
ISSN 2522-9052 Сучасні інформаційні системи. 2025. Т. 9, № 4 

57 

UDC 614.4:004.8:004.6   doi: https://doi.org/10.20998/2522-9052.2025.4.08 
 

Yurii Parfeniuk1, Kseniia Bazilevych2, Ievgen Meniailov1, Dmytro Chumachenko2, 3
 

 

1 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine 
2 National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine 
3 Balsillie School of International Affairs, Waterloo, ON, Canada 

 

A MULTI-LAYER DELTA LAKEHOUSE FOR EPIDEMIOLOGICAL MONITORING 

AND FORECASTING UNDER EMERGENCIES 
 

Abstract .  Public health emergencies demand fast, dependable analytics that combine real-time signals with trustworthy 

historical data. Open, interoperable platforms that support streaming and batch workflows can shorten the time from 

detection to action while preserving data quality and auditability. Aim: To design and justify an information system 

architecture for analyzing epidemic threats under emergency conditions that is scalable, reliable, and fit for integration with 

clinical and non-traditional data sources. Methods: We conducted a structured review of three data analytics architectures 

(Lambda, Kappa, Delta) and mapped their strengths and limits to crisis surveillance needs. Based on functional and non-

functional requirements, we specified a Delta Lake–based lakehouse with bronze-silver-gold tiers, unified batch/stream 

ingestion with Spark Structured Streaming, ACID tables with time travel and schema control, and an analytics layer that 

supports forecasting with MLOps for monitoring, drift checks, retraining, and lineage. Results: The proposed architecture 

meets core emergency needs for timeliness, integrity, and reproducibility through ACID transactions, versioned datasets, 

and curated tiers; supports standards-based interoperability and the inclusion of wastewater, mobility, and other 

environmental feeds; provides a single code path for batch and streaming to reduce reconciliation burden; and sets 

operational guardrails for latency versus cost when running many near-real-time tables. We outline practical considerations 

for quality checks in the silver tier, promotion rules to gold, and model governance. Conclusions: A Delta-based lakehouse 

offers a clear path to an emergency-ready surveillance platform that scales with data growth, integrates heterogeneous 

sources, and supports reliable forecasting. The next steps are a pilot deployment with public health partners, live latency 

and cost measurements, and prospective validation of forecasting and alerting in real-world settings. 
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Introduction 

In the context of globalization and the rising threat 

of infectious disease outbreaks, timely analysis and 

processing of epidemiological surveillance data are 

critical, particularly during emergencies. Early 

detection, assessment, and response to these threats are 

essential to prevent large-scale crises, protect population 

health, and reduce socioeconomic impacts [1]. 

The relevance of advanced information systems is 

especially pronounced during emergencies, when 

surveillance must pivot from periodic reporting to 

continuous, decision-grade intelligence. The World 

Health Organization’s Early Warning, Alert and 

Response (EWAR) guidance and its “EWARS in a box” 

toolkit illustrate how rapidly deployable platforms 

shorten the interval from signal detection to public 

health action, including in conflict and post-disaster 

settings [2]. Deployments can be configured within days 

to restore core outbreak detection and alerting capacity 

when routine systems are disrupted. 

Open-source epidemic intelligence further 

increases situational awareness when formal reporting is 

delayed. WHO’s Epidemic Intelligence from Open 

Sources (EIOS) and regional implementations have 

shown that triaging large volumes of media and 

nontraditional data can surface actionable signals early 

[3]. A recent evaluation in the WHO African Region 

reported measurable performance in early detection [4]. 

These results support integrating EIOS-style pipelines 

into emergency operations centers to complement 

indicator-based surveillance. 

Environmental (“wastewater-based”) surveillance has 

matured into a practical early-warning layer well suited to 

emergencies, mass gatherings, and settings with 

constrained clinical testing. Syntheses from 2024–2025 

show wastewater measurements can anticipate community 

transmission, including detection among asymptomatic 

populations, and guide targeted interventions [5]. National 

academies and systematic reviews recommend 

institutionalizing wastewater surveillance for both endemic 

and emerging pathogens [6]. 

