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Abstract .  Background. The deployment of high- and ultra-high-density Internet of Things (IoT) systems poses a 

number of technical and organizational challenges. One promising approach to addressing these challenges is the 

integration of advanced network and data processing technologies, in particular Software-Defined Networking (SDN) and 

Multi-Access Edge Computing (MEC). This paper aims to explore the process of integrating SDN and MEC technologies 

into support infrastructures for high- and ultra-high-density IoT. Results. The study proposes an architecture for an 

integrated IoT–SDN–MEC system comprising both terrestrial and aerial segments. A mathematical model has been 

developed for this architecture, enabling the evaluation of energy consumption in fog-layer devices as well as the 

estimation of task execution delays. In addition, a traffic offloading scheme for the integrated IoT–MEC–SDN system is 

presented. The research formulates the problem of optimizing energy consumption and task processing delays in the aerial 

segment. To address this problem, the Grey Wolf Optimizer (GWO) algorithm is employed, providing efficient near-

optimal solutions. Conclusion. Simulation results demonstrate that incorporating fog-layer resources within the aerial 

segment of the integrated IoT–MEC–SDN system significantly reduces both average energy consumption and average 

task processing delays in high- and ultra-high-density IoT environments. Future research will focus on determining the 

optimal structural configuration of the aerial segment. 
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Introduction 

The Internet of Things (IoT) is one of the most 

rapidly growing technologies of our time [1]. Its 

popularity is driven by a wide range of applications, 

spanning from personal wearable devices to complex 

industrial systems [2, 3]. The deployment of IoT 

enhances business efficiency, reduces resource 

consumption, and enables the collection and analysis of 

massive data streams in real time [4]. The growth of 

wireless technologies and cloud platforms has 

significantly contributed to the widespread adoption of 

IoT [5]. Analysts predict that the number of connected 

devices will continue to increase exponentially in the 

coming years. By 2026, the number of IoT devices is 

expected to exceed 25 billion, and by the end of the 

decade, more than 40 billion [6]. Thus, IoT is gradually 

evolving from an innovative trend into a key pillar of the 

digital economy. One of the critical directions in IoT 

development is high-density IoT (HD-IoT) [7] and ultra-

dense IoT (UD-IoT) [8], environments where a massive 

number of connected devices operate within a limited 

area. Such systems require spectrum optimization, ultra-

low latency, and the ability to support thousands of 

simultaneous connections. Ultra-dense IoT deployments 

may involve tens or even hundreds of thousands of 

devices per square kilometer [9]. 

However, the implementation of high- and ultra-

dense IoT gives rise to a number of technical and 

organizational challenges, including [10, 11]: 

– Network congestion, where large volumes of 

simultaneous connections cause packet loss, excessive 

delays, and channel instability; 

– Spectrum limitations, as frequency resources are 

not always sufficient to ensure stable operation for 

thousands of devices within a small area; 

– Energy consumption, since sensors and devices 

in dense environments require energy-efficient 

protocols, otherwise leading to increased maintenance 

costs and frequent battery replacements; 

– Scalability and management, as operating a 

network with tens of thousands of nodes necessitates 

new automation methods. 

A wide range of scientific studies have sought to 

address these challenges. For example, [12] proposes 

decomposing aggregate data flows directed to cloud 

data centers. While this approach can reduce latency 

compared to traditional methods, it does not account for 

the specifics of the aerial segment, particularly energy 

efficiency. The issue of energy efficiency in aerial 

components of IoT support systems has been partially 

addressed in [13], though without considering the 

requirements of high-density IoT. Certain aspects of 

high-density IoT are discussed in [14], but the 

possibility of traffic offloading to the aerial segment is 

not explored. In [15], the focus is on improving data 

transmission rates, but similar to the approach in [16], 

this comes at the expense of higher energy 

consumption. 

