

under conditions of a non-uniform distribution of input 

combinations – leading to the selection of a significant 

subset T – requires a smaller number of effectively active 

input combinations and, consequently, a smaller number 

of possible microstates Ωact. The same reasoning applies 
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to the subset of combinations T' that do not lead to neuron 

activation. 

Thus, we observe that during the learning process 

of a neuron, its thermodynamic entropy as an energy 

system decreases for the selected significant subsets of 

input combinations T and T′. In contrast, for the overall 

equiprobable distribution of input combinations, the 

thermodynamic entropy for both macrostates increases 

as the number of microstates grows to 2N. 

Let us consider the informational (Shannon) 

entropy H of the MCP model: 

𝐻 = −[𝑃𝑎𝑐𝑡 log2 𝑃𝑎𝑐𝑡 + (1 − 𝑃𝑎𝑐𝑡) log2(1 − 𝑃𝑎𝑐𝑡)] . (24) 

We see that H reaches its maximum at Pact = 0.5, 

i.e., when the distribution of weighted excitatory and 

inhibitory inputs is equiprobable. This also corresponds 

to the maximum thermodynamic entropy. 

When the conditional probability Pact (equation 17) 

approaches 0 or 1, we observe a decrease in 

informational entropy, which also corresponds to a local 

decrease in thermodynamic entropy for the 

corresponding macrostate. 

Thus, if we define informational entropy through 

the probability distribution over microstates, it turns out 

that it precisely corresponds to thermodynamic entropy 

(considering the constant kB). Moreover, the learning 

process, which leads to the selection of a significant 

subset of input combinations, modifies the distribution of 

microstates, thereby causing a local reduction in 

thermodynamic entropy. 

Now, let us consider the output energy of the system 

as the Gibbs free energy G [26]: 

𝐺 = 𝐻 − 𝑇𝑆 ,                             (25) 

where H is the enthalpy of the system (heat content, 

energy including heat), T is the absolute temperature, and 

S is the thermodynamic entropy of the system. 

Gibbs free energy is a thermodynamic state function 

that characterizes the system's ability to perform useful 

work under isothermal and isobaric conditions (i.e., at 

constant temperature and pressure). This term is widely 

used in chemical thermodynamics to analyze the 

energetic aspects of chemical reactions and phase 

transitions. However, its interpretation as the output 

energy of a system is not commonly used. Generally, it 

indicates how much energy can be converted into useful 

work—mechanical, electrical, or other forms. 

Importantly, Gibbs free energy can be linked to the 

internal structures of a system (e.g., crystal lattice, 

molecular organization). In this case, the value of G 

reflects how the system’s structure influences its ability 

to perform work. Nevertheless, in machine learning and 

Bayesian statistics, the method of variational free energy 

is applied, utilizing thermodynamic principles for 

optimization [27]. Here, a functional analogous to Gibbs 

energy is introduced to minimize the difference between 

the model and the data. 

However, if we consider that the free energy at the 

output of an information system "performs work" by 

creating an internal model of the external world for another 

system that perceives it, then the analogy between 

information generated at the system's output and Gibbs 

free energy takes on a completely different meaning and 

becomes well-justified. Furthermore, information enables 

systems to make decisions, predict, or change their state. 

For example, in control systems or robotics, the output of 

an ANN is used to control real physical objects, which 

serves as an analog to physical work. Then, 

𝐺 = 𝐸𝑠𝑡𝑟 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑢𝑛𝑠𝑡𝑟 ,                  (26) 

where Estr is the structured part of the energy at the 

system’s output. This portion of energy contains 

measurable parameters that reflect the order associated 

with the internal structure of the system. It is related to 

the reduction of informational entropy due to data 

structuring (e.g., classification, feature extraction, 

prediction, etc.); Etotal is the total energy released by the 

system (enthalpy); Eunstr is the unstructured part of the 

energy. This portion of energy remains in a form that 

does not carry a stable structure in the system’s output 

energy, which could otherwise represent information 

about the system’s internal structure. This energy is 

analogous to thermal losses or noise, which increase 

thermodynamic and informational entropy. 

We observe that in the MCP model, only for the 

macrostate "1" does the formation (release) of free 

energy occur, whereas for the macrostate "0," which 

signifies the absence of a neuronal response, all energy 

represents thermodynamic losses (TS) in accordance with 

Landauer’s principle. If we disregard the energy costs 

associated with normalizing the unitary output of the 

neuron—additional energy for 0 ≤ V < 1, or additional 

heat dissipation for V > 1—then it can be assumed that 

the inhibitory potential V─− makes a significant 

contribution to the formation of TS = Eunstr 

𝑇𝑆 = Ω𝑉−𝐸,                              (27) 

where E is Landauer’s energy (7), defining the thermal 

energy released during the erasure of one bit of 

information; Ω is the total number of microstates; V─  is the 

inhibitory potential, determining the number of bits erased 

per microstate. Then, the total unstructured portion of the 

emitted energy, as the "chaotic" part of enthalpy, is equal 

to the total thermodynamic entropy of the MCP neuron: 

𝑆 = Ω𝑉−𝑘𝐵 ln 2 = 2𝑁𝑉−𝑘𝐵 ln 2 .           (28) 

We observe that the total thermodynamic entropy of 

the MCP model increases with the number of microstates 

and the "depth" of the neuron's potential well (inhibitory 

potential). Consequently, as the total number of microstates 

in the system increases, the system’s enthalpy grows, and its 

unstructured component Eunstr also increases, while the 

structured part of the output energy Estr reaches its 

maximum value for a limited number of microstates after 

learning. This corresponds to the minimum thermodynamic 

and informational entropy for the respective macrostates 

and remains unchanged thereafter. This conclusion aligns 

with the findings of Prigogine’s theory of dissipative 

systems, which states that a system, when far from 

equilibrium, can "learn," meaning it transitions into a state 

that acts as an attractor in its dynamics. This implies that out 

of a vast number of possible microstates, the system 

"selects" those that optimally maintain order (low internal 

entropy) through energy dissipation. Thus, although the 

total entropy of the environment may continue to increase, 

the internal structure of the system stabilizes. 
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Let's clarify that in classical equilibrium 

thermodynamics, Gibbs free energy is minimized. 