Interoperable data exchange is critical for surge 

decision-making. Recent public-health informatics work 

highlights HL7 FHIR–based specifications (e.g., 

SANER and the US Situational Awareness Framework 

for Reporting) that automate hospital capacity, 

respiratory disease metrics, and other feeds to give 

authorities near-real-time dashboards [7]. Peer-reviewed 

studies and federal progress reports indicate growing 

production use of FHIR (including Bulk FHIR for 

population-level extracts), with more states automating 

bed-capacity and respiratory reporting as part of data-

modernization initiatives [8]. These capabilities are 

directly relevant during acute events. 

Dedicated early-warning networks remain a 

backbone of outbreak control in humanitarian and 

conflict emergencies. Recent analyses of Syria’s early-

warning systems and digital health assessments from 

Yemen emphasize that lightweight, resilient architectures 

and streamlined reporting and alert thresholds sustain 

detection and response despite infrastructure damage and 

workforce constraints [9, 10]. These findings reinforce 

the value of deployable, low-bandwidth solutions that 

preserve timeliness under adverse conditions. 

Multi-sector “One Health” integration strengthens 

emergency readiness by linking human, animal, and 

environmental data, which is essential given the 
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zoonotic profile of many emerging threats [11]. Recent 

reviews and frameworks document timeliness gains and 

practical pathways for data sharing across sectors, and 

call for embedding One Health analytics within routine 

and emergency surveillance architectures to manage 

cross-border and climate-sensitive risks [12]. 

Effective epidemic control requires rapid response 

and predictive models built on in-depth analysis of large 

volumes of heterogeneous data using machine learning 

and artificial intelligence [13]. There is a need to 

develop systems capable of real-time data processing 

[14]. Both accuracy and processing speed are critical for 

timely action. Historical data must be incorporated to 

improve forecasting accuracy, which requires the 

system to handle both streaming data arriving in real 

time and large stores of historical data [15]. 

A literature review shows that such information 

systems are widely used not only in the Big Data 

industry but also across the broader economy and 

commerce and in many public sector organizations. 

An information system for epidemiological data 

analysis and processing must meet requirements that 

can be grouped into several categories. 

1. Functional requirements: 

• Data collection from multiple sources: the system 

must integrate with diverse data sources, including 

laboratory information systems (LIS), electronic medical 

record (EMR) systems, disease surveillance systems, 

hospitalization databases, mortality data, and other 

relevant sources [16]. This requires support for various 

data formats and exchange protocols (e.g., HL7, FHIR). 

• Data storage and management: the system must 

provide reliable storage for large volumes of structured 

and unstructured data (text descriptions, medical 

images), effective version control, and assurance of data 

integrity. The system must be scalable to handle 

growing data volumes. 

• Data processing and analysis: the system must 

offer tools for data cleaning, transformation, and 

aggregation, statistical analysis, construction of 

epidemiological models, and application of machine 

learning methods for forecasting and outbreak detection. 

• Data visualization: the system must provide tools 

to visualize data in multiple formats (charts, maps, 

tables) to support interpreting analytical results. 

Visualizations should be interactive and configurable. 

• Reporting and alerts: the system must generate 

reports on user requests and automatically issue alerts 

about potential outbreaks based on predefined 

thresholds. 

• User and access management: the system must 

enforce role-based access to data and system functions, 

ensuring data confidentiality and security. 

2. Non-functional requirements: 

• Reliability and availability: the system must be 

reliable and available 24/7. This may require data 

redundancy and a fault-tolerant architecture [14]. 

• Security: the system must ensure the 

confidentiality, integrity, and availability of data in line 

with personal data protection laws (e.g., GDPR, 

HIPAA). Protection against unauthorized access, 

modification, and data destruction must be provided. 

• Scalability: the system must handle growing data 

volumes and increase performance. 

• Performance: the system must support fast query 

processing and report generation. 

• Usability: the system must be intuitive and 

convenient for healthcare professionals and 

epidemiologists with varying levels of technical 

training. 

• Integration: the system must integrate smoothly 

with existing healthcare information systems. 

• Support: technical support and user training must 

be provided. 

Thus, the main aim of this study is to develop an 

architecture for an information system to analyze 

epidemic threats under emergency conditions. 

The current research is part of a comprehensive 

information system for assessing the impact of 

emergencies on the spread of infectious diseases [17]. 

1 Architectures Review 

To implement information systems of this kind, 

the first task is to choose the data processing system's 

architecture. The most appropriate types are the 

Lambda, Kappa, and Delta architectures [18]. 