One promising approach to overcoming these 

issues is the integration of advanced networking and 

data processing technologies, particularly Software-

Defined Networking (SDN) and Multi-Access Edge 

Computing (MEC) [17, 18]. Accordingly, the purpose 

of this paper is to investigate the integration of SDN and 

MEC technologies into support systems for high- and 

ultra-dense IoT. 

1. The Potential for Integrating SDN and MEC 

Technologies  

Multi-access Edge Computing (MEC) is an edge 

computing paradigm that enables data processing at the 
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network periphery [19]. In addition to edge-level 

deployments, MEC can also be extended into the fog 

layer, thereby providing a broader distributed 

infrastructure [20]. The core idea of MEC is to shift data 

processing closer to the end user—at the “edge” of the 

network (e.g., at mobile operator base stations or local 

servers)—instead of transmitting data to remote cloud 

data centers. This approach offers several advantages 

[21]: 

– reduced latency; 

– faster responsiveness for latency-critical 

applications (e.g., AR/VR, autonomous vehicles, smart 

factories); 

– offloading of the transport network; 

– computational resources and services are brought 

closer to end users. 

Software-Defined Networking (SDN) is a 

network management concept that decouples the control 

plane from the data plane, transferring network control 

from hardware devices (routers, switches) to a 

centralized controller that defines the operational rules 

of the entire network [22]. This approach allows [23]:  

– flexible management of data flows; 

– optimization of resource allocation; 

– simplification of automation and scalability 

processes; 

– rapid deployment of new services; 

– logical, software-based network control. 

The fundamental distinction between these 

technologies lies in their focus: MEC addresses the 

location of data processing (bringing computation closer 

to the user), while SDN addresses the method of 

network control (centralized, software-defined traffic 

management). Importantly, the two technologies can 

complement one another in complex networking 

scenarios [24]. MEC requires fast and flexible routing 

management, which is effectively supported by SDN. 

Conversely, SDN gains new relevance in optimizing 

traffic flows toward MEC-enabled edge and fog 

devices. 

One of the most significant application domains 

for such integration is the support of high-density and 

ultra-dense Internet of Things (IoT) environments. 

2. Architecture of the Integrated  

IoT–SDN–MEC System 

The proposed integrated system consists of 

terrestrial and aerial segments, as illustrated in Fig. 1. 

In the proposed model, the terrestrial segment 

represents a high- or ultra-high-density IoT network 

comprising distributed end devices. This is a three-layer 

network, whose operation relies on distributed edge 

computing technologies [25]. 

The first layer includes distributed IoT devices 

such as sensors and actuators. These devices can, for 

example, measure environmental parameters. Under 

high- and ultra-dense deployment scenarios, their 

number becomes extremely large, with wide geographic 

distribution and support for diverse interfaces. The 

second layer consists of distributed edge-computing 

devices within the terrestrial segment. The third layer is 

formed by IoT gateways, which serve as the interface 

between terrestrial edge devices and aerial fog servers. 

It is assumed that all IoT gateways in the considered 

network are connected to the aerial plane [26]. 
 

 

Fig. 1. Model of interaction 

within the integrated IoT–SDN–MEC system 

 

The aerial segment of the model comprises 

multiple unmanned aerial vehicles (UAVs)—such as 

microdrones and quadcopters—deployed to support 

high- and ultra-high-density IoT networks. Each UAV is 

equipped with two communication interfaces: air-to-

ground (A2G) and air-to-air (A2A). The A2G interface 

provides communication with the terrestrial segment, 

while the A2A interface supports communication 

between UAVs [27, 28]. 

Furthermore, each UAV hosts an Air MEC (A-

MEC) server, which provides computational resources 

to the terrestrial network [29]. The A-MEC operates as a 

micro-cloud server enabling traffic offloading. Any 

UAV can be allocated to serve a specific cluster of IoT 

devices via IoT gateways, which connect the 

corresponding edge device to one of the UAVs using 

SDN technology.  

