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DETERMINATION OF PARAMETER-LIMITED ESTIMATES OF EXTREME VALUE

DISTRIBUTIONS AND MODELING OF CONDITIONS FOR THEIR OCCURRENCE
USING STATGRAPHICS AND MATLAB

Abstract. Research objective is to estimate the parameters of extreme value distribution laws constrained by parameters
using the maximum likelihood method and to model the conditions of their occurrence with STATGRAPHICS and MATLAB
tools. The subject of the study includes Anscombe's quartet and the first (Gumbel), second (Fréchet), and third (Weibull)
laws of extreme value distribution. The research method involves numerical methods for solving systems of equations
obtained by the maximum likelihood method, as well as statistical modeling techniques. The results of research show,
through the example of statistical data analysis of Anscombe's quartet, the necessity of verifying the correspondence between
the physical content of the studied processes and the applicability of extreme value distribution laws for their analysis. The
linear regression equation, which corresponds to all possible combinations of this quartet’s data, is not optimal according to the
criterion of maximum coefficient of determination. Using this criterion, it has been established that different data pairs have
different nonlinear regression equations. Ignoring this fact may lead to errors in managing the processes they model. It has
been shown that the data presented in Anscombe's quartet follow Gumbel's law, although the construction scheme of
Anscombe's quartet does not correspond to the conditions of its occurrence. The limiting laws of extreme value distribution are
presented in a form convenient for practical application in the design of engineering structures with constraints on the
parameters of these distributions, caused by the specifics of the design. Parameter estites of extreme value distribution laws
were performed using the maximum likelihood method. A numerical method for solving the corresponding systems of
equations was considered. For modeling the scheme of extreme value occurrence, a matrix of random variables was generated,
with twelve columns simulating monthly observations of a certain geophysical phenomenon, and one hundred rows
representing a century of observations. The possible distributions of the elements of these matrices (initial distributions) were
assumed as follows: double exponential distribution, Laplace distribution, lognormal distribution, Rayleigh distribution,
normal distribution, Champernowne distribution, maximum extreme value distribution, minimum extreme value distribution,
Birnbaum-Saunders distribution, Burr Type XII distribution, generalized extreme value distribution, inverse Gaussian
distribution, Weibull distribution. The conditions of invariance of the extreme statistics distribution laws concerning the initial
distributions were confirmed in only 12 out of 48 possible cases when modeled with STATGRAPHICS, and only in 5 out of
18 possible cases when modeled with MATLAB. The modeling results revealed a significant difference between the actual and
theoretically possible extreme value distribution laws, which may be due to the peculiarities of the random number generation
algorithms and the choice of the best-fit distributions used in STATGRAPHICS and MATLAB systems.

Keywords: Anscombe's quartet; extreme value distribution laws; maximum likelihood method; statistical modeling
method.

Introduction sequence only if the following condition holds:

(mx) (mx)
Formulation of the problem. Let us assume that X" 2% (1+4). ©)
we have been given n finite sequences of equally For example, the rules of weightlifting

distributed random variables:

competitions state: “A record is a lift that exceeds the
previous record by a minimum of one (1) kg” [13].
Sequences of types (1), (2) are used to solve problems
in fields such as meteorology, hydrology, actuarial
mathematics, and when determining the load limits for

M

For each such sequence, we define the quantities:

Yi = (Yie: Yige oo Yijoo Yim ) i =100 .

Xi(mn) = MiN(Yig, Yigooo Vi j oo Yim); engineering structures. Some of these problem-solving
() i ) (2) methods are described in detail in [3]. The main
X :miax(yil,yi2,...,yij,...,yim), i=1n physical meaning of this approach is based on the

These quantities are usually called the extremes of
sequences of the form (1). Their probabilistic and
statistical properties are studied in the theory of records
and extreme value statistics [1,2,3,19]. We will
explore the differences in these approaches using a
finite set x{™. To determine the statistical properties of
extreme values, the order of the elements in the
equations (1), (2) does not matter. In record theory, the
values x™ are arranged in ascending order, i.e.,
XiM™<xi.1 ™), with the element x.+1™ entering the

assumption that a random variable can take any value
with a non-zero probability. Let us assume that the
distribution functions of the quantities (2) are known
and equal to ®™(x) and ®™)(x), respectively. It is
shown in [4, p. 360] that the distribution function of the
minimum value ®™(x) and the distribution function of
the maximum value ®™)(x) are related by the equation:

(™ (x) =1- (™) (). )

The density functions of these distributions p™(x)
and ¢ ™)(x)
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o™ (x) = o™ (=x) . )

It should be noted that the application of each of
these methods should be preceded by a thorough check
of their correspondence to the physical essence of the
studied process. To illustrate this point, let us consider
the results of a statistical analysis of the so-called
Anscombe's quartet. In 1973, F. Anscombe in [5]
presented an artificial example, later named the
“Anscombe's quartet”. The data from this example is
shown in Table 1. The graphs corresponding to this data
are shown in Fig. 1-4.

Table 1 — Numerical Data of Anscombe's Quartet

Variables
X1...Xx3 X4 y1 yz y3 y4
10 8 8,04 9,14 7,46 6,58
8 8 6,95 8,14 6,77 5,76
13 8 7,58 8,74 12,74 7,71
9 8 8,81 8,77 7,11 8,84
11 8 8,33 9,26 7,81 8,47
14 8 9,96 8,1 8,84 7,04
6 8 7,24 6,13 6,08 5,25
4 19 4,26 3,1 5,39 12,5
12 8 10,84 9,13 8,15 5,56
7 8 4,82 7,26 6,42 7,91
5 8 5,68 4,74 5,73 6,89

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
x(1)

Fig. 1. Addiction y1 = f (x1) for the Anscombe’s Quartet
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Fig. 2. Addiction y2 = f (x1 = x2) for the Anscombe's Quartet
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Fig. 3. Addiction ys = f (x1 = x3) for the Anscombe's Quartet
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Fig. 4. Addiction ys4 = f (x1 = xa) for the Anscombe's Quartet

The main statistical characteristics for the data
presented in Anscombe's example are shown in Table 2.
Matching data is highlighted in bold and italics.

Table 2 — Main Statistical Characteristics of Anscombe's Quartet Data

- . Variables
Statistical Characteristics
X1...X3 y1 »2 »3 X4 V4
Mean (M) 9 7,5 7,5 7,5 9 7,5
Lower 95% bound of M 6,77 6,14 6,14 6,14 6,77 6,14
Upper 95% bound of M 11,23 8,86 8,86 8,86 11,29 8,86
Standard Deviation (SD) 3,32 2,03 2,03 2,03 3,32 2,03
Lower 95% bound of SD 2,32 1,42 1,42 1,42 2,32 1,42
Upper 95% bound of SD 5,82 3,56 3,56 3,56 5,82 3,56
Sample Range 10 6,58 6,16 7,35 11 7,25
Skewness Coefficient (As) 0 -0,06 -1,32 1,86 3,7 15
Lower 95% bound of As -0,61 -0,68 -1,92 1,24 2,7 0,89
Upper 95% bound of As 0,61 0,54 -1,7 2,47 3,93 2,12
Kurtosis Coefficient (Ex) -1,2 -0,53 0,84 4,38 11 3,15
Lower 95% bound of Ex -1,98 -1,32 0,06 3,59 10,21 2,36
Upper 95% bound of Ex -0,42 0,25 1,63 5,17 11,78 3,94
Coefficient of Variation (v) 0,37 0,27 0,27 0,27 0,36 0,27
Lower 95% bound of v 0,26 0,18 0,14 0,15 0,16 0,16
Upper 95% bound of v 0,48 0,35 04 0,38 0,57 0,37

From table 2, the main feature of Anscombe's
quartet becomes clear. The numerical data was selected
so that the mean values of the arguments Xi...Xs

coincide. The same applies to the mean values of the
functions yi...ys. From Fig. 1... Fig. 4, it is clear that
these functions look different, although in [1], the same
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regression equation was obtained for all the data.
Table 3 presents the regression equation provided in [1]

and the equations  determined

STATGRAPHICS software.