However, here we are dealing with an open system which, 

considering "Maxwell’s Demon," can only conditionally 

be regarded as a self-organizing system. In this case, the 

concept of the "maximum" of the structured energy Estr 

should be understood in terms of the system’s optimal 

functional state rather than as a classical equilibrium state. 

This does not contradict the classical interpretation of 

Gibbs free energy, since we observe that as the system’s 

total enthalpy increases, its total thermodynamic entropy 

Eunstr also increases, whereas the free energy Estr —or more 

precisely, its fraction as a component of enthalpy—

decreases, along with its local thermodynamic entropy. 

Overall, these conclusions are consistent with the 

system's dynamic evolution equation, which is analogous 

to the Langevin equation in statistical mechanics, 

describing the motion of a particle in a potential field 

with thermal noise 

𝑑𝑥

𝑑𝑡
= −

𝜕𝑉(𝑥)

𝜕𝑥
+ 𝜂(𝑡),                     (29) 

where x represents the internal energy of the system, V(x) 

is the effective energy potential landscape, and η(t) is a 

stochastic noise term modeling thermal fluctuations 

associated with thermodynamic losses [28]. 

In this equation, the function V(x) serves as an 

effective energy potential, determining how the system 

tends to minimize its internal energy. Thus, 

─ 𝜕𝑉(𝑥) 𝜕(𝑥)⁄  defines the natural tendency of the system 

to reduce its energy, i.e., to transition to more stable states. 

If a dissipation coefficient γ is added to the left-hand 

side of the equation, we obtain an equation for a 

dissipative system, which resembles the relaxation 

equation for energy in open systems. 

General Conclusions: 

1. In the MCP model, as well as in ANN models, 

information is represented as abstract elements of the 

system's internal alphabet, such as bits. These alphabet 

elements lack an internal structure that could be 

associated with energy structures, as seen in quantum 

physics or chemistry. However, informational bits are 

linked to energy according to Landauer's principle, 

allowing for an energetic model to be considered for both 

neurons and ANNs as a whole. In this case, the internal 

energy of the MCP model, as a unit of the energy system, 

can only be analyzed based on external "pseudo-energy," 

whose parameters (weight coefficients) are determined 

by "Maxwell's Demon" (an external training algorithm) 

through statistical observations. The statistical 

parameters of external "pseudo-energy" for determining 

the internal energy of a unit (MCP model) can be 

regarded only as "surface" properties of the system's 

energy, which do not fully reflect the structure of the 

unit's internal energy and cannot be used to form the 

energy of unit interactions, as occurs in physical systems. 

2. During the training process of the MCP model, a 

stable, structured component of the energy emitted 

(generated) by the system is formed, which can be 

considered as Gibbs free energy. This structured energy 

exhibits a minimal thermodynamic and informational 

entropy for a limited number of effective microstates 

corresponding to certain (predefined during training) 

macrostates. The decrease in both entropies follows the 

same dynamics, reflecting the deep energetic nature of 

their interrelation. During training, the MCP model—

more precisely, "Maxwell's Demon" as part of it—

minimizes the external "pseudo-energy" in the form of 

the model's response error. This minimization is 

manifested in changes to the statistical parameters of the 

unit's internal energy, represented as weight coefficients. 

This leads to a reduction in the number of effective 

microstates and, ultimately, to the minimization of the 

system's internal energy. 

3. Based on the presented interpretation of free 

energy, it can be stated that the parameters of structured 

energy at the system’s output (for the MCP model, this 

could be a sequence of binary signals) reflect the internal 

energy of the system and, consequently, its internal 

structure, which can be interpreted as an internal model 

of world perception. 

Energy interpretations of multilayer ANN models 

To understand the energetic nature of information, 

let us consider multilayer ANNs, which can be regarded 

as ideal models not only for studying the principles of 

information processing but also for examining their 

relationship with the energy of physical systems. To this 

end, we will use the concept of an energy landscape and 

the energy model of the MCP previously discussed.  

Fig. 4 presents the energy landscape model of a 

multilayer perceptron (MLP). 

 

 
Fig. 4. The energy landscape model of MLP 

 

This energy landscape consists of potential "wells" 

of units (MCP neurons) of varying depths in the resting 

state, forming the hidden layers. The model illustrates the 

general concept of energy convergence, which reflects 

the process of information convergence in an MLP when 

solving a classification task. 

A key feature of this landscape is the absence of 

energy connections – channels for energy distribution 

between units. The output energy of units simply "dissi-

pates" among the inputs of the next layer’s units. 

This results from the fact that the input weight 

coefficients do not generate connection energy but 

merely determine the depth of a unit’s potential "well." 
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The process of output energy "dissipation" is represented 

by the fully connected architecture of MLP layers. In a 

real energy system, such "dissipation" would require 

amplification of the information signal at each neuron 

input. The lack of connection energy between structural 

elements in this energy model is a limitation compared to 

real energy systems (Fig. 1). 

The coordinated formation of unit (neuron) energy 

in this ANN model (i.e., the formation of the system's 

energy landscape in its resting state) is also linked to the 

process of minimizing "pseudo-energy," governed by the 

system's "Maxwell’s Demon" (e.g., the backpropagation 

algorithm). This process of coordinated unit energy 

formation, aimed at achieving the required set of 

macrostates, represents a trade-off between the generality 

of the extracted classification features and the accuracy 

of the classification task for a given set of classes. In 

many practical tasks, achieving this trade-off during 

training does not allow for a perfect solution. Based on 

the research results presented in Section 4, it can be 

concluded that the informational and thermodynamic 

entropies of a system whose energy landscape consists of 

multiple separate energy units (MCP models) will exhibit 

the same properties as an individual unit. 