Each of these architectures has features that must 

be considered when choosing. The system should be 

planned for the steady growth in the volume and data 

types to be processed. The costs of building and 

maintaining such systems are also important factors. 

We consider several approaches to data 

processing. 

The Lambda architecture is a data-processing 

system composed of two pipelines [19]. The first is a 

traditional batch pipeline for accurate processing of 

historical (batch) data, and the second is a streaming 

pipeline that can process data quickly in real time. A 

system of this kind includes three layers: 

- Batch layer: responsible for batch processing of 

data. 

- Speed layer: responsible for real-time data 

processing. 

- Serving layer: responsible for handling queries 

and returning results. 

A structural diagram of data processing based on 

the Lambda architecture is shown in Fig. 1. 

Despite combining batch and stream processing 

methods, implementing this architecture entails several 

challenges: 

- high maintenance and support costs; 

- the need to develop two pipelines separately; 

- data-reconciliation difficulties due to different 

computation engines; 

- different storage formats for streaming and batch 

processing. 

The most significant drawbacks for this study are 

batch processing latency and two separate data 

processing pipelines. Because streaming outputs may be 

approximate, they are refined using results produced by 

batch processing. When real-time monitoring is 

required, this delay can become a serious issue, and its 

mitigation depends directly on data volume and the 

resources available for processing. 
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Fig. 1. Structural diagram of data processing based on the Lambda architecture 

 

Maintaining two separate, and, crucially, different, 

pipelines also imposes a strict requirement for data 

consistency, which, given their different origins and 

processing logic, can create substantial operational and 

maintenance complexity. 

The Kappa architecture avoids the main drawback 

of the Lambda approach, namely, the existence of two 

data processing systems and the need to support them 

separately [20]. In Kappa, stream analytics is performed 

within a dedicated stream-processing system, and the 

key distinction from Lambda is the absence of a 

separate batch analytics system. All computations are 

executed in the streaming system. Under this design, 

historical (batch) data are sent from storage to a 

streaming bus and consumed by the stream-processing 

analytics engine. 

A structural diagram of data processing based on 

the Kappa architecture is shown in Fig. 2. 

 

 
Fig. 2. Structural diagram of data processing based on the Kappa architecture 

 

This approach eliminates most drawbacks inherent 

in the Lambda architecture because a single system 

performs both streaming and analytical processing. 

There is no need to maintain two different systems, and 

the problem of data inconsistency does not arise. 

However, a limitation of this architecture is the 

need to pass analytical data for processing through the 

streaming data bus. This requires copying all analytical 

data and loading it into the event-stream bus. Given the 

large volumes of these data, this can lead to noticeable 

delays, inefficient resource use, and increased 

complexity in administering the streaming bus under 

high data throughput. 

The limitations of the Lambda and Kappa 

architectures motivated the development of a new type, 

the Delta architecture [21]. Like Kappa, it unifies batch 

and streaming data in a single processing pipeline with 

one codebase. The Delta architecture can be viewed as a 

lightweight evolution of the Kappa model without the 

drawbacks of the Lambda approach. It was designed to 

avoid synchronization constraints in existing solutions 

and, importantly, enable on-the-fly data enrichment 

during processing. The initial goal was to reduce data 

processing complexity for application developers by 

providing ready-to-use outputs.  

A structural diagram of data processing based on 

the Delta architecture is shown in Fig. 3. 

The Delta architecture differs in structure from the 

architectures discussed above. As data enters the 

system, they are gradually sorted and enriched. 

Standard query mechanisms and processing 

methods can be applied at any layer to move data 

between layers. The core idea is to distinguish data by 

quality and to build higher-level datasets by cleaning, 

enriching, and aggregating data from lower levels. 

The Delta architecture divides data work into three 

storage tiers: bronze, silver, and gold. These conceptual, 

logical layers help classify data maturity and readiness 

for querying and processing. 

Bronze tables ingest raw data and serve as the 

entry point for subsequent loading into data lake 

storage. Data are accepted in their original form and 

format, then converted to Apache Parquet for 

processing.  

After initial processing, the system routes the data 

to the next layer using Apache Spark. 
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Fig. 3. Structural diagram of data processing based on the Delta architecture 

 

Silver tables store data in an optimized state, 

which makes them usable for business analytics and 

data processing.  

Raw inputs from the previous layer are filtered, 

cleaned, transformed, joined, and aggregated into 

curated silver datasets.  

