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A MULTI-LAYER DELTA LAKEHOUSE FOR EPIDEMIOLOGICAL MONITORING

AND FORECASTING UNDER EMERGENCIES

Abstract. Public health emergencies demand fast, dependable analytics that combine real-time signals with trustworthy
historical data. Open, interoperable platforms that support streaming and batch workflows can shorten the time from
detection to action while preserving data quality and auditability. Aim: To design and justify an information system
architecture for analyzing epidemic threats under emergency conditions that is scalable, reliable, and fit for integration with
clinical and non-traditional data sources. Methods: We conducted a structured review of three data analytics architectures
(Lambda, Kappa, Delta) and mapped their strengths and limits to crisis surveillance needs. Based on functional and non-
functional requirements, we specified a Delta Lake—based lakehouse with bronze-silver-gold tiers, unified batch/stream
ingestion with Spark Structured Streaming, ACID tables with time travel and schema control, and an analytics layer that
supports forecasting with MLOps for monitoring, drift checks, retraining, and lineage. Results: The proposed architecture
meets core emergency needs for timeliness, integrity, and reproducibility through ACID transactions, versioned datasets,
and curated tiers; supports standards-based interoperability and the inclusion of wastewater, mobility, and other
environmental feeds; provides a single code path for batch and streaming to reduce reconciliation burden; and sets
operational guardrails for latency versus cost when running many near-real-time tables. We outline practical considerations
for quality checks in the silver tier, promotion rules to gold, and model governance. Conclusions: A Delta-based lakehouse
offers a clear path to an emergency-ready surveillance platform that scales with data growth, integrates heterogeneous
sources, and supports reliable forecasting. The next steps are a pilot deployment with public health partners, live latency

and cost measurements, and prospective validation of forecasting and alerting in real-world settings.
Keywords: epidemic surveillance; outbreak analytics; Lakehouse; Delta lake; machine learning.

Introduction

In the context of globalization and the rising threat
of infectious disease outbreaks, timely analysis and
processing of epidemiological surveillance data are
critical, particularly  during emergencies. Early
detection, assessment, and response to these threats are
essential to prevent large-scale crises, protect population
health, and reduce socioeconomic impacts [1].

The relevance of advanced information systems is
especially pronounced during emergencies, when
surveillance must pivot from periodic reporting to
continuous, decision-grade intelligence. The World
Health Organization’s Early Warning, Alert and
Response (EWAR) guidance and its “EWARS in a box”
toolkit illustrate how rapidly deployable platforms
shorten the interval from signal detection to public
health action, including in conflict and post-disaster
settings [2]. Deployments can be configured within days
to restore core outbreak detection and alerting capacity
when routine systems are disrupted.

Open-source  epidemic intelligence  further
increases situational awareness when formal reporting is
delayed. WHO’s Epidemic Intelligence from Open
Sources (EIOS) and regional implementations have
shown that triaging large volumes of media and
nontraditional data can surface actionable signals early
[3]. A recent evaluation in the WHO African Region
reported measurable performance in early detection [4].
These results support integrating EIOS-style pipelines
into emergency operations centers to complement
indicator-based surveillance.

Environmental (“wastewater-based’) surveillance has
matured into a practical early-warning layer well suited to

emergencies, mass gatherings, and settings with
constrained clinical testing. Syntheses from 2024-2025
show wastewater measurements can anticipate community
transmission, including detection among asymptomatic
populations, and guide targeted interventions [5]. National
academies and  systematic  reviews  recommend
institutionalizing wastewater surveillance for both endemic
and emerging pathogens [6].

Interoperable data exchange is critical for surge
decision-making. Recent public-health informatics work
highlights HL7 FHIR-based specifications (e.g.,
SANER and the US Situational Awareness Framework
for Reporting) that automate hospital capacity,
respiratory disease metrics, and other feeds to give
authorities near-real-time dashboards [7]. Peer-reviewed
studies and federal progress reports indicate growing
production use of FHIR (including Bulk FHIR for
population-level extracts), with more states automating
bed-capacity and respiratory reporting as part of data-
modernization initiatives [8]. These capabilities are
directly relevant during acute events.