Evidence for these conclusions comes from studies by 

Ravid Shwartz-Ziv and Naftali Tishby (2017) et al. [29, 30], 

in which the authors proposed the Information Bottleneck 

(IB) theory. This theory examines deep neural networks, 

such as MLPs, and demonstrates that during training, there 

is a tendency for information entropy to decrease in the 

responses of hidden-layer neurons. Moreover, the 

reduction in information entropy is accompanied by a 

decrease in the variability of neuron responses in hidden 

layers, indicating a reduction in the number of microstates 

for the considered responses (macrostates) of the system. 

This also suggests a local decrease in thermodynamic 

entropy for these macrostates. For example, in the work of 

Shwartz-Ziv and Tishby (2017) [29], it is shown that in 

classification tasks on datasets such as MNIST, the 

information entropy of activation decreases by a factor of 

2–4 from the input layer to the output layer, corresponding 

to a reduction in activation variance from 50% to 90% 

between the initial and deeper layers. 

In IB theory, the authors introduce the concept of 

mutual information: I(X; T) – the information that layer T 

contains about the input data X; I(Y; T) – the information 

that layer T contains about the target data Y. Mutual 

information I(X; Y) determines how much knowing one 

variable reduces the uncertainty of the other. In general, 

mutual information equals the sum of the entropies of the 

individual variables minus their joint entropy 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌);                    (30) 

𝐼(𝑋; Y) = 𝐻(𝑌) − 𝐻(𝑌|𝑋);                    (31) 

𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋);                                     (32) 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(Y) − 𝐻(𝑋; 𝑌).      (33) 

If X and Y are independent, knowing Y does not 

reduce the uncertainty of X, then: 

𝐻(𝑋|𝑌) = 𝐻(𝑋) 𝑎𝑛𝑑 𝐼(𝑋; 𝑌) = 0.        (34) 

If X and Y are fully dependent, knowing one 

variable completely determines the other, and I(X; Y) 

reaches its maximum value, equal to the entropy of the 

variable with the smaller entropy. 

These studies show that I(X; T) decreases 

significantly toward the final layers, indicating a 

substantial reduction in the uncertainty of the input data. 

Moreover, the information entropy of activation H(T) in 

each layer decreases during training. For example, in a 

10-layer network, H(T) in the last layer decreases by 

approximately 50-70% compared to the first layer. 

However, as expected, information entropy remains at 

the system's output, confirming the existence of a trade-

off between the generality of extracted classification 

features—determined by the system’s generalized energy 

landscape—and the stability (accuracy) of the system’s 

responses to specific input information. 

It has also been shown that, at the beginning of 

training, mutual information between a layer's 

representation and the input I(T; X) in the initial layers can 

reach about 10–15 bits, meaning that a large amount of raw 

input information is preserved at these layers. As 

information propagates through deeper layers, I(T; X) 

begins to decrease. For example, in the second hidden 

layer, I(T; X) may drop to 8–10 bits. The most significant 

information compression occurs in the last hidden layers, 

where I(T; X) can be reduced to 2–3 bits, while I(T; Y) 

remains close to the entropy of the labels. This indicates 

that all relevant informational features necessary for 

decision-making are retained. These empirical results fully 

confirm our theoretical conclusions about the reduction of 

information entropy and the local decrease in the 

structured part of thermodynamic entropy at the output of 

the considered system (the energy model of an artificial 

neural network) for a specific set of its macrostates. Thus, 

since the considered system lacks energy connections 

between units, its internal energy is represented 

exclusively by the energy of the units themselves. Each 

unit perceives the energy of a neighboring unit as 

external energy, converting it into its internal energy 

using weight coefficients, which act as specific detectors 

of input energy. Consequently, the activation function of 

a neuron can be interpreted as a function that transforms 

internal energy into the output energy of the unit. 

The structured external energy of the entire system, 

which represents the information at the output of the 

ANN, is formed by the activation functions of the 

neurons in the outer (final) layer. This system 

implements a process of parallel energy (information) 

perception and its convergence (compression) during 

training. 

Let us call such an energy model of an ANN a first-

type model. This type also includes convolutional neural 

networks (CNNs), whose main distinction lies in the 

segmentation of the input signal vector (input energy) 

and the local processing of individual segments. 

The first-type ANN model can be classified as an 

energy system with: a deterministic static structure, a 

deterministic static generalized energy landscape in the 

resting state, iteratively formed by the system’s 

“Maxwell’s Demon,” a deterministic energy dynamic of 

units on the energy landscape, occurring during the 

minimization of informational entropy and the local 

minimization of thermodynamic entropy. 
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We can also conclude that the generalized energy 

landscape of the system in the resting state, represented 

solely by the energy of units, along with the deterministic 

static structure of the system, imposes a conceptual 

limitation on its accuracy as the specified number of 

macro-states of the system increases. 

In text-generative ANN models such as GPT, unlike 

first-type ANN models, there is a divergence between 

input energy and information, which we associate with 

"predictions." These systems have an entirely different 

energy landscape, which is not represented by the energy 

of units, as in MLP models, but rather by the energy of 

connections between units, while the units themselves 

function only as static elements of the system’s internal 

alphabet. For generative ANN models, these elements 

are, for example, words of a natural language (or their 

components), represented as tokens and their internal 

numerical representations - embeddings. 

In general, static embeddings, such as those used in 

Word2Vec or GloVe, represent words as fixed-length 

vectors in a high-dimensional space. The proximity of these 

vectors (e.g., measured by cosine similarity) can serve as an 

indirect indicator of the similarity or association between 

words. This associative connection can be conditionally 

interpreted as a "probability of relation" between words, 

although this is not a direct probabilistic measure in the 

mathematical sense. Instead, it reflects only the averaged 

statistical relationships from the training corpus. Such a 

vector can be considered a representation of the "central 

meaning" of a word, but it does not account for polysemy or 

meaning shifts across different contexts. 

