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Abstract .  Visual landmark-based positioning systems are becoming increasingly popular in mobile robotics, autonomous 

vehicles, and indoor navigation technologies. One of the key factors determining their accuracy is the correctness of landmark 

coordinates, which in practice can be distorted by both systematic offsets and random noise. This requires a quantitative 

assessment of the impact of such errors on the operation of positioning algorithms. Subject of research: analysis of the impact 

of systematic and random errors in determining the coordinates of visual landmarks on the accuracy of positioning algorithms. 

The research addresses the assessment of sensitivity in different positioning algorithms to offsets and noise in landmark data and 

to identify critical factors that most affect localization accuracy. Methods applied: simulation modeling with the ability to vary 

the parameters of systematic and random errors, reproduction of four scenarios (no errors, only bias, only noise, combination). 

The mean absolute error (MAE) and root mean square deviation (RMSE) were used to assess accuracy. The following results 

were obtained. Even small errors in the coordinates of landmarks significantly reduce the accuracy of positioning. It was found 

that systematic errors have a more critical impact on the results compared to random noise. The centroid and weighted centroid 

methods were the most resistant to errors, while lateration showed high sensitivity to systematic shifts. 

Keywords:  systematic errors; random noise; visual landmarks; positioning algorithms; localization accuracy; simulation 

modeling; RMSE (Root Mean Square Error); MAE (Mean Absolute Error). 
 

Introduction 

Positioning systems based on visual landmarks are 

a key element of modern navigation and spatial reference 

technologies in robotics, autonomous transport and 

indoor localization tasks. Unlike classical approaches 

based on radio signals, the use of visual landmarks allows 

achieving higher accuracy in complex environments 

where there are obstacles or global navigation systems 

are absent. At the same time, the correct operation of 

positioning algorithms significantly depends on the 

accuracy of specifying the coordinates of these 

landmarks. In practice, coordinates can be determined 

with errors due to measurement inaccuracies, calibration 

errors or deformations of the environment map. 

The problem is that even small systematic biases or 

random noise in determining the position of landmarks 

can significantly affect the results of positioning 

algorithms. This is especially important for applications 

where high accuracy and stability are critical, for 

example, in medical robotics, autonomous transport 

control or augmented reality systems. To assess this 

impact, it is advisable to use simulation modeling, which 

allows you to vary the error parameters and conduct 

multiple experiments for statistical analysis. This 

approach allows you to compare the stability of different 

algorithms and draw conclusions about their suitability 

for use in conditions of systematic and random errors in 

the data on the coordinates of visual landmarks. 

Literature analysis. Early in the development of 

intelligent transportation systems [1], key challenges 

related to the integration of artificial intelligence, 

automated control, and localization methods were 

identified. These developments laid the foundation for 

further research, where increasing attention is paid to the 

accuracy and robustness of positioning in complex 

environments. In subsequent works, the main emphasis 

was placed on visual localization. Reference [2] provides 

a review of of modern vision-based positioning 

technologies with an emphasis on changing illumination, 

map scalability, and noisy data processing. As discussed 

in [3], three-dimensional indoor localization systems, 

which emphasize the importance of integrating visual 

landmarks into multi-sensor architectures. The review [4] 

is devoted to the navigation of unmanned aerial vehicles 

using vision, while [5] focuses on the reliability of the 

obtained results and the challenges associated with 

controlling their reliability. 

Traditional algorithms also remain important. In [6, 

7] it is shown that even advanced localization methods 

remain sensitive to errors in the environment map. In [8] 

an approach to building compact semantic maps is 

proposed, which demonstrates the critical role of accurate 

landmark descriptions. 

Work on sensory integration has also been 

developed. In [9], a method of combining visual data and 

additional sensory channels to improve accuracy in 

rooms is proposed. In [10], an example of underwater 

navigation of autonomous vehicles is described, where 

the correctness of determining the coordinates of 

landmarks is a key condition for completing tasks. 

In the field of computer vision, methods for detecting 

and tracking landmarks are actively being researched. In 

[11], aircraft localization was implemented using object 

recognition algorithms, in [12] a method for positioning in 

large-scale environments was developed, in [13] the 

possibility of high-precision manipulation using vision 

was demonstrated, and in [14] an algorithm for industrial 

scenarios was created. All these examples confirm that 

even small errors in determining the coordinates of 

landmarks significantly affect the final result. 