Dedicated early-warning networks remain a
backbone of outbreak control in humanitarian and
conflict emergencies. Recent analyses of Syria’s early-
warning systems and digital health assessments from
Yemen emphasize that lightweight, resilient architectures
and streamlined reporting and alert thresholds sustain
detection and response despite infrastructure damage and
workforce constraints [9, 10]. These findings reinforce
the value of deployable, low-bandwidth solutions that
preserve timeliness under adverse conditions.

Multi-sector “One Health” integration strengthens
emergency readiness by linking human, animal, and
environmental data, which is essential given the
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zoonaotic profile of many emerging threats [11]. Recent
reviews and frameworks document timeliness gains and
practical pathways for data sharing across sectors, and
call for embedding One Health analytics within routine
and emergency surveillance architectures to manage
cross-border and climate-sensitive risks [12].

Effective epidemic control requires rapid response
and predictive models built on in-depth analysis of large
volumes of heterogeneous data using machine learning
and artificial intelligence [13]. There is a need to
develop systems capable of real-time data processing
[14]. Both accuracy and processing speed are critical for
timely action. Historical data must be incorporated to
improve forecasting accuracy, which requires the
system to handle both streaming data arriving in real
time and large stores of historical data [15].

A literature review shows that such information
systems are widely used not only in the Big Data
industry but also across the broader economy and
commerce and in many public sector organizations.

An information system for epidemiological data
analysis and processing must meet requirements that
can be grouped into several categories.

1. Functional requirements:

* Data collection from multiple sources: the system
must integrate with diverse data sources, including
laboratory information systems (LIS), electronic medical
record (EMR) systems, disease surveillance systems,
hospitalization databases, mortality data, and other
relevant sources [16]. This requires support for various
data formats and exchange protocols (e.g., HL7, FHIR).

* Data storage and management: the system must
provide reliable storage for large volumes of structured
and unstructured data (text descriptions, medical
images), effective version control, and assurance of data
integrity. The system must be scalable to handle
growing data volumes.

» Data processing and analysis: the system must
offer tools for data cleaning, transformation, and
aggregation, statistical analysis, construction of
epidemiological models, and application of machine
learning methods for forecasting and outbreak detection.

* Data visualization: the system must provide tools
to visualize data in multiple formats (charts, maps,
tables) to support interpreting analytical results.
Visualizations should be interactive and configurable.

* Reporting and alerts: the system must generate
reports on user requests and automatically issue alerts
about potential outbreaks based on predefined
thresholds.

» User and access management: the system must
enforce role-based access to data and system functions,
ensuring data confidentiality and security.

2. Non-functional requirements:

* Reliability and availability: the system must be
reliable and available 24/7. This may require data
redundancy and a fault-tolerant architecture [14].

e Security: the system must ensure the
confidentiality, integrity, and availability of data in line
with personal data protection laws (e.g., GDPR,
HIPAA). Protection against unauthorized access,
modification, and data destruction must be provided.

* Scalability: the system must handle growing data
volumes and increase performance.

* Performance: the system must support fast query
processing and report generation.

« Usability: the system must be intuitive and
convenient  for  healthcare  professionals and
epidemiologists with varying levels of technical
training.

* Integration: the system must integrate smoothly
with existing healthcare information systems.

* Support: technical support and user training must
be provided.

Thus, the main aim of this study is to develop an
architecture for an information system to analyze
epidemic threats under emergency conditions.

The current research is part of a comprehensive
information system for assessing the impact of
emergencies on the spread of infectious diseases [17].

1 Architectures Review

To implement information systems of this kind,
the first task is to choose the data processing system's
architecture. The most appropriate types are the
Lambda, Kappa, and Delta architectures [18].