3. Mathematical Model of the Integrated IoT–

MEC–SDN System 

In the aerial segment of the system, a swarm of 

unmanned aerial vehicles (UAVs) is deployed. Each 

UAV is equipped with an Air MEC (A-MEC) server 

capable of both processing information locally and 

transmitting it to a remote cloud data center. This UAV 

swarm is described by the set D: 
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  1 2, , ,ND D D D=  (1) 

where N is the total number of UAVs deployed in the 

aerial plane, and іD  is an element of set D 

corresponding to the UAV with index і, 1,i N  . 

A three-dimensional Cartesian coordinate system 

with coordinates (x, y, h) is used to determine the 

positions of UAVs and IoT devices. The position of a 

UAV is characterized by two-dimensional ground 

coordinates (x, y) and altitude h. Thus, the current 

location of the UAV іD  at time t is given by the 

coordinates (xі(t), yі(t), hі). IoT end devices are distributed 

across the plane (X, Y). Each UAV follows a trajectory 

Аi(t) = (xі(t), yі(t), hі)  at a fixed altitude hі. The network 

of IoT end devices is described by the set І: 

  1 2, , ,МІ І І І=  (2) 

where М is the total number of IoT devices, and jІ  is 

an element of set D, corresponding to the IoT device 

associated with the UAV of index j, 1,j M . 

The position of each IoT device on the plane 

(X, Y) is characterized by two-dimensional coordinates 

(x, y). Thus, the current position of the j-th IoT device is 

specified by the coordinates (xj, yj). 

IoT devices are grouped into clusters. Within each 

cluster, all devices transmit data packets to a fixed IoT 

edge server, which determines the subsequent 

processing actions: either processing the information 

locally at the edge or forwarding it to the nearest 

available IoT gateway [30]. 

The set of deployed IoT clusters is described by 

the set С: 

  1 2, , , ,КС С С С=  (3) 

where К is the total number of IoT edge servers, and 

correspondingly the total number of IoT clusters; kС  is 

an element of set C representing the cluster with index 

k, 1,k K ,  

 ( ), ,k k kС SG CI=  (4) 

where kSG  denotes the IoT edge server that forms the 

cluster with index k; kCI  is the set of IoT devices 

belonging to cluster k, 

  1 2, , , , ,
kk k k kM kСІ С С С СІ I=   (5) 

where the elements of this set are the indices of IoT 

devices from set І; Mk is the number of IoT devices in 

cluster k, such that: 

 

1

.
K

k
k

M M

=

=  (6) 

The set of IoT gateways is defined as G: 

  1 2, , , ,WG G G G=  (7) 

where W is the total number of IoT gateways, wG  is an 

element of set G, corresponding to the gateway with 

index w, 1,w W , which has coordinates (xw, yw) . 

The distance between the i-th UAV and the w-th 

gateway at time t is given by: 

( ) ( )( ) ( )( ) ( )
2 2

.iw i w i w it x t x y t y h t= − + − +   (8) 

Each i-th UAV has a limited flight duration Li, 

which depends on the energy consumed by 

computation, communication, and flight processes. The 

processes running on one UAV differ from those on 

another, and therefore the flight durations of different 

UAVs are not the same. 

The total flight time is divided into time slots of 

fixed duration Δt. This allows the continuous process 

under consideration to be modeled as a discrete one. 

Within this model, both communication and 

computation processes are executed in these slots. 

During each time slot Δt, the position of each UAV is 

approximated as fixed. The set of such positions 

corresponds to the UAV trajectory and can be defined 

through the following finite sequence: 

 ( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

, ,

2 , 2 , , ,

,

i i

i i i

i i i i

x t y t

B t x t y t

x b t y b t

  
 
  =  
 
   

 (9) 

where denotes the time slot ib  in which the energy 

resources of the i-th UAV are depleted. 