A special place is occupied by works devoted to 

adaptive approaches. In [15] an algorithm for automatic 

landing of aircrafts was developed, in [16] and [17] 
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methods of adaptive localization and flight control are 

described, and in [18] the use of machine learning to 

increase the stability of navigation systems is considered. 

The closest to the topic of our research is the work [19], 

which presents an adaptive algorithm for visual 

positioning in the local environment. This method takes 

into account uncertainty and allows you to adjust the 

parameters in real time, which ensures stability to shifts 

and noise in the coordinates of landmarks. This work 

serves as the direct scientific foundation for our research. 

In parallel, other areas related to the problem of 

robustness are developing. In [20] and [21], methods for 

controlling technical systems based on robust models and 

optimization are presented. Works [22] and [23] focus on 

reducing errors through data preprocessing and optimal 

methods for their use. Finally, in [24], navigation 

assistance systems for people with visual impairments 

are considered, which demonstrates a broader social 

context. All these studies confirm the need to study the 

impact of errors on positioning algorithms, but a 

systematic analysis of systematic and random errors of 

landmark coordinates is still almost absent. 

Despite the significant amount of research in the 

field of visual positioning, there is a lack of systematic 

analysis of how landmark coordinate errors affect 

different algorithmic approaches. Most work focuses on 

improving individual algorithms or sensor integration, 

but rarely offers a controlled comparison of the 

sensitivity of algorithms to systematic and random errors. 

Problem statement and purpose of the study. The 

aim of this study is to model the impact of systematic and 

random errors in the coordinates of landmarks on the 

accuracy of several common positioning algorithms. 

Using a simulation approach, different scenarios (ideal 

data, systematic bias, random noise, and their 

combination) are considered and the nearest landmark, 

lateration, centroid, and weighted centroid methods are 

compared. The results obtained allow us to quantitatively 

assess the sensitivity of algorithms to errors and 

determine the most robust solutions under uncertainty. 

Research methodology 

In order to assess the impact of systematic and 

random errors in determining the coordinates of visual 

landmarks on the accuracy of positioning algorithms, a 

simulation approach using multiple experiments (Monte 

Carlo method) was applied. At the first stage, input data 

was formed: an environment model with a given location 

of landmarks, measurement noise parameters, and ranges 

of systematic biases and random deviations (Fig. 1). 

Four scenarios have been developed to control the 

impact of different types of errors: 

- Clean (without errors), 

- Bias only (systematic offsets), 

- Jitter only (random noise), 

- Both (combination of offset and noise). 

The stages of the algorithm are presented in Table 1. 

 

 

Fig. 1. Research methodology 
 

Next, multiple simulations (Monte - Carlo) were 

performed, where in each experiment errors were 

generated according to given statistical laws (normal 

distribution for systematic bias and uniform distribution 

for noise). Based on these data, a “noisy” landmark map 

was constructed. 

Table 1 – Research stages 

No. Block from the scheme Stage content 

1 BEGINNING Initialization of the research, definition of the task and goal 

2 Input data Setting the environment map, landmark coordinates, bias and jitter parameters 

3 Error scenarios Choosing one of four scenarios: Clean, Bias only, Jitter only, Both  

4 Monte-Carlo Multiple simulation (N experiments) 

5 Error generation Formation of a “noisy” landmark map: bias ~ Normal, jitter ~ Uniform 

6 Trajectory modeling Object movement in discrete steps (M steps) within the scene 

7 Positioning algorithms Application of methods: Proximity, Lateration, Centroid, Weighted Centroid 

8 Statistics collection Calculation of errors for each step, calculation of MAE and RMSE 

9 Aggregation Averaging of the results over all experiments, determination of the root mean square deviation 

10 Visualization Construction of radar and bar charts, preparation of tables 

11 Analysis and conclusions Comparison of sensitivity of methods, assessment of robustness, formulation of recommendations 

12 END Completion of the research, preparation of results for publication 
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The next stage involved modeling the trajectory in 

an environment where the object moved in discrete steps. 

For each step, the positioning algorithms were applied: 

Proximity, Lateration, Centroid, and Weighted Centroid. 