Where applicable, Delta Engine can be used as a 

consistent compute module when Azure Databricks is 

the base service for these tasks. For further analysis, 

suitable programming languages, such as SQL, Python, 

R, or Scala, may be used. DevOps processes and 

temporary compute clusters can be employed for 

specific jobs. 

Gold tables contain structured and enriched 

datasets ready for analytics or reporting. For data 

analysis, one may use the most suitable language or 

toolset, such as Koalas, SQL, Power BI, Excel, or many 

other tools. 

One of the most common implementation options 

relies on open-source software. Delta Lake is an open-

source storage layer that brings reliability to data lakes 

[22], which is crucial when data volumes are large and 

update/processing rates are high. Delta Lake supports 

ACID transactions [23], scales metadata handling, and 

unifies streaming and batch data during processing. 

Delta Lake runs on top of an existing data lake (Apache 

Hadoop HDFS, Amazon S3, or Azure Data Lake 

Storage) and is fully compatible with all Apache Spark 

APIs. 

Performance limits for compute operations on 

HDFS are only one reason Delta Lake emerged. In 

principle, batch and stream processing can be built 

within a Lambda architecture. Additional drivers for the 

rise and evolution of Delta Lake include the 

digitalization of the economy and government 

processes, the spread of hybrid and cloud data 

warehouses (DWH), and the service-oriented model for 

Big Data technologies. Using Apache Hadoop (Hadoop-

as-a-Service) as an example, convenience comes with 

challenges: 

- some core Hadoop services (e.g., YARN, HDFS) 

were not originally designed for cloud use, having been 

built for on-premises environments with specific 

architectural traits and constraints; 

- maintenance and operations demand significant 

time and resources. 

These issues become more pressing as workloads 

move to the cloud and system requirements change over 

time. It is therefore desirable that such systems provide: 

- Big Data clusters that are easy to use and 

available on demand as PaaS/SaaS services; 

- elastic scaling with cost-of-ownership control and 

strong site reliability (SRE) practices, ideally with clear 

SLAs; 

- high data quality, and thus trustworthy data lakes, 

for sound, analytics-driven decisions; 

- high processing speed at a very large scale; 

- reconfigurable cloud services to match changing 

tasks, without vendor lock-in; 

- a simple GUI so even less experienced users can 

configure and use cloud services. 

With this design, leveraging cloud technologies 

and high throughput from Apache Spark, Delta Lake 

offers the following advantages [24]: 

- ACID transactions. Typical data lakes run 

multiple pipelines that read and write concurrently, 

forcing engineers to ensure integrity without 

transactional support. Delta Lake brings ACID 

transactions to data lakes, delivering serializability and 

strong isolation [23]. 

- Scalable metadata processing. Given that Big 

Data’s scale can be large, Delta Lake uses Apache 

Spark’s distributed computing to process metadata, 

enabling work with extremely large tables [25]. 

- Data versioning and management. Delta Lake 

provides dataset snapshots, allowing access to and 

rollback to earlier versions for audit, recovery, or 

experiment reproduction. 

- Data format. All data are stored in the columnar 

Apache Parquet format, which enables efficient 

compression and encoding. 

- Unified batch/stream source and sink. A Delta 

Lake table acts as a batch table, streaming source, and 

sink. Streaming ingestion, batch processing of historical 

data, and interactive queries work immediately after 

deployment. 

- Schema enforcement. The system enforces 

declared structures, ensuring correct data types and 

required columns, preventing corruption from 

malformed inputs. 

- Schema evolution. Table schemas can change 

automatically without heavy DDL. 

- Change-history auditing. A transaction log 

records every data change. 
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- Updates and deletes. APIs in Scala/Java support 

update/delete operations, simplifying change-data 

capture and compliance with GDPR and CCPA. 

- Full Spark API compatibility. Existing Apache 

Spark data pipelines can run on Delta Lake with 

minimal changes. 

This architecture and its supporting tools are 

widely used by Big Data companies worldwide to 

power large-scale analytics with data science and 

machine learning methods. 

2 Proposed Architecture 

Thus, an information system for analyzing 

epidemic threats in emergencies, built on the Delta 

architecture, should be a multi-layer system that ensures 

reliable, scalable, and efficient data management and 

analytical model development. It combines the 

advantages of different data storage and processing 

approaches to address epidemiological monitoring and 

forecasting tasks optimally. 