using  the

Table 3 — Regression Equations Obtained from Anscombe's Quartet Data

Model coefficients Model characteristics
Model form
a b MAE R2(%) RZqt (%), d f= 10

y1=a+hbxi 3,00 0,500 0,837 66,654 62,949
V1= (a +b/ x)_l 0,057 0,669 0,016 71,994 68,883
y2=a+hxz 3,00 0,500 0,967 66,624 62,916
yp = a+bx +ox? -5,995 2,780 0,126 0,01 99,99 92,692
yz=a+hxs 3,00 0,499 0,716 66,632 62,924
y3= (a +b/ x)_1 0,217 -0,008 0,005 87,869 86,869
y4ia+bX1 3,001 0,499 0,902 66,671 62,968
ya=a+bxs
Yy = Ja+binx -204,10 122,384 12,74 78,97 76,63

In Table 3, it is accepted that R%*%) is the In this case, it is accepted that u is the location

coefficient of determination, and RZ%q (%) is the
coefficient of determination adjusted for the number of
degrees of freedom. The obtained data show that the
equations provided in [4] match, although they describe
different processes, as seen from the graphs in
Fig. 1..Fig. 4. The assessment of their statistical
significance is presented in Table 3. Using these
equations as mathematical models for describing real
processes may lead to significant errors in managing
them.

Before determining the correlation coefficients
between the respective pairs of variables, the density of
their distribution was calculated. The obtained results
are shown in Tables 4 and 5. The STATGRAPHICS
system was also used to obtain these results.

Table 4 — Analytical form of the density distribution
functions based on Anscombe’s quartet data

parameter, and o is the scale parameter. The density
distribution functions provided in this table correspond
to their definitions in the STATGRAPHICS system.

Due to the fact that the obtained distribution
density differs from the normal distribution, in addition
to Pearson's correlation coefficients, Spearman's rank
correlation was also determined. The calculation results
are shown in Table 6.

Table 6 — Pearson and Spearman correlation coefficients
between pairs of variables based on Anscombe’s
quartet data

Correlation Pairs of Variables

Coefficients X1, Y1 X1, Y2 X1, Y3 X1, Y4
Pearson's, r 0,8164 | 0,8162 | 0,8163 | 0,8165
Spearman's, p 0,8182 | 0,6909 | 0,9909 | 0,5

D'StTnbUtlon Distribution density function
ype
Uniform f(x)= a<x<b
b a’
Minimum f(x)= XDK J ( ﬂ
Value
—0< X<w,6>0
Maximum f(x)= exp{ ( j ( ﬂ
Value
—0 < X<0w,6>0

Table 5 — Numerical values of the density distribution
function parameters based on Anscombe’s
quartet data

. Distribution Distribution parameters
Variables
Type a b a B
X1...x3 | Uniform 40 |140 - -
V1 Uniform 4,26 (10,84 - -
Y2 Minimum Value - - 8,337 |1,256
Y3 Maximum Value - - 6,698 |1,257
Va Maximum Value - - 6,661 |1,366

According to the authors of this report, attention
should be paid to the appearance of extreme distribution
densities (distributions of the maximum and minimum
values). Therefore, studying the models of these
distributions should be considered as an actual task.

Analysis of recent research and publications.
According to the work [7], the following types of
distributions are classified as extreme value distributions:

Type 1. Gumbel Distribution (first extreme value
distribution law):

Fy(x) :exp{—exp[—((x—,u)/a)]}, —0<X<w. (6)

Type 2. Fréchet Distribution (second extreme
value distribution law):

Fp(X) = eXp[—((X—#)/U)_k} for xzp; (o)
0, for x < u.

Type 3. Weibull Distribution (third extreme value
distribution law):

() :{exp[—((y—x)/a)k}, for x <, (®)

1, for x> u.