Each of these architectures has features that must
be considered when choosing. The system should be
planned for the steady growth in the volume and data
types to be processed. The costs of building and
maintaining such systems are also important factors.

We consider several approaches to
processing.

The Lambda architecture is a data-processing
system composed of two pipelines [19]. The first is a
traditional batch pipeline for accurate processing of
historical (batch) data, and the second is a streaming
pipeline that can process data quickly in real time. A
system of this kind includes three layers:

- Batch layer: responsible for batch processing of
data.

- Speed layer: responsible for real-time data
processing.

- Serving layer: responsible for handling queries
and returning results.

A structural diagram of data processing based on
the Lambda architecture is shown in Fig. 1.

Despite combining batch and stream processing
methods, implementing this architecture entails several
challenges:

- high maintenance and support costs;

- the need to develop two pipelines separately;

- data-reconciliation difficulties due to different
computation engines;

- different storage formats for streaming and batch
processing.

The most significant drawbacks for this study are
batch processing latency and two separate data
processing pipelines. Because streaming outputs may be
approximate, they are refined using results produced by
batch processing. When real-time monitoring s
required, this delay can become a serious issue, and its
mitigation depends directly on data volume and the
resources available for processing.

data
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Fig. 1. Structural diagram of data processing based on the Lambda architecture

Maintaining two separate, and, crucially, different,
pipelines also imposes a strict requirement for data
consistency, which, given their different origins and
processing logic, can create substantial operational and
maintenance complexity.

The Kappa architecture avoids the main drawback
of the Lambda approach, namely, the existence of two
data processing systems and the need to support them
separately [20]. In Kappa, stream analytics is performed

Real-time layer

within a dedicated stream-processing system, and the
key distinction from Lambda is the absence of a
separate batch analytics system. All computations are
executed in the streaming system. Under this design,
historical (batch) data are sent from storage to a
streaming bus and consumed by the stream-processing
analytics engine.

A structural diagram of data processing based on
the Kappa architecture is shown in Fig. 2.
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Fig. 2. Structural diagram of data processing based on the Kappa architecture

This approach eliminates most drawbacks inherent
in the Lambda architecture because a single system
performs both streaming and analytical processing.
There is no need to maintain two different systems, and
the problem of data inconsistency does not arise.

However, a limitation of this architecture is the
need to pass analytical data for processing through the
streaming data bus. This requires copying all analytical
data and loading it into the event-stream bus. Given the
large volumes of these data, this can lead to noticeable
delays, inefficient resource use, and increased
complexity in administering the streaming bus under
high data throughput.

The limitations of the Lambda and Kappa
architectures motivated the development of a new type,
the Delta architecture [21]. Like Kappa, it unifies batch
and streaming data in a single processing pipeline with
one codebase. The Delta architecture can be viewed as a
lightweight evolution of the Kappa model without the
drawbacks of the Lambda approach. It was designed to
avoid synchronization constraints in existing solutions
and, importantly, enable on-the-fly data enrichment
during processing. The initial goal was to reduce data

processing complexity for application developers by
providing ready-to-use outputs.

A structural diagram of data processing based on
the Delta architecture is shown in Fig. 3.

The Delta architecture differs in structure from the
architectures discussed above. As data enters the
system, they are gradually sorted and enriched.

Standard query mechanisms and processing
methods can be applied at any layer to move data
between layers. The core idea is to distinguish data by
quality and to build higher-level datasets by cleaning,
enriching, and aggregating data from lower levels.

The Delta architecture divides data work into three
storage tiers: bronze, silver, and gold. These conceptual,
logical layers help classify data maturity and readiness
for querying and processing.

Bronze tables ingest raw data and serve as the
entry point for subsequent loading into data lake
storage. Data are accepted in their original form and
format, then converted to Apache Parquet for
processing.

After initial processing, the system routes the data
to the next layer using Apache Spark.
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Fig. 3. Structural diagram of data processing based on the Delta architecture

Silver tables store data in an optimized state,
which makes them usable for business analytics and
data processing.