An example architecture of an information system 

for analyzing epidemic threats in emergencies is shown 

in Fig. 4. 

The system consists of the following key 

components: 

- Data sources: diverse inputs, including laboratory 

information systems (LIS), electronic medical record 

(EMR) systems, disease surveillance systems, 

hospitalization databases, mortality records, satellite 

imagery, population mobility data, etc. Data may arrive 

in both structured and unstructured formats. 

- Data preparation and transformation layer: this 

layer converts raw data from the data lake into a 

structured format suitable for analysis. ETL/ELT 

processes (Extract–Transform–Load / Extract–Load–

Transform) and big-data tools (e.g., Spark) are used for 

cleaning, transformation, aggregation, and enrichment. 

The output is a processed, structured dataset stored in 

Delta Lake. 

- Delta Lake: the system’s core, providing reliable, 

ACID-compliant storage using the open Parquet 

standard. Delta Lake guarantees data consistency, 

supports change tracking, and enables batch and 

streaming modes. 

- Analytics and forecasting layer: this layer holds 

aggregated and prepared data for specific analytical 

tasks. It may include summary tables and model-ready 

datasets for machine learning. Data can be stored in a 

data warehouse (e.g., Snowflake, BigQuery) or in 

databases optimized for analytics. 

- Machine learning block: this layer contains 

trained models for forecasting disease spread, 

identifying risk factors, and detecting outbreaks. It may 

include regression models, time-series models, and 

neural networks. The model lifecycle is managed with 

MLOps tools. 
 

 

Fig. 4. Architecture of an information system for analyzing epidemic threats in emergencies 

 

This architecture enables a modern, flexible 

epidemiological monitoring and forecasting information 

system that can handle growing data volumes and 

complex analytical tasks. It supports comprehensive 

data analysis, accurate predictive modeling, and 

evidence-based decision making to prevent and control 

infectious disease outbreaks. 

It should be noted that the practical 

implementation of the Delta architecture is not trivial, 

even with powerful compute resources. In particular, 

Apache Spark Structured Streaming supports batch and 

streaming by splitting incoming data into configurable 

micro-batches that can be processed via the DataFrame 

and Dataset APIs. However, one must balance low 

latency with cost efficiency when operating many near-

real-time tables. Accordingly, when designing a 

Lakehouse with a Delta architecture, the following 

requirements should be defined: 

- the maximum permissible processing latency for 

each batch and streaming job; 

- the execution cadence of batch jobs and the data 

volume they handle; 

- the number of structured streams that should run 

in parallel within a single Apache Spark cluster to keep 

datasets current and to execute both batch and streaming 

workloads. 

3 Discussion 

The paper proposes a Delta Lake-based, multi-

layer “lakehouse” design to support near-real-time 
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epidemic intelligence. The design includes unified batch 

and streaming ingestion, ACID guarantees, versioning, 

and an MLOps layer for forecasting. The approach is 

consistent with recent evidence that lakehouse systems 

can combine scalable analytics with reproducible data 

management and audit trails, which are essential during 

emergencies. 

Choosing Delta Lake as the storage layer is 

defensible from both performance and governance 

standpoints [23]. Empirical studies of Delta Lake show 

that its transaction log and Parquet-based metadata 

compaction provide ACID properties, time travel, and 

fast operations at large table scales, capabilities that 

reduce data corruption risk during periods of high ingest 

and rapid schema change typical of emergencies [25]. 

The broader lakehouse model demonstrates competitive 

analytics performance while keeping data in open 

formats, easing integration with diverse sources that 

public health relies on. 

Interoperability at the edge of the system is equally 

important. The plan to integrate LIS/EMR and other 

clinical systems aligns with the growing production use 

of HL7 FHIR, including Bulk FHIR for population-level 

extracts, which has been shown to enable “push-button 

population health” and is now widely implemented [26]. 

These standards can shorten data latency and reduce 

custom interfaces during surges [27]. 

Nontraditional sources (e.g., wastewater, mobility, 

satellite) are well supported. Reviews from 2023-2025 

report that wastewater-based surveillance can anticipate 

community transmission and support targeted response 

when clinical testing lags, reinforcing the value of 

treating environmental feeds as first-class inputs in the 

pipeline [28, 29]. 