For each method, the obtained position estimates were 

compared with the true position. 

Based on the results, error metrics were calculated: 

mean absolute error (MAE) and root mean square error 

(RMSE). These values were stored for each experiment, 

after which the statistics were aggregated across all 

replicates. 

The summarized data was presented in the form of 

radar and bar charts, as well as tables with numerical 

values of mean errors and standard deviations. This 

allowed for a visual comparison of the robustness of 

different algorithms in different scenarios. 

At the final stage, an analysis of the results was 

carried out, which determined: sensitivity of each method 

to systematic and random errors; scenarios where 

accuracy degradation is most critical; relative advantage 

of algorithms in terms of robustness indicators. 

Simulation Software 

Specialized software was developed for the 

research in Python 3.12. Open scientific libraries were 

used in the implementation, including NumPy for vector 

and matrix calculations, math and random for working 

with elementary functions and generating random 

variables, and matplotlib for plotting and visualizing 

results. In some cases, the pandas library was used to save 

the results in CSV tabular format. 

The program code is built on a modular principle, 

which made it possible to isolate separate parts responsible 

for data generation, motion trajectory modeling, 

implementation of positioning algorithms, error calculation, 

and results visualization. At the initial stage, an environment 

model is formed, which includes a scene map with 

coordinates of visual landmarks. Next, the parameters of 

systematic biases and random noise are set, which allows us 

to reproduce various scenarios of the impact of errors. The 

program implements four types of scenarios: an ideal case 

with no errors, only systematic bias, only random noise, and 

a combination of these factors. 

For each scenario, a series of Monte - Carlo 

experiments are performed. Within each experiment, a 

set of errors is generated: systematic bias is modeled by 

a random variable from a normal distribution, while 

random noise is reproduced by a uniform distribution. 

Based on these parameters, a “noisy” landmark map is 

formed, which is used for further calculations. After that, 

the object’s motion trajectory is modeled, which consists 

of discrete steps within the scene. 

At each step, positioning algorithms are applied. 

Four methods are implemented: Proximity, Lateration, 

Centroid, and Weighted Centroid. For each of them, a 

position estimate is calculated and compared with the 

true coordinates. This allows us to determine the 

positioning error at each stage. 

The collected data is analyzed in the statistical 

module, where the metrics of mean absolute error 

(MAE), root mean square error (RMSE) and standard 

deviation are calculated. Aggregation across all 

experiments is used to summarize the results, which 

ensures the reliability of the conclusions obtained. 

The final stage is visualization. The program builds 

radar charts of errors by steps, bar charts of average 

errors, and also generates tables with numerical results. 

The commands plt.plot() and plt.bar() are used to plot 

graphs, and plt.savefig(..., dpi=300) provides high-

quality saving for later inclusion in the article. Thus, the 

developed software provides a full cycle of research - 

from modeling the environment with errors to obtaining 

statistical characteristics and preparing graphical results 

for publication. 

Experimental Results 

The experiments were conducted to assess the 

sensitivity of positioning algorithms to systematic and 

random errors in the coordinates of visual landmarks. For 

this purpose, a model environment was used in which 

landmarks were located at the vertices of a square area 

with a side of several meters. This configuration allows 

creating a symmetrical test scene suitable for testing 

algorithms in different conditions. 

Each experiment involved the generation of errors 

in the coordinates of landmarks, which were described by 

two components: a systematic bias and random noise 

(jitter). The systematic bias was modeled by a normally 

distributed random variable with a mean of 0.25 m and a 

standard deviation of 0.08 m (negative values were 

truncated to zero). Random noise was described by a 

uniform distribution in the range from 0 to 0.15 m. 

For each scenario, N = 100 Monte - Carlo 

experiments were conducted. The influence of RSS 

measurement noise, which was modeled by a normal 

distribution with a standard deviation of 6.0 dB, was 

taken into account. The average values of the errors of 

the true and estimated position for one experiment were 

2.8 m and 2.0 m, respectively. 

The positioning results were compared based on 

four algorithms: Proximity, Lateration, Centroid and 

Weighted Centroid. For each method, the mean absolute 

error (MAE), root mean square error (RMSE) and 

standard deviation were calculated. Visualization was 

carried out in the form of radar diagrams with a 

maximum radius of 3.0 m and divisions every 0.5 m, 

which allowed us to clearly assess the nature of the 

distribution of errors in different conditions (Table 2, 3). 
 