Raw inputs from the previous layer are filtered,
cleaned, transformed, joined, and aggregated into
curated silver datasets.

Where applicable, Delta Engine can be used as a
consistent compute module when Azure Databricks is
the base service for these tasks. For further analysis,
suitable programming languages, such as SQL, Python,
R, or Scala, may be used. DevOps processes and
temporary compute clusters can be employed for
specific jobs.

Gold tables contain structured and enriched
datasets ready for analytics or reporting. For data
analysis, one may use the most suitable language or
toolset, such as Koalas, SQL, Power BI, Excel, or many
other tools.

One of the most common implementation options
relies on open-source software. Delta Lake is an open-
source storage layer that brings reliability to data lakes
[22], which is crucial when data volumes are large and
update/processing rates are high. Delta Lake supports
ACID transactions [23], scales metadata handling, and
unifies streaming and batch data during processing.
Delta Lake runs on top of an existing data lake (Apache
Hadoop HDFS, Amazon S3, or Azure Data Lake
Storage) and is fully compatible with all Apache Spark
APIs.

Performance limits for compute operations on
HDFS are only one reason Delta Lake emerged. In
principle, batch and stream processing can be built
within a Lambda architecture. Additional drivers for the
rise and evolution of Delta Lake include the
digitalization of the economy and government
processes, the spread of hybrid and cloud data
warehouses (DWH), and the service-oriented model for
Big Data technologies. Using Apache Hadoop (Hadoop-
as-a-Service) as an example, convenience comes with
challenges:

- some core Hadoop services (e.g., YARN, HDFS)
were not originally designed for cloud use, having been
built for on-premises environments with specific
architectural traits and constraints;

- maintenance and operations demand significant
time and resources.

These issues become more pressing as workloads

move to the cloud and system requirements change over
time. It is therefore desirable that such systems provide:

- Big Data clusters that are easy to use and
available on demand as PaaS/SaasS services;

- elastic scaling with cost-of-ownership control and
strong site reliability (SRE) practices, ideally with clear
SLAs;

- high data quality, and thus trustworthy data lakes,
for sound, analytics-driven decisions;

- high processing speed at a very large scale;

- reconfigurable cloud services to match changing
tasks, without vendor lock-in;

- a simple GUI so even less experienced users can
configure and use cloud services.

With this design, leveraging cloud technologies
and high throughput from Apache Spark, Delta Lake
offers the following advantages [24]:

- ACID transactions. Typical data lakes run
multiple pipelines that read and write concurrently,
forcing engineers to ensure integrity without
transactional support. Delta Lake brings ACID
transactions to data lakes, delivering serializability and
strong isolation [23].

- Scalable metadata processing. Given that Big
Data’s scale can be large, Delta Lake uses Apache
Spark’s distributed computing to process metadata,
enabling work with extremely large tables [25].

- Data versioning and management. Delta Lake
provides dataset snapshots, allowing access to and
rollback to earlier versions for audit, recovery, or
experiment reproduction.

- Data format. All data are stored in the columnar
Apache Parquet format, which enables efficient
compression and encoding.

- Unified batch/stream source and sink. A Delta
Lake table acts as a batch table, streaming source, and
sink. Streaming ingestion, batch processing of historical
data, and interactive queries work immediately after
deployment.

- Schema enforcement. The system enforces
declared structures, ensuring correct data types and
required columns, preventing corruption  from
malformed inputs.

- Schema evolution. Table schemas can change
automatically without heavy DDL.

- Change-history auditing. A transaction log
records every data change.
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- Updates and deletes. APIs in Scala/Java support
update/delete  operations, simplifying change-data
capture and compliance with GDPR and CCPA.

- Full Spark API compatibility. Existing Apache
Spark data pipelines can run on Delta Lake with
minimal changes.