Emergency decisions are sensitive to data quality 

issues (completeness, timeliness, validity). The paper’s 

emphasis on schema enforcement, schema evolution, 

and versioning (snapshots) matches best practice: recent 

reviews of EHR and health information data quality 

highlight standardization, provenance, and auditable 

change logs as primary levers to mitigate bias and errors 

[30]. Delta Lake’s ACID semantics and time-travel 

address these needs by design. Adding routine quality 

checks at the silver tier (e.g., rule-based tests) would 

further strengthen the pipeline [31]. 

The bronze-silver-gold tiering also supports 

reproducible analytics. By freezing curated “silver” 

datasets and promoting only validated aggregates to 

“gold,” teams can rerun models against known 

snapshots and compare outputs across deployments, an 

approach recommended in recent public health 

informatics and surveillance reviews [32]. 

Operational value in emergencies depends on 

reducing the reporting delay between signal and 

decision. Studies in 2024-2025 show that nowcasting 

can shorten detection lags by days to weeks across 

different pathogens and settings [33]. A streaming 

feature pipeline that computes delay-aware indicators 

(e.g., right-truncated counts, wastewater load, ED visit 

signals) and writes them to “gold” tables for dashboards 

aligns with these findings and should be prioritized in 

the analytics layer [34]. 

The proposed architecture relies on Spark 

Structured Streaming (micro-batch). While micro-

batching is often sufficient for public health cadence 

(minutes to hours), teams should validate end-to-end 

latency against use cases that need tighter loops (e.g., 

facility capacity reporting) and consider sources that 

support true event processing where required. This 

trade-off is common in lakehouse deployments and 

should be documented in runbooks. 

Maintaining calibrated models during an 

emergency is a nontrivial challenge. Recent work in 

healthcare MLOps underscores continuous monitoring, 

drift detection, automated retraining, and governance 

(model cards, audit logs) as core practices for safe 

deployment [35]. Complementary studies show that 

distribution shift and concept drift are frequent during 

outbreaks and that explicit drift detection improves 

reliability [36]. The proposed MLOps block should 

include: monitored performance metrics with alerting; 

drift tests at input and prediction levels; scheduled or 

triggered retraining with data snapshots; and a registry 

with lineage to the exact silver snapshot, code commit, 

and hyperparameters. 

Ensembles and post-processing have recently been 

shown to improve nowcast accuracy and calibration in 

forecasting workflows [37]. Designing the analytics tier 

to support model ensembling and statistical post-

processing (e.g., bias correction, uncertainty 

quantification) will likely yield more stable operational 

signals. 

The system will manage identifiable health data 

during periods of heightened scrutiny. Reviews on 

implementing ML in healthcare stress that technical 

controls must be paired with organizational policies to 

ensure equity and accountability (access control, PHI 

minimization, robust audit) [38]. Where feasible, 

integrating de-identification and privacy-preserving 

analysis for secondary analytics (e.g., training with de-

identified or synthetic cohorts) can reduce risk without 

blocking urgent operational use cases. 

The proposed data source list can be expanded to 

support One Health operations. Recent reviews 

document practical gains in timeliness and coverage 

when human, animal, and environmental data are 

integrated under a shared framework [39]. Building 

interfaces that can ingest veterinary and environmental 

indicators using common schemas will make the 

platform more useful for zoonotic threats. 

Experience from lakehouse evaluations suggests 

that the combination of open columnar formats and 

ACID tables scales well for public sector workloads 

while preserving flexibility [40]. Still, teams should 

plan for capacity bursts during major events, backfills 

that recompute silver/gold tables from bronze with 

reproducible code, and cost controls for always-on 

streaming jobs. These points align with recent 

comparative studies of lakehouse storage systems and 

should be reflected in SRE playbooks. 

Two limitations are clear. First, data 

representativeness remains a risk: EHR, syndromic, and 

environmental signals each have biases that can lead to 

drift or spurious correlations, and mitigation requires 
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data quality monitoring and domain-informed feature 

design. Second, the micro-batch streaming model may 

not meet the lowest-latency requirements for certain 

facility-level metrics, and selective use of event 

streaming or vendor systems may be needed. 

Overall, the architecture advanced in the paper is 

well aligned with current evidence on scalable, 

auditable analytics for public health emergencies: a 

lakehouse foundation (for integrity and reproducibility), 

standards-based interoperability (for speed), and an 

MLOps-enabled analytics tier (for adaptive forecasting). 