Table 2 – Average absolute error (MAE) 

No. Scenario 
Proximity Lateration Weighted Centroid Centroid 

mean, m std, m mean, m std, m mean, m std, m mean, m std, m 

1 clean 1.1652 0.0258 0.8818 0.0190 0.8800 0.0207 1.8152 0.0000 

2 bias_only 1.2130 0.0556 0.9261 0.0353 0.9285 0.0401 1.8218 0.0072 

3 jitter_only 1.1665 0.0262 0.8830 0.0209 0.8840 0.0220 1.8162 0.0027 

4 both 1.2176 0.0586 0.9339 0.0428 0.9322 0.0418 1.8238 0.0107 
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Table 3 – Root Mean Square Error (RMSE) 

No. Scenario 
Proximity Lateration Weighted Centroid Centroid 

mean, m std, m mean, m std, m mean, m std, m mean, m std, m 

1 clean 1.3666 0.041428 1.0110 0.0266 1.0081 0.0285 1.9365 0.0000 

2 bias_only 1.4158 0.070112 1.0551 0.0400 1.0598 0.0454 1.9453 0.0100 

3 jitter_only 1.3655 0.039901 1.0100 0.0272 1.0111 0.0296 1.9377 0.0028 

4 both 1.4211 0.072643 1.0665 0.0489 1.0639 0.0469 1.9481 0.0145 

 

Table 2 shows the mean absolute error (MAE) 

values and their standard deviations for the four 

positioning algorithms in different error impact 

scenarios. In the baseline scenario (clean), when 

systematic and random errors are absent, the best 

accuracy was demonstrated by the lateration (0.88 m) and 

weighted centroid (0.88 m) methods, which practically 

coincided in terms of error. The nearest landmark method 

showed slightly worse results (1.16 m), while the least 

accurate was the simple centroid method (1.82 m). 

When introducing a systematic offset (bias_only), 

the error increased for all methods, but this was most 

pronounced for the lateration and weighted centroid 

methods, where the MAE increased to ~0.93 m. For the 

nearest landmark method, the error increased from 1.16 

m to 1.21 m. The centroid method remained the most 

sensitive to landmark distortion (1.82 m). 

Adding only random noise (jitter_only) did not 

change the overall picture much: the results are close to 

the scenario without errors. This indicates that short-term 

noise in the landmarks coordinates has less impact on 

accuracy than systematic shifts. 

The worst case scenario is a combination of both 

factors (both), where the MAE increased the most: up to 

1.22 m for the nearest landmark method and up to 0.93 m 

for the lateration and weighted centroid methods. At the 

same time, the centroid method consistently showed the 

worst result (1.82 m), reacting little to additional noise or 

displacement. Thus, the results obtained confirm that 

systematic errors in determining the coordinates of 

landmarks have a more significant impact on the 

accuracy of positioning algorithms than random ones, 

and the lateration and weighted centroid methods were 

the most resistant to influences. 

Table 3 shows the root mean square errors (RMSE) 

and their standard deviations for the four positioning 

algorithms in different scenarios. 

In the clean scenario, the lateration (1.01 m) and 

weighted centroid (1.01 m) methods showed the highest 

accuracy, while the nearest landmark method had an 

RMSE of 1.37 m and the centroid method had the worst 

result (1.94 m). Under (bias_only) conditions, errors 

increase for all algorithms. This was most noticeable for 

the lateration and weighted centroid methods, where 

RMSE increased by approximately 5 cm. The nearest 

landmark method deteriorated from 1.37 m to 1.42 m, 

and the centroid method again showed the highest error 

(1.95 m). Adding random noise (jitter_only) had almost 

no effect on the results: RMSE values remained close to 

the clean scenario. This indicates a smaller impact of 

short-term random distortions of the landmarks 

coordinates compared to systematic bias. 

The most negative impact was observed in the 

(both) scenario, where both noise and bias were present. 