In contrast, contextual embeddings in transformer-

based models, such as BERT or GPT, dynamically 

transform a word’s base representation—a lookup 

vector—based on surrounding words (context). This 

process highlights those aspects of the word's meaning 

that are relevant in the given context. The same word may 

have different vector representations depending on 

syntax, semantics, and even the text's style, allowing the 

model to account for polysemy. This mechanism enables 

the model to dynamically select—or rather compute—the 

most relevant (most probable, given a Softmax activation 

function) word relationships for a given context, based 

on the query-key-value attention matrix. The dynamics 

of changing relationships during inference are 

implemented through the Multi-Head Attention 

mechanisms across different layers of the model. 

All word (embedding) relationships are formed 

based on weight coefficient matrices, which in turn are 

learned during training (in the energy interpretation—by 

"Maxwell's Demon"). This means that all potential 

pathways of word relationships are "embedded" in the 

model’s weight matrices, as these matrices define the 

structure of possible associations and transformations. 

However, the specific relationships relevant to a given 

context are selected (computed) dynamically when 

processing input text. Thus, the model’s weight matrices 

establish the depth of "potential channels" of 

relationships between units in the system’s energy 

landscape in its resting state. The activation functions of 

the model’s neurons determine the "output energy" from 

these channels, which in turn activates the "static 

energies" of the units. These unit energies collectively 

form the structured part of the system’s output energy. 

In this sense, the neurons of generative models 

effectively establish relationships between the elements 

of the system’s internal alphabet (units). A simplified 

model of the energy landscape of a generative ANN is 

shown in Fig. 5. 
 

 
Fig. 5. The energy landscape model of generative ANN 

 

Thus, this system implements the process of 

sequential perception of the energy (information) flow 

and its divergence across various "channels" of the 

system's energy landscape to activate the conditional 

energy of units (tokens). 

Let us call such an energy model of an ANN a 

second-type model. This type may include recurrent ANNs 

as well as generative models based on transformers. 

This model has a complex energy landscape formed 

by numerous weight matrices of various types (in 

transformer models, about 8 types of matrices are used 

for attention mechanisms, embeddings, linear 

transformations in fully connected layers, normalization, 

and output formation). It also consists of multiple hidden 

layers and neurons in each layer (for example, in the 

GPT-3 model, the hidden layer size can be up to 12,288 

neurons for the largest model with 96 layers), which 

determines an enormous number of model parameters 

(GPT-3 contains up to 175 billion parameters). These 

parameters and their combinations form a vast space of 

possible microstates of the system. 

Then, the dynamics of selecting the most relevant 

token (unit) connections during inference (the operation of 

a trained generative ANN) determine the reduction of the 

microstate space to its minimal possible extent (depending 

on the token selection mechanism). Ideally, it collapses to 

a single fixed set of microstates, which then defines the 

system’s macrostate in the form of output information. 

Thus, during training, the generative ANN model 

expands the space of possible system microstates (forms 

it), while during inference, it reduces this space to a 

minimum, which determines the system’s macrostates. 

At the same time, a first-type model reduces the 

microstate space during training for a given macrostate. 

It is evident that the information entropy at the output 

of a second-type ANN also decreases. This is because 

generative models select the most relevant connections 

during inference—that is, the most probable contextual 

structure of tokens. This process reduces the number of 
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possible token combinations, thereby decreasing the 

information entropy of the generated text, ideally 

collapsing it to a single structure for a given model. 

However, in practice, heuristic algorithms such as 

Beam Search may be used to maximize the probability of 

a token sequence by selecting several of the most likely 

options. This leads to more predictable but less diverse 

results. This behavior can be seen as an analogy to the 

bottleneck effect in first-type ANNs. 

To increase the diversity of texts (responses) in 

generative models (e.g., GPT-4), information entropy at 

the system's output is artificially increased. This is 

achieved by applying stochastic methods such as 

temperature scaling, which adds randomness to token 

selection, or Top-k/Top-p sampling, which limits the 

candidate pool for the next token selection, introducing 

additional randomness and enabling the generation of 

more diverse texts. Because of this, the space of 

microstates does not collapse into a single outcome but 

remains probabilistic, allowing for variation in model 

responses. Thus, the statistical nature of generative ANN 

training leads to the output of the most probable, i.e., 

contextually averaged, token structure. This naturally 

results in reduced information entropy at the system’s 

output. However, as discussed earlier, the most 

informative and potentially valuable connection for 

problem-solving is the one with low probability, as it 

represents new or "creative" information. 

We also see that reducing the number of possible 

system microstates during inference, leading to the 

formation of a single macrostate at the output, indicates 

a local reduction in the structured component of the 

system’s thermodynamic entropy (26). 

Thus, a second-type ANN model can be classified 

as an energy system with: a deterministic static structure, 

a deterministic generalized energy landscape in a resting 

state, iteratively formed by "Maxwell’s Demon", and a 

deterministic dynamic change in unit connection energy 

on the energy landscape in the process of minimizing 

information entropy and locally minimizing 

thermodynamic entropy. 

Conclusions. The results of these studies indicate 

the conceptual limitations of first-type and second-type 

ANN models. The structure of the internal energy of 

these systems in a resting state is formed by weight 

coefficients, which are obtained by another system—a 

"Maxwell’s Demon"—that is external to the considered 

systems. These weight coefficients are formed based on 

statistical observations and are in no way connected to 

external energy (information). These limitations prevent 

the realization of a self-organization process in the 

system based on energy, as occurs in real physical 

systems, such as quantum systems. 

Internal Energy of the Information System:  

A New Look 

While information theory provides a quantitative 

description of uncertainty, and thermodynamics 

describes the distribution of energy, new approaches that 

characterize the energetic cost and the process of 

information processing for constructing an internal 

model and for the self-organization of the system remain 

an active area of fundamental and applied research in the 

physics of information, AI, and neuroscience [31–33]. 

At the core of the proposed theory is the concept of 

internal energy within an information system and the 

construction of its energy landscape in an equilibrium 

state through the minimization of internal energy. Modern 

ANNs, as informational models of biological systems, 

possess a conceptual limitation: all computational 

operations are performed using the symbols of an internal 

alphabet, represented by bits, bytes, and code tables — 

abstract substitutes for the system’s external and internal 

energy. These alphabet symbols are static and lack the 

internal structure necessary to carry out the process of 

energy minimization. 