34



ISSN 2522-9052

CyuacHi inpopmariiiai cuctemu. 2025. T. 9, Ne 3

In equations (6), (7), and (8), the parameters y and
o have the same meaning as in Table 4, and k is the
shape parameter. These equations represent the
distribution functions for maximum values. According
to [4], these distributions can also be applied to
determine the distribution functions for minimum
values. In [6, 7], a generalized extreme value
distribution is proposed, with the function as follows:

Fy (X 1,0,&) = exp(—[l+ 5((x—y)/o—)]’(1’§)) . (9)

This equation is valid under the conditions:

—0< X< (u—olé),if £<0, (10)

Table 7 — First Extreme Value Distribution

or

(u—oclé)<x<oo,if £>0. (11)

In equations (9) ... (11), & is the shape parameter.
In [7], itis proven that if &=0 and —oo<X<oo, then:

Fg (X 4,0,0)= eXp[—eXp(—(X_ /‘)/‘7)] - (12)

These works also demonstrate how all main
extreme value distribution laws, defined by equations
(6) ... (8), can be derived from equations (9) ... (11). In
[3], the ways for the extreme value distribution laws
shown in (6) ... (8) are provided, and they are presented
in Tables 7 ... 9.

Data Type Distribution Function Distribution Density
Maximum _

Values G () =exp{-exp[-a(x-u) J}, —e<x<e0 O (%) = crexp[ o (X~ ) |Gy (¥)
Minimum _

\I/allueus Gmn(x)—1—exp{—exp[a(x—u)]}, —0< X< gmn(x):aexp[a(x_u)][l_(;mn(x)]

Table 8 — Second Extreme Value Distribution

Data Type Distribution Function Distribution Density
- -k —k-1
Maximum X—¢ k (x—¢
Frx (X) =exp| -| — , X=2gu>gk>0 =

Values e () p[ (u_gj ] sU>ek> fx (X) U—S(u—gj Fnx (X)

.. -k k=
Minimum Fon(X) =1—exp| — =X , XZou>wnk>0 f (X)_L o-X ‘ 1[1_|: (x)]

Values mn ©-Uu M w—ule-u m

Table 9 — Third Extreme Value Distribution

Data Type Distribution Function Distribution Density
. k k-1
Maximum _ o-—X kK (o-x
Values W () = exp{—(m_J 1 X>o,u>ok>0 Winx (X) = ou (Hj Winx (X)
k _
Minimum Wi (x) =1—exp| | 2=% x>gUu>gk>0 k (x=e)"
Values mn u_e) I 7% ‘ Wi (X) = elu_e [1-F()]

The methods for presenting extreme value
distribution laws, as shown in these tables, have
significant differences from equations (6) ... (8),
according to the authors. When using equations
(6) ... (8) for calculations related to determining the
safe operation conditions of technical systems, it is
necessary to know the parameters of location y, scale o,
and shape k of the distribution. Presenting these
distribution laws in the form shown in Tables 7-9
defines the relationships between parameters, with
corresponding limitations and meaningful physical
content. Therefore, in this report, we will refer to the
distribution laws presented in Tables 7-9 as parameter-
limited laws. Statistical modeling of extreme value
distribution laws of the form (6) ... (8) does not present
significant difficulties and is detailed in [10-12]. In [3,
4], it is shown that, with a large number of observations,
the distribution law of their extreme values coincides
with one of the laws (6) ... (8), regardless of the
distribution laws of the initial sample. This statement is
verified in this report using the STATGRAPHICS and

MATLAB systems. A paradoxical result was obtained
in [14]. A comparison of the results from the quasi-
random number generators in the STATGRAPHICS and
MATHCAD systems showed that, for any amount of
data, the distributions and their parameters generated by
these systems match only for the uniform distribution.
The paradoxical result means that the specialized
statistical system STATGRAPHICS, in most cases, does
not recognize the match to the specified distribution law
of random numbers generated by the MATHCAD
system. It was established that STATGRAPHICS, in
most cases, does not recognize the match to the
specified distribution law of random numbers generated
by itself. Therefore, to improve the reliability of the
modeling results, it is recommended to diversify the
software products used, as noted in [15].