This architecture and its supporting tools are
widely used by Big Data companies worldwide to
power large-scale analytics with data science and
machine learning methods.

2 Proposed Architecture

Thus, an information system for analyzing
epidemic threats in emergencies, built on the Delta
architecture, should be a multi-layer system that ensures
reliable, scalable, and efficient data management and
analytical model development. It combines the
advantages of different data storage and processing
approaches to address epidemiological monitoring and
forecasting tasks optimally.

An example architecture of an information system
for analyzing epidemic threats in emergencies is shown
in Fig. 4.

The system consists of the following key
components:

- Data sources: diverse inputs, including laboratory
information systems (LIS), electronic medical record
(EMR) systems, disease surveillance  systems,

Data sources Prepare and transform

hospitalization databases, mortality records, satellite
imagery, population mobility data, etc. Data may arrive
in both structured and unstructured formats.

- Data preparation and transformation layer: this
layer converts raw data from the data lake into a
structured format suitable for analysis. ETL/ELT
processes (Extract-Transform-Load / Extract-Load-
Transform) and big-data tools (e.g., Spark) are used for
cleaning, transformation, aggregation, and enrichment.
The output is a processed, structured dataset stored in
Delta Lake.

- Delta Lake: the system’s core, providing reliable,
ACID-compliant storage using the open Parquet
standard. Delta Lake guarantees data consistency,
supports change tracking, and enables batch and
streaming modes.

- Analytics and forecasting layer: this layer holds
aggregated and prepared data for specific analytical
tasks. It may include summary tables and model-ready
datasets for machine learning. Data can be stored in a
data warehouse (e.g., Snowflake, BigQuery) or in
databases optimized for analytics.

- Machine learning block: this layer contains
trained models for forecasting disease spread,
identifying risk factors, and detecting outbreaks. It may
include regression models, time-series models, and
neural networks. The model lifecycle is managed with
MLOps tools.

Analitics and forecasting

—

Spark jobs and data flow ‘ Machlme
‘ learning

— ,

Data base Delta Lake

B

Files
Bronze

Silver

Analitics
endpaint

Gold

Fig. 4. Architecture of an information system for analyzing epidemic threats in emergencies

This architecture enables a modern, flexible
epidemiological monitoring and forecasting information
system that can handle growing data volumes and
complex analytical tasks. It supports comprehensive
data analysis, accurate predictive modeling, and
evidence-based decision making to prevent and control
infectious disease outbreaks.

It should be noted that the practical
implementation of the Delta architecture is not trivial,
even with powerful compute resources. In particular,
Apache Spark Structured Streaming supports batch and
streaming by splitting incoming data into configurable
micro-batches that can be processed via the DataFrame
and Dataset APIs. However, one must balance low
latency with cost efficiency when operating many near-

real-time tables. Accordingly, when designing a
Lakehouse with a Delta architecture, the following
requirements should be defined:

- the maximum permissible processing latency for
each batch and streaming job;

- the execution cadence of batch jobs and the data
volume they handle;

- the number of structured streams that should run
in parallel within a single Apache Spark cluster to keep
datasets current and to execute both batch and streaming
workloads.

3 Discussion

The paper proposes a Delta Lake-based, multi-
layer “lakehouse” design to support near-real-time
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epidemic intelligence. The design includes unified batch
and streaming ingestion, ACID guarantees, versioning,
and an MLOps layer for forecasting. The approach is
consistent with recent evidence that lakehouse systems
can combine scalable analytics with reproducible data
management and audit trails, which are essential during
emergencies.

Choosing Delta Lake as the storage layer is
defensible from both performance and governance
standpoints [23]. Empirical studies of Delta Lake show
that its transaction log and Parquet-based metadata
compaction provide ACID properties, time travel, and
fast operations at large table scales, capabilities that
reduce data corruption risk during periods of high ingest
and rapid schema change typical of emergencies [25].
The broader lakehouse model demonstrates competitive
analytics performance while keeping data in open
formats, easing integration with diverse sources that
public health relies on.