Conclusions 

The study analyzed existing information system 

architectures used in data analytics and commerce, 

identifying three main types: Lambda, Kappa, and 

Delta. The structure of each architecture was examined 

in detail, and the suitability of each type, along with 

specific implementation tools, was assessed in light of 

the study’s objectives. 

The advantages of the Delta architecture include 

the following: systems built on this architecture scale 

readily to handle large data volumes; Delta Lake 

provides ACID transaction properties, ensuring data 

reliability and integrity; a range of analytical methods is 

supported; data processing workflows can be optimized; 

and Delta Lake enables data versioning, allowing 

changes to be tracked and earlier versions to be restored. 

The practical challenges of implementing systems based 

on this architecture are also described. 

An architecture for an information system aimed at 

analyzing epidemic threats in emergencies was 

developed. The proposed design effectively integrates 

diverse data sources, enabling comprehensive analysis 

of the epidemiological situation under resource and time 

constraints. Its modular structure allows adaptation to 

different types of emergencies and specific needs. 

Further research is needed to validate the system in real-

world conditions and to optimize individual 

components. In particular, a deeper analysis of 

forecasting algorithms and the development of more 

robust methods for data errors are required. 

Nevertheless, the architecture presented offers a 

promising approach to managing epidemic threats in 

emergencies and can improve the effectiveness of 

prevention and response efforts. 
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Багаторівнева архітектура Delta Lakehouse для епідеміологічного моніторингу та прогнозування 

в умовах надзвичайних ситуацій 

Ю. Л. Парфенюк, К. О. Базілевич, Є. С. Меняйлов, Д. І. Чумаченко 

Анотація .  Надзвичайні ситуації у сфері громадського здоров’я потребують швидкої та надійної аналітики, що 

поєднує сигнали реального часу з достовірними історичними даними. Відкриті, інтероперабельні платформи, які 

підтримують потокові та пакетні робочі процеси, дають змогу скоротити час від виявлення до реагування, зберігаючи 

якість даних і можливість аудиту. Мета: спроєктувати та обґрунтувати архітектуру інформаційної системи для аналізу 

епідемічних загроз в умовах надзвичайних ситуацій, яка є масштабованою, надійною та придатною до інтеграції з 

клінічними й некласичними джерелами даних. Методи: проведено структурований огляд трьох архітектур аналітики 

даних (Lambda, Kappa, Delta) та зіставлено їхні сильні сторони й обмеження з потребами нагляду під час криз. Виходячи 

з функціональних і нефункціональних вимог, визначено Lakehouse на базі Delta Lake із рівнями bronze–silver–gold, 

уніфікованим прийманням пакетних/потокових даних за допомогою Spark Structured Streaming, ACID-таблицями з 

можливістю «подорожі в часі» (time travel) та контролем схеми, а також аналітичним шаром, що підтримує 

прогнозування з використанням MLOps для моніторингу, перевірки дрейфу, перевчитування та відстежуваності 

(lineage). Результати: запропонована архітектура задовольняє ключові потреби надзвичайних умов щодо своєчасності, 

цілісності та відтворюваності завдяки ACID-транзакціям, версіонуванню наборів даних і курованим рівням; підтримує 

інтероперабельність на основі стандартів та підключення даних стічних вод, мобільності й інших екологічних джерел; 

забезпечує єдиний кодовий шлях для пакетної та потокової обробки, зменшуючи тягар узгодження; визначає операційні 

межі між затримкою та вартістю під час роботи з багатьма таблицями, що оновлюються майже в реальному часі. Окреслено 

практичні підходи до перевірок якості на «срібному» рівні, правил промоції до «золотого» рівня та управління моделями. 

Висновки: Lakehouse на основі Delta пропонує чіткий шлях до платформи нагляду, готової до роботи в надзвичайних 

умовах, яка масштабується разом зі зростанням даних, інтегрує різнорідні джерела та підтримує надійне прогнозування. 

Наступні кроки включають пілотне розгортання з партнерами у сфері громадського здоров’я, вимірювання фактичних 

затримок і вартості, а також проспективну валідацію прогнозування та оповіщення в реальних умовах. 

Ключові  слова:  епідеміологічний нагляд; аналітика спалахів; Lakehouse; Delta Lake; машинне навчання. 
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