In such systems, the training process requires the 

introduction of an additional conditional external energy 

– pseudo-energy of mismatch (error) between the 

system’s current response and the desired response, 

which can be described by an energy function (analogous 

to a Lyapunov function) minimized via gradient descent 

along a pseudo-energy landscape. This pseudo-energy 

directly forms the dynamic structure of the system’s 

internal energy, represented through the neural network’s 

weight coefficients. The formation of pseudo-energy is 

based exclusively on statistical measurements, which – 

together with the static nature of the system’s internal 

alphabet elements – frames our understanding of 

information from Shannon’s perspective. 

At the same time, biological systems directly 

convert external energy into internal energy within their 

sensory systems. This process is accompanied by the 

extraction of maximal information, not only through the 

detection of structural elements of external energy 

(analogous to the static elements of a system’s internal 

alphabet), but also through the measurement of a 

multitude of their parameters. For example, the brain’s 

visual system is capable of distinguishing not only linear 

segments but also their position, orientation, direction of 

motion, length, thickness, and spatial relations with other 

segments. All these parameters of external energy are 

transformed into the system’s internal energy and 

represented as the reactions of interconnected groups of 

neurons – a pool or neuronal ensemble. This forms the 

initial representation of the internal energy structure of an 

energy landscape element — a unit corresponding to a 

single structural element of the system’s static internal 

alphabet (e.g., a detected line segment). 

The values obtained from these measurements can be 

projected onto internal quantitative scales and systems of 

coordinates/orientations. However, in order to form the 

internal energy landscape of the system and to perform 

gradient descent along this landscape during the 

minimization of internal energy, it is necessary to build a 

structure of these scales and coordinate/orientation 

systems, enabling transitions from high-energy 

quantitative parameter representations to lower-energy 

generalized or qualitative parameters during training. This 

can be achieved through the segmentation of scales and 

coordinate/orientation systems down to qualitative ordinal 

scales (such as “Greater-Equal-Less”) or generalized 

coordinate/orientation systems (e.g., representing a 

rectangular coordinate system as half-planes). The process 
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of gradient descent formation along the energy landscape 

of a local structural element – a unit – during training is 

illustrated in Fig. 6. 
 

 
Fig. 6. The process of gradient descent along the energy  

landscape of a local structural element – a unit 

 

The total internal energy of such a system, Etotal, by 

analogy with a physical system, should be represented as the 

sum of the internal energies of its structural elements (units) 

and the energies of the interconnections between them: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑢𝑛𝑖𝑡,𝑖
𝑖

+ ∑ 𝐸𝑖𝑛𝑡,𝑖𝑗
<𝑗

,          (35) 

where Eunit is the internal energy of individual units, and 

Eint is the energy of the interconnections between units. 

The energy of a unit is represented by a set of 

measurable external energy parameters k transformed by 

scaling functions hk into internal energy values uk on the 

corresponding measurement scales (coordinate systems). A 

scaling function is a function that "translates" a measurable 

(raw) parameter value into its "energy equivalent" on an 

internal scale. The set of scaling functions defines the 

multimodality of the system’s energy landscape: 

ℎ𝑘: 𝑢𝑘 → ℝ≥0 ;                          (36) 

𝐸𝑢𝑛𝑖𝑡,𝑖 = ∑ 𝑢𝑘,𝑖
𝑘

 .                      (37) 

The process of gradient descent along the levels of 

a unit’s internal energy during training can then be 

described by the following iterative relation: 

𝑢𝑘,𝑖
(𝐿+1)

= 𝑢𝑘,𝑖
(𝐿)

− 𝜂𝑘
(𝐿)

𝜕𝐸𝑢𝑛𝑖𝑡,𝑖
(𝐿)

𝜕𝑢𝑘,𝑖
(𝐿)

 ,           (38) 

where L is the energy landscape level during training 

(with the total internal energy of the system Etotal 

decreasing at each subsequent level), and ηk > 0 is a 

parameter defining the step size for transitions between 

segments of the corresponding scale (coordinate system) 

or between scales with different levels of generality in the 

energy representation of the measured parameters. The 

set of these parameters and their selection procedures 

determine the plasticity of energy transitions, which may 

be associated with varying degrees of uncertainty. 

The depth of the gradient descent along the energy 

levels of individual unit parameters depends on the 

frequency of their occurrence during training. This 

frequency is expressed through weight coefficients that 

directly determine the transitions between intervals, 

segments, or scales. The formation of the internal energy 

of interconnections between units is based on the 

comparison of values of similar parameters for units that 

possess a spatial-temporal relationship. In this case, a 

structural element of the connection energy cij between 

two units i and j is determined by the relation: 

𝑐𝑘,𝑖𝑗 = ℎ𝑐 (Φ(𝑘𝑖 , 𝑘𝑗))                     (39) 

where hc is the corresponding scaling function used to 

compute the value of the interconnection energy ck,ij, and 

Φ is a comparison function that defines the value of the 

interconnection parameter as the result of comparing the 

values of the same parameter k in both units. This 

equation thus links the energy of the units to the energy 

of their interconnections. 

We can then define the gradient descent process 

along the energy levels of interconnections analogously 

to that of unit energies: 

𝐸𝑖𝑛𝑡,𝑖𝑗 = ∑ 𝑐𝑘,𝑖𝑗
,𝑗

;                      (40) 

𝑐𝑘,𝑖𝑗
(𝐿+1)

= 𝑐𝑘,𝑖𝑗
(𝐿)

− 𝜂𝑐
(𝐿) 𝜕𝐸𝑖𝑛𝑡,𝑖𝑗

(𝐿)

𝜕𝑐𝑘,𝑖𝑗
(𝐿)

 .            (41) 

In this case, the depth of gradient descent along the 

energy levels of interconnections is determined by the 

minimal energy level of the common comparison scale. 

Additionally, the symmetry condition must be satisfied: 

|𝑐𝑘,𝑖𝑗| = |𝑐𝑘,𝑗𝑖| .                       (42) 

This process of gradient descent along the energy 

landscape of a local interconnection between two units is 

illustrated in Fig. 7. 