Interoperability at the edge of the system is equally
important. The plan to integrate LIS/EMR and other
clinical systems aligns with the growing production use
of HL7 FHIR, including Bulk FHIR for population-level
extracts, which has been shown to enable “push-button
population health” and is now widely implemented [26].
These standards can shorten data latency and reduce
custom interfaces during surges [27].

Nontraditional sources (e.g., wastewater, mobility,
satellite) are well supported. Reviews from 2023-2025
report that wastewater-based surveillance can anticipate
community transmission and support targeted response
when clinical testing lags, reinforcing the value of
treating environmental feeds as first-class inputs in the
pipeline [28, 29].

Emergency decisions are sensitive to data quality
issues (completeness, timeliness, validity). The paper’s
emphasis on schema enforcement, schema evolution,
and versioning (snapshots) matches best practice: recent
reviews of EHR and health information data quality
highlight standardization, provenance, and auditable
change logs as primary levers to mitigate bias and errors
[30]. Delta Lake’s ACID semantics and time-travel
address these needs by design. Adding routine quality
checks at the silver tier (e.g., rule-based tests) would
further strengthen the pipeline [31].

The bronze-silver-gold tiering also supports
reproducible analytics. By freezing curated “silver”
datasets and promoting only validated aggregates to
“gold,” teams can rerun models against known
snapshots and compare outputs across deployments, an
approach recommended in recent public health
informatics and surveillance reviews [32].

Operational value in emergencies depends on
reducing the reporting delay between signal and
decision. Studies in 2024-2025 show that nowcasting
can shorten detection lags by days to weeks across
different pathogens and settings [33]. A streaming
feature pipeline that computes delay-aware indicators
(e.g., right-truncated counts, wastewater load, ED visit
signals) and writes them to “gold” tables for dashboards
aligns with these findings and should be prioritized in
the analytics layer [34].

The proposed architecture relies on Spark
Structured Streaming (micro-batch). While micro-
batching is often sufficient for public health cadence
(minutes to hours), teams should validate end-to-end
latency against use cases that need tighter loops (e.g.,
facility capacity reporting) and consider sources that
support true event processing where required. This
trade-off is common in lakehouse deployments and
should be documented in runbooks.

Maintaining  calibrated models during an
emergency is a nontrivial challenge. Recent work in
healthcare MLOps underscores continuous monitoring,
drift detection, automated retraining, and governance
(model cards, audit logs) as core practices for safe
deployment [35]. Complementary studies show that
distribution shift and concept drift are frequent during
outbreaks and that explicit drift detection improves
reliability [36]. The proposed MLOps block should
include: monitored performance metrics with alerting;
drift tests at input and prediction levels; scheduled or
triggered retraining with data snapshots; and a registry
with lineage to the exact silver snapshot, code commit,
and hyperparameters.

Ensembles and post-processing have recently been
shown to improve nowcast accuracy and calibration in
forecasting workflows [37]. Designing the analytics tier
to support model ensembling and statistical post-

processing (e.g., bias  correction, uncertainty
quantification) will likely yield more stable operational
signals.

The system will manage identifiable health data
during periods of heightened scrutiny. Reviews on
implementing ML in healthcare stress that technical
controls must be paired with organizational policies to
ensure equity and accountability (access control, PHI
minimization, robust audit) [38]. Where feasible,
integrating de-identification and privacy-preserving
analysis for secondary analytics (e.g., training with de-
identified or synthetic cohorts) can reduce risk without
blocking urgent operational use cases.

The proposed data source list can be expanded to
support One Health operations. Recent reviews
document practical gains in timeliness and coverage
when human, animal, and environmental data are
integrated under a shared framework [39]. Building
interfaces that can ingest veterinary and environmental
indicators using common schemas will make the
platform more useful for zoonotic threats.