Thus, the goal of the article is determining the
maximum likelihood estimates of the parameters of the
parameter-limited extreme value distribution laws and
to model their occurrence conditions using
STATGRAPHICS and MATLAB.
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Main results

The method of maximum likelihood estimation
was chosen to calculate the parameters of the extreme
value distribution laws. The methodology for its
application is detailed in [8, 10]. Without loss of
generality, assume that for one of the random sequences
defined by equations (1) and (2), the distribution
function ®(X; a, B, ) is known. The likelihood function
in this case can be defined as:

A X it o) = Ty @ (5, 7). (03)

According to [10], for more convenient
transformations, we take the logarithm of (13):

L(Xq0 Xp 1o Xn ;00 B 7) = INA (X, X,y X, B 7)) =

n (14)
=SS0 (e pr)

To maximize (14) with respect to the parameters,
we need to find the roots of the system:

aiL(xl,xz,...,xn;a,,B,y) =U(a, B,7)=0;
[04

%L(xl,xp--,xn;a,ﬁ,y)=V(a,ﬂ,y)=o; . (15)

ai L(X, X2, Xnsa@, B,7) =W(a, B,7) =0.
y

According to [16], this problem can be reduced to
an optimization problem by finding the minimum of the
function:

Q@ . 4)=U?(@. By)+

2 2 - (16)
Vi (a, B, y) +W(a, B,7) — min.

Indeed, if (aﬁ ) is a solution to problem (16), then:

therefore, (18)

Since the function Q(a,f,7) >0, it reaches its
minimum value at point (dﬂﬁ) Conversely, if the
function Q(e, f,y) reaches its minimum value at point
(d,ﬁ,;?) and Q(d,,@,;?):o , then equation (17) holds.

Therefore, (aﬁy) is a solution to problem (16).

To find the solution to the system of equations (14), it
should be noted that the function Q(«, 3,7) may have

several local minima, while the global minimum is
required. Therefore, it is recommended to search for the
solution either for a justified initial approximation or for
different initial values. The methods for determining the
initial values necessary for solving equations (15) and

(17) are discussed in [3]. The estimates (dﬂﬁ)

obtained from solving problem (16) will be normally
distributed, unbiased, efficient, and capable [18].

To determine the confidence intervals for the
obtained parameter estimates, the Fisher information
matrix was calculated as shown in [10]:

o2 (a) cov(a,B) cov(a,y)

vtz cov(a, B) az(ﬁ) cov(B.y) |=
cov(a,y) cov(B.7) az(y)
-1
oL L AL L
oa’ oa 0f  Oa Oy (19)
R T
opoa  opr B oy
S
oa Oy op oy 57/2
It is assumed that the matrix elements are

calculated  accordingly (a,ﬂ,y)z(o?,,[f,y?). The
confidence intervals for the parameter estimates
(aﬁy/) in the distributions considered in this report

were defined using relations of the form:

a-K WVar(a) <a<a+ Ka«Nar(d) , (20)

B-KoNar(B) < B< p+KoNar(B),  (21)
P-KoNar() <y <p+KyNar(p) . (22)

The estimates of the variances of these parameters
are located on the main diagonal of matrix (19). The
other elements of this matrix correspond to the

covariance between the obtained parameter
estimates. K, is the quantile of the two-sided confidence
probability at level @. A more detailed analysis of the
properties of the Fisher information matrix is beyond
the scope of this study.

The logarithm of the likelihood function for the
first boundary distribution of maximum values is given
by equation (23):

L(Gmx (X;2,u)) =

n
->'In (aefexp(uafaxi Y-axj+ua ) -
i=1

(23)

In equations (24), (25), and onwards, it is assumed
that the parameter values are given. The system of
equations, whose roots are the estimates of the
parameters of this distribution, is presented in (24):

UGy (X, u)) = % LG (X a,u)) =

n
=na - aexp(ua—ax)=0;

= (24)
V G (X)) =~ LGy (1, 0) =
oo
= i(xi —u)exp(Ua —ax; )—ixi +n(u +ij =0.
i=1 i=1 a
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Equations (25) ... (27) make it possible to
calculate the values of confidence intervals for the
parameters of this distribution and the covariance
between them:

2 i 2%
o (u)=—6— LGy (X, u)) =a” Y exp(ua —ax;) - (25)
u i=1

2 o°
o (a)z_—L(GmX(x a,U)) =
da? (26)
—Z(x —u)? exp(ua — ax)+ n
i=1
22
cov(a,u) = — L(Gmx (X, 1)) =
ou (27)

n
= (-1 [(ax —ua —1)exp(ua —ax;) +1].
i=1
The logarithm of the likelihood function for the
second boundary distribution of maximum values is
given by equation (28):