The energy consumed by computation is calculated 

based on the amount of data offloaded. The energy 

consumed by communication depends on the volume of 

data transmitted via the inbound links from IoT 

gateways and the outbound links delivering information 

to the cloud data center. The total energy consumption 

at the beginning of the ξ-th time slot is computed as: 

 
( ) ( )

( ) ( )

_

_ _ ,

i сalc i

сonnect i flight i

t t

t t

  =   +

+  + 

 

 
 (10) 

where ( ) ( ) ( )_ _ _, ,сalc i сonnect i flight i      – 

represents the energy consumption of the i-th UAV at 

the beginning of the ξ-th time slot due to computation, 

communication, and flight processes, respectively. 

In ultra-dense IoT networks, to increase the 

number of devices that can be served within a single 

time-frequency resource while reducing latency and 

energy consumption, Non-Orthogonal Multiple Access 

(NOMA) is applied. With NOMA, all end devices use 

the same frame duration ts for data transmission 

simultaneously [31]. Therefore, for UAVs, it is 

reasonable to select the discretization time slot equal to 

the NOMA frame duration, i.e., Δt = ts. 

4. Traffic Offloading in Integrated IoT–MEC–

SDN Environments 

This section introduces a method for traffic 

offloading from terrestrial IoT infrastructures to mobile 

fog computing servers deployed on unmanned aerial 

vehicles (UAVs). At the edge layer, IoT devices utilize 

their limited on-board resources to process data locally. 

Such an approach is viable only for lightweight tasks 

with modest computational requirements. Tasks that 
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demand more intensive resources, however, must be 

offloaded to fog servers in the aerial segment or to 

remote cloud data centers [32]. To simplify the model, 

we adopt a binary offloading strategy. UAVs are 

assumed to be dedicated exclusively to supporting high-

density and ultra-dense IoT networks, without other 

local workloads. In this context, UAVs operate as 

mobile fog servers, capable of directly processing tasks 

offloaded by IoT devices or redirecting them to other 

computational nodes. Traffic exchange between 

terrestrial and aerial layers relies on Non-Orthogonal 

Multiple Access (NOMA), which enhances connectivity 

and spectral efficiency across device clusters. 

IoT traffic offloading operates on three 

hierarchical levels. At the edge, SDN-enabled devices 

employ a software profiler to determine task 

specifications, including the data volume (in bytes) and 

the required number of CPU cycles for processing a 

single data unit. A resource scheduler then provides the 

SDN decision engine with real-time information on 

available resources, estimates processing time and 

energy consumption, and calculates the residual energy 

after task execution.  

 Based on these estimates of quality of service 

(QoS), latency, and energy efficiency, the decision 

engine determines whether the task should be executed 

locally or forwarded via a gateway to the MEC fog 

layer. If sufficient resources and energy are available, 

the system avoids unnecessary offloading. Conversely, 

when resources or energy are insufficient, the edge 

device initiates offloading either to a neighboring device 

(if available) or to a fog server via the gateway. 

At the fog layer, the IoT gateway issues an 

offloading request to the aerial MEC infrastructure. 

Each request contains essential task parameters along 

with device identification. The MEC system processes 

these requests and consults its decision-making module, 

which evaluates the availability of computing resources 

in the aerial segment and the QoS constraints of the 

task. 

The A-MEC edge server of the selected UAV 

processes the received offloading requests from serviced 

end devices by extracting device and task information 

and forwarding them to the A-MEC decision-making 

mechanism. The decision-making mechanism also 

receives information about currently available resources 

from the resource scheduler and calculates the time 

required to process the requested task. Then, a decision 

is made to accept or reject the offloading request to this 

UAV by comparing the total required processing time 

with the time limits necessary to ensure QoS. If the 

decision is negative, the UAV requests resources from a 

neighboring UAV. Offloading requests are thus 

transferred among UAVs within the swarm. 