Experience from lakehouse evaluations suggests
that the combination of open columnar formats and
ACID tables scales well for public sector workloads
while preserving flexibility [40]. Still, teams should
plan for capacity bursts during major events, backfills
that recompute silver/gold tables from bronze with
reproducible code, and cost controls for always-on
streaming jobs. These points align with recent
comparative studies of lakehouse storage systems and
should be reflected in SRE playbooks.

Two limitations are clear. First, data
representativeness remains a risk: EHR, syndromic, and
environmental signals each have biases that can lead to
drift or spurious correlations, and mitigation requires
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data quality monitoring and domain-informed feature
design. Second, the micro-batch streaming model may
not meet the lowest-latency requirements for certain
facility-level metrics, and selective use of event
streaming or vendor systems may be needed.

Overall, the architecture advanced in the paper is
well aligned with current evidence on scalable,
auditable analytics for public health emergencies: a
lakehouse foundation (for integrity and reproducibility),
standards-based interoperability (for speed), and an
MLOps-enabled analytics tier (for adaptive forecasting).

Conclusions

The study analyzed existing information system
architectures used in data analytics and commerce,
identifying three main types: Lambda, Kappa, and
Delta. The structure of each architecture was examined
in detail, and the suitability of each type, along with
specific implementation tools, was assessed in light of
the study’s objectives.

The advantages of the Delta architecture include
the following: systems built on this architecture scale
readily to handle large data volumes; Delta Lake
provides ACID transaction properties, ensuring data
reliability and integrity; a range of analytical methods is
supported; data processing workflows can be optimized,;
and Delta Lake enables data versioning, allowing

changes to be tracked and earlier versions to be restored.
The practical challenges of implementing systems based
on this architecture are also described.

An architecture for an information system aimed at
analyzing epidemic threats in emergencies was
developed. The proposed design effectively integrates
diverse data sources, enabling comprehensive analysis
of the epidemiological situation under resource and time
constraints. Its modular structure allows adaptation to
different types of emergencies and specific needs.
Further research is needed to validate the system in real-
world conditions and to optimize individual
components. In particular, a deeper analysis of
forecasting algorithms and the development of more
robust methods for data errors are required.
Nevertheless, the architecture presented offers a
promising approach to managing epidemic threats in
emergencies and can improve the effectiveness of
prevention and response efforts.
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BararopiBHeBa apxiTtekrypa Delta Lakehouse 1/ enigemiosiorivuHoro MoHiTOpMHIy Ta NIPOrHO3yBaHHS
B YMOBAaX HaJ3BUYANHUX cUTyalii