In this case, the RMSE for the nearest landmark method 

reached 1.42 m, and for lateration and weighted centroid 

– about 1.06 m. The centroid method remained the least 

accurate (1.95 m), almost not responding to changing 

conditions. Thus, the RMSE results confirm the 

conclusions obtained from the MAE analysis: systematic 

errors have a more significant impact on positioning 

accuracy than random noise, and the most stable results 

were demonstrated by the lateration and weighted 

centroid methods. 

The results of modeling the average error values 

under different scenarios for each method are presented 

in Fig. 2–5. 

Analysis of the simulation results showed 

significant differences in the behavior of the considered 

positioning algorithms under different error scenarios. 

The nearest landmark method demonstrated stable 

operation, but even under ideal conditions the average 

error was more than one meter, which limits its suitability 

for tasks where high accuracy is required. All scenarios 

resulted in only minor changes, so this method is 

insensitive to random and systematic distortions, but has 

a high basic error. 

 

Fig. 2. Average error by the Proximity method 

 

 
Fig. 3. Average error by Centroid method 
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Fig. 4. Average error by Lateration method 
 

 

Fig. 5. Average error by Weighted Centroid method 

 

The centroid method had the largest errors among 

all algorithms — about 1.8 m, and the results practically 

did not change regardless of the presence of offset or 

noise. This indicates low accuracy and at the same time 

low sensitivity to both random and systematic errors in 

determining the coordinates of landmarks. 

The best results were achieved by the lateration and 

weighted centroid methods. In the error-free scenario, 

their average error did not exceed one meter. At the same 

time, it was clearly recorded that systematic distortions 

of the coordinates of landmarks significantly worsen the 

accuracy of these methods: the error increased by 

approximately 5–6 cm in scenarios with displacement. 

Adding only random noise had almost no effect on the 

results, and the combination of noise and displacement 

led to the worst values among all the conditions 

considered. Thus, lateration and weighted centroid are 

the most accurate, but sensitive precisely to systematic 

errors, while random perturbations of the coordinates of 

landmarks play a secondary role (Table 4). 

Overall, the results indicate that systematic errors in 

determining the coordinates of visual landmarks are a 

critical factor that can significantly reduce positioning 

accuracy. On the other hand, random coordinate noise 

can be smoothed out by statistical averaging methods and 

has a much smaller impact. 

Comparison of the average positioning error for all 

considered methods in two scenarios: clean (without 

systematic and random errors) (Fig. 6) and both 

(combination of systematic bias and random noise of 

landmark coordinates) (Fig. 7). 

Table 4 – Mean Absolute Error (MAE) 

No Method 

Average 

error 

(clean) 

Sensitivity 

to bias 

Sensitivity 

to jitter 

Overall 

rating 

1 Proximity ~1.2 м Low Low 
Stable but 

inaccurate 

2 Centroid ~1.8 м Very low Very low 
Least 

accurate 

3 Lateration ~0.9 м High Low 

Accurate, but 

vulnerable to 

systematic 

errors 

4 
Weighted 

Centroid 
~0.9 м High Low 

Precise, 

similar to 

lateration 
 

 

Fig. 6. Comparison of the average positioning error 

for all considered methods in the “clean” scenario  
 

 

Fig. 7. Comparison of the average positioning error 

for all considered methods in the “both” scenario 

 

In “clean” conditions, the lateration and weighted 

centroid methods provide the highest accuracy (RMSE ≈ 1.0 

m), the nearest landmark method has a consistently higher 

error (~1.2 m), while the centroid method demonstrates the 

worst result (~1.8 m). In the scenario with a combination of 

errors, the accuracy of all methods, except for the centroid, 

deteriorates, especially due to the increase in trajectory 

instability, which indicates the dominant influence of 

systematic errors over random noise. 

Conclusion from the comparison. In clean 

conditions (clean), Lateration and Weighted Centroid are 

the leaders. In the combination of noise and systematic 

bias (both), these same methods retain their advantage, 

but lose some of their stability, which indicates the 

critical role of systematic errors. Proximity remains an 



Advanced Information Systems. 2025. Vol. 9, No. 4 ISSN 2522-9052 

80 

average option, almost unchanged between scenarios. 

Centroid is the least suitable for practical use: high 

baseline error and lack of response to additional factors. 