The binary decision on accepting an offloading 

request is determined by comparing the residual UAV 

energy after completing the requested task with the 

UAV’s energy threshold. The UAV first calculates the 

energy cost for task execution and the energy required 

for transmitting the computed results. If the UAV 

refuses to accept the offloading request, it forwards the 

request to another UAV in the swarm with available 

resources. Neighboring nodes respond with acceptance 

or rejection of the offloading requests, and the UAV 

either finalizes the task or offloads it based on the 

received responses. 

5. Optimization of Energy Consumption and 

Task Processing Delay in the Aerial Segment 

The considered offloading approach, in terms of 

both energy consumption and delay associated with 

executing IoT computational tasks in the aerial fog 

segment, is largely determined by the positioning of 

UAVs.  

The primary objective of this subsection is to 

jointly optimize energy consumption and minimize the 

average latency for executing offloaded IoT tasks. This 

formulation leads to a two-parameter nonlinear 

programming optimization problem with significant 

computational complexity.  

To reduce the complexity of the problem, we 

introduce weighting coefficients that balance the 

relative importance of temporal and energy 

characteristics, denoted as βtime та βenergy, respectively: 

 1.time energy+ =   (11) 

Thus, if βtime = 0, optimization is performed 

exclusively with respect to energy consumption; 

conversely, if βenergy = 0 the optimization criterion 

depends solely on latency. For any other values of the 

weighting coefficients, the optimization problem is 

reduced to a single-parameter task of determining the 

optimal distribution of IoT tasks among UAVs in the 

aerial fog segment. 

Consider a single operational cycle of a dense IoT 

system with duration A time slots. During each slot ξ 

( )1, A  tasks Rξ are offloaded from the IoT edge 

layer to the aerial segment. 

Boolean variables r i  are defined such that 

1r i =  if, at slot α task rξ   ( )1,r R   is executed by 

UAV і, and 0r i =  otherwise. Based on this 

definition, the set of possible allocations can be 

represented as 

  .r i=
   (12) 

The objective function of the optimization problem 

can be formulated as 

( )

( )
1 1 1

_ _
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r i r i
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 
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 
+   ⎯⎯→ 

 
   +
 

  

 






 

 






 







 (13) 

where r iT
 , _сalc r i

  and _сonnect r i
  denote the 

temporal and energy costs of computation and 

communication, respectively, when task rξ  at a slot ξ is 

processed by i-th UAV. 

A set of constraints must also be introduced to 

ensure feasibility. 
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The first constraint guarantees that the velocity of 

any UAV does not exceed the maximum permissible 

swarm velocity Vmax,  i.e., at each slot for every UAV 

the following condition holds [33]: 

 

( ) ( )( )

( ) ( )( )

2

2

1, , 1, .

ma

i

x

i i

i

x t x t t

y t y t t

i N A

V

  −  +  +
  
 
 +  −  +  

   

 

 



 (14) 

The next two constraints ensure that each UAV 

covers only its designated flight region and that 

collisions among UAVs within the swarm are avoided:  

 
( )

( )

_ min _ max

1, , 0, 1 ;

i i ix x t x

i N t A t

 

     +
 (15) 

 
( )

( )

_ min _ max

1, , 0, 1 ,

i i iy y t y

i N t A t

 

     +
 (16) 

where _ min _ max _ min _ max, , ,i i i ix x y y  represent the 

minimum and maximum admissible coordinates of i-th 

UAV in the deployment plane. 

Another constraint enforces the binary nature of 

offloading decisions: 

 0;1 1, , 1, , 1, .r i i N A r М      
      (17) 

The final constraint ensures that the total number 

of offloading requests directed to the aerial segment 

does not exceed the number of participants in the 

cluster: 

 1, .R N A     (18) 

Expressions (13)–(18) thus define a large-scale 

nonlinear programming problem with Boolean 

variables, addressing the optimization of IoT task 

allocation in the aerial fog computing segment.  