 

 
Fig. 7. The process of gradient descent along the energy  

landscape of the local relationship of two units 

 

In general, the process of gradient descent along the 

system’s energy landscape during training, in order to 

reach an equilibrium state at level L, is determined by the 

following conditions: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
(𝐿)

𝜕𝑢𝑖

(𝐿)
=

𝜕𝐸𝑢𝑛𝑖𝑡𝑠
(𝐿)

𝜕𝑢𝑖

(𝐿)
+

𝜕𝐸𝑖𝑛𝑡
(𝐿)

𝜕𝑢𝑖

(𝐿)
= 0,     ∀𝑖 ;          (43) 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
(𝐿)

𝜕𝑐𝑖𝑗
(𝐿)

=
𝜕𝐸𝑖𝑛𝑡

(𝐿)

𝜕𝑐𝑖𝑗
(𝐿)

= 0,       ∀(𝑖, 𝑗) .               (44) 

At the same time, the interdependence 

𝜕2𝐸𝑖𝑛𝑡
(𝐿)

𝜕𝑢𝑖
(𝐿)

𝜕𝑐𝑖𝑗
(𝐿)

≠ 0                               (45) 

guarantees that changes in the interconnection energy 

𝑐𝑖𝑗
(𝐿)

 affect the optimal distribution of 𝑢𝑖
(𝐿)

 and vice versa. 

These general conditions essentially demonstrate that the 

measurable/computable parameters belong to the same 
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segment, interval, or value of a scale/coordinate system, 

which characterizes their stability (invariance) to 

fluctuations in various samples of recognizable patterns. 

Thus, the principal feature of implementing gradient 

descent along the system's energy landscape lies in the 

selection/determination of scales and coordinate/orientation 

systems for ordering the measurable or computable 

parameters of internal energy, as well as in harmonizing 

the segmentation thresholds for gradient transitions from 

specific parameters to their generalized representations. 

This is consistent with the findings of studies on neuronal 

and sensory structures in biological systems. For example, 

studies of receptive fields (RF) in the visual systems of 

humans and monkeys have shown that their segmentation 

and overlap form a "grid" of spatial coordinates – an 

internal coordinate and orientation system [34]. 

Investigations indicate that constructing the energy 

landscape of an informational system is associated with 

identifying stable substructures, separated by critical 

points that define the disruption of stable parameters of 

interconnections between structural elements (units) 

within these substructures. These critical points serve as 

important components shaping the structure of an energy 

attractor — the concept of a holistic image [35]. 

One of the conceptual propositions of these studies is 

the formalization of the definition of information in terms 

of energy. In the article [35] information is not considered 

abstractly but is explicitly defined as subjectively 

measurable parameters of external energy structures. The 

processes of self-organization of a system’s energy 

structure and its minimization during evolution (training) 

are based on the application of proposed reduction 

operators, presented as energy functions (Lyapunov 

functions), without invoking a "Maxwell’s Demon". These 

operators include: the parametric reduction operator Ru,c, 

the structural reduction operator Rw, and the structural-

parametric reduction operator Rsp. A generalized reduction 

operator was also introduced in the study, based on the 

composition of these specific operators: 

𝐸𝑟𝑒𝑑 = 𝑅𝑤(𝑅𝑠𝑝(𝑅𝑢,𝑐(𝐸𝑡𝑜𝑡𝑎𝑙
(0)

))) < 𝐸𝑡𝑜𝑡𝑎𝑙
(0)

,         (46) 

where 𝐸𝑡𝑜𝑡𝑎𝑙
(0)

 is the total energy of the system at the initial 

structural level, and Ered is the minimized (reduced) 

internal energy. 

It was formally demonstrated that the application of 

these operators leads the system to converge toward stable 

states with minimal internal energy – attractors. These 

attractors (Con) represent stable (invariant) internal 

structures corresponding to recognized patterns – 

internally formed models of the external world M. 

𝑀 = 𝑅(𝑆𝑖𝑛𝑡(𝑃(𝐸𝑖𝑛𝑡)) = 𝐶𝑜𝑛;              (47) 

𝑃(𝐸𝑖𝑛𝑡) = 𝐷(𝑆𝑒𝑥𝑡(𝐸𝑒𝑥𝑡)),                 (48) 

where R is the generalized reduction operator, Sint(P(Eint)) is 

the structure of the set of parameters P of the system’s 

internal energy Eint, and D is the generalized detection 

(measurement) operator for structured Sext (having 

spatiotemporal structure) parameters of external energy Eext. 

It was also shown that the model M of an individual 

holistic image can be represented as a hypergraph, and the 

evolution of M as a process of its reduction (minimization). 

The study [35] also proposes and examines a hypothesis 

that information can be regarded as the primary factor in 

the phase transition of the structured part of external 

energy (Gibbs free energy formed by the external system) 

into the structure of internal energy, which is considered 

as a model of the external world. 

Experimental verification of the theory 

As part of the experimental studies, a model was pro-

posed consisting of an interconnected structure of image-

detector neurons (local attractors) named the Compartment 

Attractor Neural Network (ComAN), which represents a 

further development of the model introduced by Yuri 

Parzhin, Viktor Kosenko et al. (2020) [36]. The choice of 

this name is due to the fact that in the proposed model, each 

independent detector neuron simulates the information-en-

ergy processes occurring in the dendritic tree of a biologi-

cal neuron and memorizes an attractor structure based on 

internal energy. This name emphasizes that the detector 

neurons possess an internal compartmental structure that 

helps to form stable states (attractors) for the detection of 

holistic images. This approach is inspired by the neurobi-

ological paradigm of concept neurons [37–39]. 

To empirically confirm the key principles of the 

proposed theory, a concept for a computational experiment 

using ComAN was developed. The aim of this experiment 

is to demonstrate that a system based on the principles of 

internal energy minimization can self-organize and evolve 

through direct learning for pattern recognition, without 

relying on traditional externally controlled learning 

algorithms based solely on statistical data. 