L(Frpx (X;&,u,k)) =

n xi—e )X | x-e) " (28)
=Y Indkexp|—| = ! Xi —&)
Binfeonl (1) () o
The system of equations, whose roots correspond

to the estimates of the parameters of this distribution, is
presented in equation (29):

U (Frpy (x;6,u,k)) = ai L(Frpx(x;&,u,k)) =
&

_ Km0 - ) (u—e))

i-1 (u-&)(x—¢)
Dkx —ku-u+e
w00

V (Froy (X;€,u,K)) =
:ik«&_qxww»*+ ko

i=1 &—Uu

L(Frmx(x £,U,k)) =
(29)

W (Frpy (x;€,u, k))—

—&)/(u —8))_k In((Xi -&)/(u —5))—

L(Frmx(x &,u,k)) =

I
N
—_
—_
x

N

.[\|4:

1]
N

In((x; —&)/(u —g))+£= 0.

The logarithm of the likelihood function for the
third boundary distribution of maximum values is given
by equation (30):

LWy (X; 0, u,K)) =
(2ol o).

The system of equations, whose roots are the
estimates of the parameters of this distribution, is
presented in equation (31):

U W (5,0, K0) =~ L Wby (6 0,0, K)) =
(4]

w)((4 ~@)/(u-w))

(0-u)(X - )

k(% —

n kxi—ku+u—a)_
+Zl (0-0) (5 - )

V Wby (X; @0,u,K)) = L(\mex(x o,u,k)) =
_ ekl —w)/(u—w)) nk
gi +

U—w w—U
W Wby (X; @,u,K)) = 6% L(Wbppy (X; @, u,K)) =

In((% ~@)/(u-0))+ -

(1)

=0;

Il
M:

1

(% —o)/(u=o))In

-

(% -@)/(u-w))=0.

i=1

The obtained results make it possible not only to
calculate the estimates of the parameters of extreme
value distribution laws but also to determine the
confidence intervals for these estimates.

To model the emergence of extreme value
distributions, the following method was applied:

1. In MS Excel, a matrix of uniformly distributed

random numbers was generated:
Rnxm :(rij): i=1100; j =112, (32)

This matrix was defined as the initial matrix for all
further work stages. The method of obtaining and
saving it is shown in Fig. 5.

Random Number Generation ? *

Cancel

Mumber of Variables: 12
Mumber of Random Numbers: 100

Distribution:

Uniform e Jdosigka

Parameters

Eetween 0 and |1

Random Seed: 12345|

Output options

I

() Output Range:
o Mew Worksheet Ply:
(C) Mew Workbook

Fig. 5. Random Number Generation function dialog box

In [20] shows that the built-in MS Excel pseudo-
random number generator, using the Random Number
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Generation function, has good quality when generating
numbers distributed over the unit interval according to
the uniform distribution law.

The uniformly distributed random numbers were
transformed into a matrix of initial data:

S = (Y X)(¥) e =(vy) 11300 =122, (33)

In this case, the number of data in the i-th row
corresponded to a series of monthly values of some
hydrometeorological indicator in the i-th year and its
minimum and maximum monthly values in that same
year over a hundred years of observations. It should be
noted that most of the main hydrometeorological
indicators have observation series for longer time
intervals. The types of distributions used to model the
maximum and minimum observed values using
STATGRAPHICS are listed in Table 10.

The properties of these distributions are discussed
in detail in [17]. To model the distributions presented in
Table 10, uniformly distributed random numbers
obtained in step 2 were used. The rules for such
transformations are shown in Table 11.

Table 10 — Types of distributions used to model the
maximum and minimum observed values
using STATGRAPHICS

Distribution

Type and Distribution Function

Notation
Double expo- F(x ) = _ =y
nential D(1) OGp,2) =exp[-pexp(-Ax)]

MX—p) .