6. Metaheuristic Algorithm for Approximate 

Search of Optimal Positions 

of Aerial Fog Devices 

Due to the high dimensionality of the optimization 

problem, an approximate population-based algorithm 

was selected for its solution. The following 

metaheuristic algorithms were considered: the Grey 

Wolf Optimizer (GWO), the Particle Swarm 

Optimization algorithm (PSO), and the Salp Swarm 

Algorithm (SSA).  

All three employ iterative search processes and are 

inspired by biological models, but they differ in their 

mechanisms of population updating and in the evolution 

of their topological structures [34–36]. 

In general, metaheuristic algorithms such as GWO, 

PSO, and SSA are powerful and efficient tools 

applicable to a broad class of optimization problems.  

The choice of algorithm depends on the 

characteristics of the task and the performance 

requirements. For instance, PSO is more resource-

intensive than the other two algorithms, which affects 

its convergence speed and computational time. 

After analyzing the specific features of these 

algorithms, particularly regarding convergence rate and 

parameter tuning simplicity, the Grey Wolf Optimizer 

(GWO) was selected. GWO is a metaheuristic inspired 

by the social hierarchy and hunting strategy of grey 

wolves, which live and act in coordinated packs led by 

an alpha wolf. The algorithm initializes a population of 

wolves (candidate solutions) and evaluates their fitness 

values. At each iteration, wolves update their positions 

based on both their own current state and the relative 

positions of other wolves in the pack. As a result, at 

every iteration, including the final one, the algorithm 

produces from one to four ordered solutions 

corresponding to UAVs suitable for subsequent task 

offloading from the gateway. Each grey wolf in the pack 

represents a point in the solution search space with a 

computed fitness function value. According to fitness 

quality, the pack is divided into four categories. Three 

wolves with the best fitness values are assigned 

leadership roles: α, β, and δ. The remaining wolves form 

the category ω. The position of each wolf at iteration t + 

1, which reflects the encirclement of prey, is updated 

according to the following expression: 

 
( )

( )

,

,

1

, 1, ,

i p i

i i p i i

X t X

A C X X t i N

+ = −

−   − =
 (19) 

where 𝑡 is the iteration index, 𝑖 denotes the component 

of the N-dimensional space, ( )X t  is the position vector 

of the current wolf, pX  is the position vector of the 

prey (representing the unknown global optimum of the 

fitness function), 𝐴𝑖 = 2𝑎 ∙ 𝑟1,𝑖 – 𝑎; 𝐶𝑖 = 2𝑟2,𝑖; with 𝑟1,𝑖 

and 𝑟2,𝑖 being random variables uniformly distributed 

within  [0, 1] and generated independently for each 

component i. The parameter a decreases linearly from 2 

to 0 as the number of iterations increases, according to  

 ( ) 2 2 ,t t MaxIter= −  (20) 

where MaxIter  denotes the predefined maximum 

number of iterations. 

Since the global optimum is not known, an 

iterative approximation procedure is applied. Wolves α, 

β, and δ represent the three best solutions at iteration t. 

Updated positions for all wolves are calculated at 

iteration t + 1. For each wolf in the ω category, auxiliary 

position vectors are computed using the known 

positions of α, β, and δ wolves as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1, 1

,

k
ii

k
i i i i

X t X t

A C X t X t
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 (21) 
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X t X t
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 (23) 
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where i denotes the component of the N-dimensional 

search space and k denotes the index of the ω-category 

wolf. 

The final position of any considered wolf is then 

determined as 

 
( )

( ) ( ) ( )( )1 2 3

1

1 1 1 3.

X t

X t X t X t

+ =

= + + + + +
 (24) 

In the GWO framework, the grey wolf pack 

performs a parallel search in the solution space to 

identify a set of optimal UAV swarm positions for each 

time interval. The algorithm provides an approximate 

solution that closely approaches the true optimum and 

operates in a nested loop with the task offloading 

procedure. The GWO process begins with the 

initialization of parameters using a chaotic distribution, 

subject to the imposed constraints and the predefined 

maximum number of iterations. The initial positions of 

the wolves, representing candidate UAV placements, 

are then generated randomly. The fitness of all wolves, 

including the leaders and followers, is evaluated using 

function (13). The position of the prey is considered to 

correspond to the wolf with the highest fitness value. 