The goal of the experiment is achieved by demon-

strating the high generalization ability of the model in the 

process of one-pass training without using the backprop-

agation algorithm on ultra-small training data sets. 

One of the main challenges in conducting such an 

experiment lies in implementing the stage of preliminary 

information processing that simulates the operation of a 

complex system of visual receptors and pre-detector 

neurons of holistic images in the visual cortex. These 

include, for example, neurons responding to the 

orientation of line segments or curve features, the length 

or direction of motion of segments, to segment ends or 

angular points, as well as to more complex and specific 

features of individual structural elements and holistic 

images [40-42]. According to the proposed theoretical 

concept, this modeling involves selecting the types of 

detectable structural elements within input images and 

their measurable parameters, as well as mapping these 

values onto preselected and segmented quantitative and 

qualitative measurement scales and coordinate systems. 

To simplify these tasks and focus on the 

fundamental principles of self-organization, two-

dimensional images of handwritten digits from the 

classic benchmark MNIST database were selected for 

classification. The choice of this library also simplified 

the task of scaling images. The structural elements 

detected at the preprocessing stage were defined as: line 

segments, endpoints (segment ends), angular points, 

points of intersection and junctions of segments, and 

whether the contour of the image was closed or open. 

Additionally, primary measurable parameters of the 

structural elements were established, including: the 
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orientation of line segments in a segmented relative 

coordinate system, their position in an absolute 

coordinate system (receptive field), the length of the 

segments, and the positions of structural points in both 

absolute and relative coordinate systems. 

This selection made it possible to determine the types 

and values of secondary parameters, which define the 

relationships between structural elements based on the 

comparison of their primary parameters. The values of 

these secondary parameters are also mapped (projected) 

onto segmented quantitative and qualitative scales and 

coordinate/orientation systems of the segments. All these 

parameters and their interrelationships form the basis of 

the internal energy landscape of the system. As 

demonstrated in the theoretical part of the study, the 

segmented structure of quantitative and qualitative 

measurement scales and coordinate/orientation systems 

forms the foundation of the gradient descent process along 

the system’s energy landscape during training. 

This approach required representing images of 

handwritten digits in the form of skeletonized contours 

approximated by straight line segments. 

To model the system’s energy landscape, 

hypergraphs were used. For working with hypergraphs, 

the Python NetworkX library and the Neo4j graph 

database were selected. This choice was driven by the 

need to work with large sets of structured data. For 

conducting the computational experiment, a general 

scheme (pipeline) for the experimental verification of the 

proposed concept was developed, as presented in Fig. 8. 

This scheme includes the following main blocks: 

1. Data Sources. The system uses two datasets: a 

training set for constructing attractors and a test set for 

evaluating classification accuracy. 

2. Connector (Preprocessing). Incoming requests 

are processed by the connector module, which 

standardizes the data format. 

3. Skeletonization Pipeline. This stage involves several 

steps: binarizing the MNIST images; skeletonizing the 

images to obtain a contour 

composed of line segments while 

preserving the topological 

structure of the original image; 

applying the Growing Neural Gas 

(GNG) algorithm to convert the 

resulting skeleton into a graph; 

and using the Ramer–Douglas–

Peucker (RDP) approximation 

algorithm to simplify the resulting 

graph by reducing the number of 

angular points (and segments) 

during the curve approximation 

with line segments. The resulting 

graph is serialized using 

NetworkX into JSON format and 

published to a Kafka topic. 

4. Contour Analysis. At 

this stage, various analyzers are 

used: analyzers based on 

contour traversal for sequential 

feature (parameter) extraction, 

and global analyzers that 

evaluate the entire hypergraph structure to extract holistic 

features such as exposure analysis. 

5. Concept (Energy Attractor) Formation During 

Training. At the training stage, the system constructs 

concepts – generalized hypergraphs – using: identification 

of critical points that define key nodes in the hypergraph; 

searching for the maximum common sub-hypergraph 

between two compared hypergraphs (the modifiable and a 

new training example); reduction of the modifiable 

hypergraph – structural elements, connections, and 

substructures – based on the application of the developed 

energy reduction operators; and iterative generalization of 

the attractor hypergraph. 

6. Sample Classification During Inference. At this 

stage, the system: reduces the hypergraph of the classified 

sample using reduction operators; compares the reduced 

hypergraph with all existing concepts to determine their 

structural similarity (isomorphism); activates class detector 

neurons with concepts that fully match the "incoming" 

hypergraph or sub-hypergraph; and based on a "Winner 

Take All" competition mechanism among simultaneously 

excited detector neurons, determines the classification result 

produced by the ComAN network. 

Thus, the model uses one neuron for each data class. 

Each neuron simulates information processing by the 

dendritic tree of a biological neuron (Poirazi & Mel, 2001 

[43]) in the form of constructing and modifying a 

hypergraph during direct learning (without 

backpropagation of error) until a stable structure — an 

attractor — is achieved, which corresponds to the 

minimum of the system’s internal energy. The process of 

minimizing internal energy is governed by reduction 

operators, which are represented as Lyapunov functions. 

In preliminary experiments, the viability of the pro-

posed theoretical concept was confirmed based on inter-

mediate results, which demonstrated classification accu-

racy for six structurally different classes of handwritten 

digits: "1", "2", "3", "6", "7", and "9" according to various 

metrics: Accuracy: 82.44%, Precision: 83.33%, Recall: 

 
Fig. 8. General scheme of the experiment 

 

 



ISSN 2522-9052 Сучасні інформаційні системи. 2025. Т. 9, № 4 

117 

82.44%, and F1 Score: 82.25%. These classes were se-

lected to balance simple and complex structures in terms 

of attractor construction. The number of classes will be 

increased as the model evolves.  

Each class neuron is trained using only 5–6 unique 

examples (up to 36 examples for the 6 selected classes). 

For each example, augmentation is applied — up to 10 

additional augmented examples. The total training 

dataset contains only 350 examples. To test the model, a 

test dataset consisting of 4,734 previously unseen 

MNIST examples is used. The model is not prone to 

overfitting and is invariant to changes in image scale. 