Laplace F(xp) = 0,507 if x <y
D(2) 1-0,56 ) if x> .
Lognormal ) *
D(3) F(x;u,0) :Cl)((nx—u)/c)

Rayleigh D) | F(x:a) :1—exp(—x2/(2a2))

Normal D(5) | F(Xip,0)=d((x—p)/c)*
E:;/TESEG) F(x;a,n) = (2/n)-arctgexp[a(x — )]
E?;r)emeva'ue F(Xn,0) =exp| -exp(~(x—n)/o) |
o | FOumo)=1-exp[-exp((x—n)/o)]

*) @ is standard normal distribution function

Table 11 — Modeling relationships for transforming uniformly distributed random numbers

Distribution Type Distribution Parameters

Modeling Relationship Parameter Estimates

Double

1
my, =—(In ; =—
Exponential D(1) X k( mT); o 6

Xjj = %[h’lp —In(=In rij)]

Laplace D(2) my = A=+2/cy

Xij =u+>fl~ln(rij/(ri +1))

2 2 2
m, =me? /2; o, =me? /leea -1

Lognormal D(3)

Xij =meXp(a"ij) m=x \/1+vf; é:\/ln[1+vf

Rayleigh D(4)

Xiji = af-2In¥; a=x2/n

my =a\n/12; oy, =42-(n/2)

Normal D(5) *

Champernowne D(6) my=p; oy =n/(2a)

Xij=H+|”t9(Tfrij/2) fi=x a=m/(2sy).

Extreme Value D(7)** my =p+yo; Dy = (yn)2/6

Xi =u—ln(—lnrij) fi = X —0,4501s,; A = 0,7797s,

Minimum Value D(8) { my=p—yo; Dy= (ym)?/6

Xj =p+In(~Inr; ) L= X —0,4501s,; & = 0,7797s,

*) Pseudo-random numbers with normal distribution were obtained using the built-in MS Excel subroutine.

**)y = (0.57722, Euler’s constant.

When testing the invariance of extreme value
distribution laws relative to the initial distributions, it
was assumed that all of them were obtained at values of
mx=100 and ox=10, 20, 30. The accepted standard
deviation values were denoted as S10, S20, S30.

To identify the obtained data in this case, the
STATGRAPHICS system was used. It provides the
opportunity to choose the best distribution law from a
built-in list of alternative distributions, shown in
Table 12. The best distribution was chosen to use the
maximum likelihood criterion. In the list of
distributions, the best one (with the highest likelihood)
appears first. For example, the results of determining the
distribution law of maximum values for a series
generated by a double exponential distribution are
presented in Table 12.

This table shows that since the D7 distribution
from Table 10 matches the A1l distribution from

Table 12, the model of the obtained distribution meets
the theoretical assumptions. These assumptions suggest
that extreme value distribution laws are independent of
the initial distribution.

Table 13 presents the results of identifying the
extreme value distribution laws obtained using
statistical modeling methods. These results are
compared with the extreme value distribution laws
defined in Table 4.

The highlighted entries in this table represent cases
where the STATGRAPHICS system confirmed that the
condition of distribution law invariance for extreme
statistics relative to the initial distributions was met.
This condition was fulfilled in only 12 out of 48 cases.

A similar modeling process was performed using
the MATLAB system. The distribution types used for
this modeling are listed in Table 14 (data taken from
MATLAB documentation [21]).
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Table 12 — Selection of the best distribution law of
maximum values for the double exponential
distribution and standard deviation S10

Exponential A(13) -578,036

Pareto A(14) -734,1

Alternative Distributions . Table 13 — Results of identifying extreme value distribution
and Notation Log-Likelihood laws using STATGRAPHICS

Largest Extreme Value (A1) -364,89 Distribution Function Classes
Inverse Gaussian A(2) -366,556 Initial Distribution | Maximum Value | Minimum Value
Birnbaum-Saunders (A3) -366,558 Type Distribution Distribution
Lognormal A(4) -366,571 S10 | S20 | S30 | S10 | S20 | S30
Gamma (A5) -367,137 Double Exponential | (A1) | (A1) | (A1) | (A1) | (A1) | (A3)
Loglogistic (A6) -368,306 Laplace (AD) | (AD) | (AD) |(A12)|(A1D[ A(T)
Normal (A7) -368,536 Lognormal (A12)|(A12)|(A1D)| AQD) IAQD| AQ)
Logistic A(8) -369,655 Rayleigh A AT [AG) IAQADIALDIALLY
Uniform A(9) -371,971 Normal A(2) | A(B) |A(B) |A(2) |AGB) | A(M)
Laplace A(10) -374,669 Champernowne (AD | (AD) | (AD | A JAAD[ AT
Weibull A(11) -378,275 Extreme Value (A1) | (AD) [ (A2) |AQD) | (A2) | (A2)
Minimum Extreme Value A(12) -382,766 Minimum Value (A12)|(A1D)|(A1D|(ALDIA2)| A(T)