Subsequently, the parameters of GWO are updated, 

leading to the adjustment of wolf positions. This 

updating process is repeated until an optimal solution is 

identified or the maximum number of iterations is 

reached. 

7. Analysis of Simulation Results 

for the Integrated IoT–MEC–SDN System 

The proposed solutions were modeled in the NS-3 

environment with integration of the LIMoSim 

simulator, a lightweight and integrated tool developed 

based on the widely used INET framework. LIMoSim 

enables simulations without the need for interaction 

with external simulators through inter-process 

communication (IPC) mechanisms and offers several 

advantages, including integration, reduced configuration 

complexity, compatibility with INET extensions, and 

the ability to efficiently handle dynamic scenarios. 

LIMoSim is implemented on a shared codebase for 

communication simulation, allowing effective 

interaction within a single process. 

Additionally, the CloudSim environment was 

employed to evaluate the performance of the proposed 

solutions.  

CloudSim allows modeling of cloud data centers, 

virtualization, resource management, and workload 

distribution, providing an assessment of algorithm 

efficiency in both fog and cloud environments without 

the need for expensive physical infrastructure. The 

terrestrial network was represented by an IoT 

deployment with 2,000 end devices and five 

independent gateways distributed over a 25 km² area. 

The aerial network consisted of nine UAVs positioned 

at a uniform altitude of 45 meters. To evaluate the 

performance of the proposed solutions for the air–

ground distributed edge computing architecture and the 

optimized model, three system deployment scenarios 

were considered: 

V1 – traditional IoT networks without support for 

terrestrial or aerial fog computing; 

V2 – IoT network with support for distributed 

terrestrial and aerial fog computing; 

V3 – optimized system with an aerial fog layer and 

IoT network supported by G-MEC and A-MEC servers. 

Energy consumption and task processing delay 

were considered as primary performance metrics. 

Energy consumption was evaluated for the three 

system deployment scenarios. Fig. 2 presents a 

comparison of average energy consumption (in 

percentage) for the three considered scenarios at varying 

numbers of tasks per IoT end device.  
 

 

Fig. 2. Average energy consumption at varying numbers  

of computational tasks (fraction of initial available energy) 

 

These measurements were recorded for 2,000 end 

devices, with tasks corresponding to the processing of 

static images. Energy consumption increases as the 

number of computational tasks per end device grows; 

however, the proposed air–ground model preserves 

energy, allowing more tasks to be offloaded compared 

to traditional IoT networks. The proposed model 

reduces energy consumption by an average of 20% 

compared to the traditional IoT model. Moreover, the 

optimized air–ground IoT network achieves even 

greater energy savings, with an average efficiency 

improvement of approximately 5% over the standard 

air–ground model. The impact of end device density on 

energy consumption was also analyzed for the three 

considered deployment scenarios. Fig. 3 shows the 

percentage of energy consumption for each scenario 

with varying numbers of end devices, ranging from 

1,000 to 3,000 devices.  
 

 

Fig. 3. Average energy consumption  

for varying numbers of deployed nodes 
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The tasks considered in this analysis belonged to 

the second category, with each end device executing ten 

tasks. The proposed air–ground model reduced energy 

consumption compared to the traditional network, while 

the optimized model provided additional reductions. In 

networks with a high density of deployed end devices, 

the proposed model significantly reduces energy 

consumption, achieving more than a twofold 

improvement compared to densely deployed traditional 

networks. In all cases, the proposed offloading scheme 

reduces overall energy consumption. 

Latency is another critical network performance 

metric evaluated during the simulation. The average 

task processing latency was measured for all three 

deployment scenarios while varying the number of 

active end devices. Fig. 4 illustrates the dependence of 

average processing latency on the number of 

computational tasks assigned to each end device for the 

three considered deployment scenarios.  
 