Although this classification problem formulation 

fundamentally differs from classification tasks based on 

statistical learning approaches, we can nevertheless 

compare the preliminary testing results of the proposed 

model with known models operating under similar 

conditions with extremely small training datasets — 

Few-shot Learning (FSL) models. The comparison 

results are presented in Table 1. 

 
Table 1. Comparison of simulation results 

Model 
Minimum 

number of 

unique samples 
Augmentation Epochs 

Accuracy 

(%) 
Source Notes 

ComAN Model  

(6 classes) 
Up to 36  

(5–6/class) 
Yes (up to 10 per 

class – 350 total) 
1 82.44 This work 

No backpropagation, no 

hyperparameter tuning 
SVM (RBF) 

Reduced MNIST 

(RMNIST/5-10) 

50–100 

(5-10/class) 
- 1 69–75 Nielsen [44] Requires hyperparameter tuning 

MLP 200 (20/class) No/Yes 100 53/61 Zhang [45] 
Backpropagation, hyperpara-meter 

tuning, overfitting problem 

CNN (FMNIST) 
100–200 

(10-20/class) 
Yes 50 74–78 

Brigato et al. 

[46] 
Backpropagation, hyperparameter 

tuning 
Prototypical 

Networks 

(ProtoNet) 

5/class (5-way) 

miniImageNet 
- 

FSL 

(Metrics 

training) 
71 

Chen et al. 

[47], Snell et 

al. [48] 

Pre-training in basic classes, using 

5-way classification 

Model-Agnostic 

Meta-Learning 

(MAML) 

5/class (5-way) 

miniImageNet 
- 

FSL 

(Meta-

learning) 
72 

Chen et al. 

[47] 

Pre-training on task distribution, 

learning initialization parameters 

for fast adaptation 
CNN 

(RMNIST/5) 
50 (5/class) Yes (500–1000) 50 84.38 Nielsen [44] 

Backpropagation, dropout, 

hyperparameter tuning 

 

Conclusions 

The obtained results demonstrate the unique ad-

vantages of the developed model: 

• No backpropagation. Unlike most models, this 

system employs energy attractors, minimizing internal 

energy, bringing it closer to biologically inspired models. 

• One-pass training in a single epoch on small 

datasets is a unique feature that allows abandoning the 

concept of statistical learning in favor of biologically 

inspired Hebbian frequency-based learning. 

• Energy dynamics of attractors. The 

implementation of model dynamics based on Lyapunov 

functions aligns it with physical and biological systems. 

This model represents virtually the first working 

implementation of a dendritic hypergraph model with 

internal energy minimization via Lyapunov functions on 

the MNIST dataset. 

• Biological plausibility of the model is 

confirmed by direct modeling of dendritic processing, 

which is absent in classical deep learning models. The 

model demonstrates a neuromorphic architecture close to 

that of a biological neuron. 

• Achieved testing results — 82.44% accuracy 

on 4,734 previously unseen samples after one-pass 

training on only 5–6 unique examples per class – indicate 

extremely efficient learning and a very high level of 

generalization of key classification features under 

severely limited training data. 

• Scalability: the model can be easily scaled to 

any number of classes without the need to retrain already 

existing neurons. 

• No overfitting: the model is not prone to 

overfitting, as a stable attractor is formed for each 

individual class during training. 

At the same time, these results reveal certain 

limitations and drawbacks of the current stage of 

modeling: 

• The simplified sensory preprocessing model 

currently limits the achievable accuracy ceiling and the 

applicability of the model to the recognition of more 

complex and dynamic patterns. 

• Dependence on custom tools based on Neo4J 

and NetworkX also constrains the scalability and 

performance of the model. 

• The absence of evolutionary biological inter-

neuronal connection modeling leads to significantly 

increased computational costs when analyzing 

hypergraphs. 

We believe that the impact of these limitations on 

the model’s efficiency will be substantially reduced in the 

course of further research. 
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Новий підхід до побудови енергетичних моделей нейронних мереж 

Ю. В. Паржин, М. О. Лапін, К. О. Бохан 

Анотація .  Актуальність. Сучасні моделі штучних нейронних мереж потребують багато енергії та інших витрат 

на їх навчання та функціонування. Для навчанні генеративних моделей використовуються величезні обсяги даних. В той 

же час, такі моделі мають проблеми з довірою щодо згенерованої ними інформації. Альтернативою сучасним парадигмам 

побудови та навчання нейронних мереж є розробка енергетичних моделей, які потенційно повинні позбутися цих недолі-

ків та наблизити процес обробки інформації до біологічно та фізично обґрунтованого процесу. Але існуючи енергетичні 

моделі мало чим відрізняються від класичних моделей з точки зору їх недоліків та обмежень. Тому розробка нових підхо-

дів в моделюванні енергетичних процесів обробки інформації в нейронних мережах є актуальною. Об’єкт дослідження 

– процес обробки інформації в штучних нейронних мережах. Предмет дослідження – математичні моделі побудови та 

навчання штучних нейронних мереж. Метою даної статті є розроблення та експериментальна перевірка теоретичної бази, 

що постулює енергетичну природу інформації та її роль у самоорганізації та еволюції складних інформаційних систем. 

Результати дослідження. Запропоновано фундаментальну теорію, що описує інформацію як структуру сприйманих па-

раметрів зовнішньої енергії, яка керує процесами формування внутрішньої енергетичної структури системи – її моделі 

зовнішнього світу. Ця теорія включає концепції енергетичних ландшафтів, принципи структурної та параметричної реду-

кції, заснованої на енергії, а також критичний аналіз існуючих обчислювальних парадигм. Проведені експериментальні 

дослідження з побудови та навчання розробленої енергетичної моделі підтверджують її високу узагальнюючу здатність в 

процесі однопрохідного навчання без використання алгоритму зворотного поширення помилки на надмалих навчальних 

наборах даних. 

Ключові  слова :  енергозберігаючі обчислення; енергетичний ландшафт; штучні нейронні мережі; нейрообчис-

лення; інформація; ентропія. 
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