Conclusions 

A comparison of the mean absolute error (MAE) 

and root mean square error (RMSE) showed consistent 

results. In both cases, the lateration and weighted 

centroid methods demonstrated the highest accuracy and 

stability, while the centroid method consistently 

remained the least accurate. The nearest landmark 

method occupies an intermediate position, providing 

acceptable but not optimal accuracy. 

Importantly, introducing systematic errors (bias) 

resulted in a more noticeable degradation of the results 

than adding only random noise (jitter). The scenario of 

combining both factors (both) confirmed the cumulative 

nature of their impact, but it is the systematic bias that 

determines the critical decrease in accuracy. 

The results obtained indicate the need to 

compensate or correct systematic errors in the 

coordinates of visual landmarks to ensure the reliability 

of positioning algorithms. At the same time, random 

fluctuations are less dangerous and can be smoothed out 

by statistical averaging methods. 

The obtained results confirm the significant impact 

of systematic errors in determining the coordinates of 

visual landmarks on the accuracy of positioning 

algorithms. At the same time, they open up several 

promising directions for further research. 

First, it is advisable to develop methods for 

compensating and correcting systematic errors, in 

particular through the use of statistical models or 

machine learning, capable of assessing and correcting the 

displacement of the coordinates of landmarks during the 

algorithm. Second, an important task is the integration of 

additional sensor data (for example, inertial measurement 

units or data from depth cameras), which can reduce the 

impact of uncertainty in the location of landmarks and 

increase the reliability of positioning. Third, it is 

promising to scale the experiments to more complex 

environments, including dynamic scenes, external 

obstacles and variable lighting conditions, which will 

allow the simulation to be closer to real-world scenarios. 

A separate direction is the development of adaptive 

algorithms that would automatically adjust to the 

characteristics of the environment and the level of errors. 

This may include hybrid approaches that combine classical 

geometric methods with modern deep learning algorithms. 

Another promising task is the creation of generalized 

criteria for evaluating the effectiveness of algorithms in the 

presence of different types of errors, which would allow 

for a systematic comparison of alternative solutions. Thus, 

further research should be aimed both at improving 

existing algorithms and at creating new methods that can 

effectively take into account both random and systematic 

errors, ensuring high accuracy and stability of positioning 

systems in real conditions. 
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Аналіз систематичних та випадкових похибок координат візуальних орієнтирів 

та їх вплив на точність алгоритму позиціонування  

К. Ю. Дергачов, О. О. Гуртовий, А. С. Яременко 

Анотація .  Системи позиціонування на основі візуальних орієнтирів набувають все більшого поширення у сфері 

мобільної робототехніки, автономних транспортних засобів та технологій indoor-навігації. Одним із ключових факторів, 

що визначає їхню точність, є коректність визначення координат орієнтирів, яка на практиці може спотворюватися як 

систематичними зміщеннями, так і випадковим шумом. Це потребує кількісної оцінки впливу подібних похибок на роботу 

алгоритмів позиціонування. Предмет дослідження: аналіз впливу систематичних і випадкових похибок визначення 

координат візуальних орієнтирів на точність алгоритмів позиціонування. Метою дослідження є оцінка чутливості різних 

алгоритмів позиціонування до зміщень і шумів у даних орієнтирів та визначення критичних факторів, що найбільше 

впливають на точність локалізації. Методи, що використовуються: імітаційне моделювання з можливістю варіювати 

параметри систематичних і випадкових похибок, відтворення чотирьох сценаріїв (без похибок, лише зміщення, лише шум, 

комбінація). Для оцінки точності застосовано середню абсолютну похибку (MAE) та середньоквадратичне відхилення 

(RMSE). Були отримані наступні результати навіть невеликі похибки координат орієнтирів суттєво знижують точність 

позиціонування. Встановлено, що систематичні помилки мають більш критичний вплив на результати порівняно з 

випадковим шумом. Найбільш стійкими до похибок виявилися методи центроїда та зваженого центроїда, тоді як латерація 

показала високу чутливість до систематичних зсувів. 

Ключові  слова:  систематичні помилки; випадковий шум; візуальні орієнтири; алгоритми позиціонування; 

точність локалізації; імітаційне моделювання; RMSE (середньоквадратична помилка); MAE (середня абсолютна помилка). 
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