 

Fig. 4. Average latency incurred 

during computational task processing 

 

These measurements were obtained for 2,000 end 

devices executing lightweight computational tasks. The 

proposed air–ground system (Scenario V2) provides 

higher latency efficiency compared to traditional 

systems without fog computing, which rely solely on 

terrestrial edge computing. This improvement in 

efficiency increases with the number of offloaded 

computational tasks. The use of A-MEC servers enables 

task offloading, thereby reducing the total processing 

time. Moreover, the optimized system achieves an 

additional reduction in average latency of up to 3%.  

Fig. 5 shows the average task processing latency in 

each of the three considered system scenarios for five 

different application complexity categories.  

 

Fig. 5. Average task processing latency 

for five different application complexity categories  

 

These results were obtained for a network of 2,000 

end devices, each executing ten tasks, with gradually 

increasing task complexity.  

Both the proposed air–ground system and the 

optimized system reduce the average latency required to 

process computational tasks, particularly for tasks with 

the highest complexity.  

Conclusions 

This study investigated the integration of SDN and 

MEC technologies in support systems for high-density 

and ultra-high-density Internet of Things (IoT) 

deployments.  

A proposed architecture of the integrated IoT–

SDN–MEC system includes both terrestrial and aerial 

segments.  

For this architecture, a mathematical model was 

developed to estimate the energy consumption of fog-

layer devices and the task processing latency.  

A traffic offloading scheme within the integrated 

IoT–MEC–SDN system was described.  

The optimization problem of minimizing energy 

consumption and processing latency for tasks offloaded 

to the aerial segment was formulated.  

To solve this problem, the Grey Wolf Optimizer 

(GWO) algorithm was applied, providing a rapid 

approximation of the optimal solution.  

Simulation results for the integrated IoT–MEC–

SDN system demonstrate that incorporating an aerial 

fog segment in high-density and ultra-high-density IoT 

networks reduces both average energy consumption and 

the average latency incurred during computational task 

processing.
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Метод побудови мережі підтримки високощільного Інтернету речей 

з інтеграцією технологій SDN та MEC 

О. В. Шефер, С. В. Мигаль 

Анотація .  Актуальність. При впровадженні ІоТ високої та надвисокої щільності виникає низка технічних та 

організаційних проблем. Одним з напрямів подолання цих проблем є інтеграція технологій опрацювання мереж та 

даних, зокрема SDN ТА MEC. Отже, метою даної статті є дослідження процесу інтеграції технологій SDN ТА MEC в 

системи підтримки високощільного та надвисокощільного Інтернету речей. Отримані результати. Запропонована 

архітектура інтегрованої системи ІоТ-SDN-МЕС, що складається з наземного та повітряного сегментів. Для даної 

архітектури розроблена математична модель, котра дозволяє визначати енергетичні витрати пристроїв туманного 

шару та часові затримки виконання завдань. Описана схема вивантаження трафіка в інтегрованій системі ІоТ-МЕС-

SDN. Сформульовано завдання оптимізація енергоспоживання та затримок обробки завдань, вивантажених у 

повітряний сегмент. Для його вирішення застосований  алгоритм зграї сірих вовків, який допомагає швидко знайти 

наближений розв’язок. Висновок. Проведений аналіз результатів моделювання функціонування інтегрованої системи 

ІоТ-МЕС-SDN показав, що при використанні у туманному шарі повітряного сегменту для високощільного та 

надвисокощільного Інтернету речей зменшуються середні енерговитрати та середня затримка, що виникає при 

обробці обчислювальних задач. Подальші дослідження у даному напрямі пов’язані з формуванням оптимальної 

структури повітряного сегменту. 

Ключові  слова:  Інтернет речей; технологія SDN; технологія MEC; високощільний; надвисокощільний; 

інтегрована система; наземний сегмент, повітряний сегмент. 
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