10. JI. ITapdentok, K. O. bazinesuy, €. C. Mensiinos, /1. I. YymaueHko

Anoranis. Hag3suuaiini cutyauii y cdepi rpoMancbkoro 370poB’s HOTPeOYIOTh MIBUAKOT Ta HaAIHHOI aHAJITUKH, IO
MOEHY€E CUTHAIM PEaNbHOTO 4Yacy 3 JOCTOBIpHHMH ICTOPMYHHMH NaHWUMH. Bigkputi, iHTeporepabenbHi IIaThopMmH, sKi
MATPUMYIOTH TIOTOKOBI Ta MakeTHi po0Oodi MpoIecH, Jar0Th 3MOTY CKOPOTHTH 4ac BiJ BUSBICHHS IO pearyBaHHs, 30epirarodn
SIKICTh TAaHWUX 1 MOKJIMBICTh ayAnuTy. MeTa: CIIpOEKTYBaTH Ta OOTPYHTYBATH apXiTeKTypy iH(popMamiifHOT cuCTeMU IS aHaJi3y
€MiIEMIYHUX 3arpo3 B yMOBaxX HaJI3BUYAHHHUX CUTYyalliid, fKka € MacmTaboBaHOK, HAIIHOI Ta MPHUIATHOK IO iHTerpamii 3
KITIHIYHUMH # HEKJIAaCHYHMMHU JDKepenamMy JaHux. MeToau: MPOBEICHO CTPYKTYPOBaHMI OV TPHOX apXiTeKTyp aHAITHKH
nanux (Lambda, Kappa, Delta) Ta 3icTaBneHo ixHi CHIbHI CTOPOHHM i 0OMeXeHHs 3 ToTpedaMH Harjsay MiJ 4ac Kpu3. Buxoasuu
3 (QyHKI[{OHATBHUX 1 HeQYHKI[IOHAJTFHUX BHMOT, BHU3HaueHO Lakehouse na 6asi Delta Lake i3 piBusmu bronze—silver—gold,
yHi(iKOBaHUM NPHUIMaHHIM MaKeTHUX/TIOTOKOBUX JaHWX 3a jgomomororo Spark Structured Streaming, ACID-tabiuisiMu 3
MOJKIIUBICTIO «IMOJOPOXKI B dHaci» (time travel) Ta KOHTpONEM CXEMH, a TaKOX aHATITHYHAM I[IapoM, IO MiATPHMYE
MIPOTHO3YBaHHS 3 BHUKOpUCTaHHIM MLOps mias MOHITOpHMHTY, IepeBipkH apeiidy, HepeBUNTYyBaHHS Ta BiJICTEKYBAaHOCTI
(lineage). PesynpraTu: 3amporiOHOBaHA apXiTEKTypa 3aJ0BOJBHSIE KIIOYOBI MOTPEOHW HAI3BHYAHUX YMOB IOJO CBOEYACHOCTI,
IiicHOCTI Ta BigTBOpIOBaHOCTI 3aBAskH ACID-TpaH3aKIlisM, BepCiOHyBaHHIO HAOOpIB JAHUX i KypOBaHHM pIBHSM; MiATPHMYE
iHTepoIepadebHICT, HA OCHOBI CTaHIAPTIB Ta MiAKIIOYCHHS JaHUX CTIYHHX BOJ, MOOLTFHOCTI W IHIIMX E€KOJOTIYHUX JDKEpPEI;
3a0e3neuye €JUHUN KOJOBHIl LUIAX ISl MAKETHOI Ta MOTOKOBOI 0OPOOKH, 3MEHIIYIOUH TArap y3ro/DKEHHS; BU3HAYae omnepaniiiHi
MeXi MK 3aTPHMKOIO Ta BapTICTIO ITiJ 4ac poOOTH 3 GaraTbMa TaOJIUIISIMH, 1[0 OHOBIIOIOThCS Malke B peasbHOMY daci. OKpecieHo
NPaKTHYHI MiAX0IH O MEePeBipOK SIKOCTI Ha «CPiGHOMY» PiBHI, MPABHJI MIPOMOLIii 10 «30J0TOr0» PIBHS Ta YIPaBIiHHSI MOJIEIIMH.
BucnoBkm: Lakehouse Ha ocnoBi Delta mpononye 4iTkuii nuisix a0 miatopmy Harjsiay, TOTOBOI A0 pOOOTH B HAI3BHYAMHHX
YMOBaX, sKa MacITaOyeThCsl pa3oM 31 3pOCTaHHSIM JaHUX, IHTErpye Pi3HOPIOHI Kepena Ta MITPUMYE HaJiifHe MPOTHO3yBaHHS.
HactymHi Kpoky BKIJIFOYAIOTH MUIOTHE PO3TOPTAHHS 3 IMapTHEPaMH y cdepi TPOMAICHKOrO 3[0pOB’Sl, BUMIPIOBAaHHS (aKTHIHHX
3aTPHUMOK 1 BAPTOCTI, @ TAKOXK MIPOCHEKTHBHY BaJIiJallilo IPOTHO3YBAHHS Ta OMOBIIIEHHS B PEaIbHUX YMOBAX.

Kawuyosi ciaoBa: emigemionoriunuii Harsa, ananituka cnanaxis; Lakehouse; Delta Lake; mammnne naBuanms.
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