Table 14— Distribution types used for modeling maximum and minimum observed values in MATLAB

(the parameters of all distributions are set to one)

Distribution Type and Notation

Distribution density

Normal (M1)

y= f(X;u,G)z(G 2n)_1-exp(—(x_

w?/(20%)), xe R

Lognormal (M2)

(X;p,0) ( 27:) exp{(lnx—u)z—/(ZGz)}, x>0

Birnbaum-Saunders (M3) y=

f(xBy)=(

x| T2 (7 + 7)), w0

Burr distribution, type X1l (M4)

f(xa,ck)=(kc/a)-(x/a /(1+(x/a)°)k+l, x>0

Extreme value (M5)

Generalized extreme value (M6) y=f(xkpo)=0

)-(x/a)"
y=f(xmo)=c"exp((x—n)/s)- exp( exp((x— u)/G)), xeR
(x=u)/o

exp( (1+k-(x—p ) )(1+k

k#0, xeR

)/G)flfllk ’

Inverse Gaussian (M7)

y=f(xAu) =2 [ exp{ x/ 2p2 x (x— p)} x>0

Rayleigh (M8)

y=10s >(x/b2) oxp[ /(ZbZ)), cer

Weibull (M9)

y=f(xab)=(b/a)- (x/a)b‘l.exp(—(x/a)b), if x>0; y=0,if x<0

The results of identifying extreme value
distribution laws using the MATLAB system are shown
in Table 15.

Table 15— Results of identifying extreme value distribution
laws using the MATLAB system

e Max. value | Min. value

Initial distribution type | qictribution | distribution
Normal (M1) (M) (M)
Lognormal (M2) (M5) (MS)
Birnbaum-Saunders (M3) M7) (M5)
Burr, type XII (M4) (M4) (M8)
Extreme value (M5) (M) (M)
Generalized extreme value
(M) (M6) (M8)
Inverse Gaussian (M7) M3) Uniform
Rayleigh (M8) M9) (M8)
Weibull (M9) (M9) (M5)

According to the results of statistical modeling, the
conditions of invariance were met in 5 out of 18 cases.
The modeling result for the maximum value distribution

for the initial Weibull distribution (M9) should also be
recognized as valid, because, according to (8), the
Weibull distribution is the third extreme value limiting
distribution. The modeling results revealed a significant
difference between actual and theoretically possible
extreme value distribution laws. The authors believe this
discrepancy may be due to the specifics of the random
number generation algorithms and the selection of the
best distributions used in the STATGRAPHICS and
MATLAB systems.

Conclusions and the directions
of further research

1. The need to verify the correspondence between
the physical meaning of studied processes and the
application of extreme value distribution laws is
demonstrated using the statistical analysis of
Anscombe's quartet data. The linear regression equation
that fits all possible combinations of this quartet's data is
not optimal based on the maximum coefficient of
determination criterion. Using this criterion, different
data pairs produce different non-linear regression
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equations. Ignoring this can lead to errors in process
management.

2. It is shown that the data in Anscombe's quartet
follows Gumbel's law, although the construction of the
quartet does not meet the conditions for this law's
appearance.

3. Extreme value distribution limit laws are
presented in a form suitable for practical use in
engineering project design with restrictions on
distribution parameters, which are caused by design
features. The parameters of extreme value distributions
were estimated using the maximum likelihood method.
A numerical method for solving the corresponding
systems of equations was considered.

4. To model the scheme for the appearance of
extreme values, a matrix of random variables was
generated. Twelve columns modeled monthly
observations of a certain geophysical phenomenon,
while 100 rows corresponded to a century-long
observation period.

5. The possible distributions of these matrix
elements (initial distributions) were as follows: double
exponential distribution, Laplace distribution, lognormal
distribution, Rayleigh distribution, normal distribution,
Champernowne  distribution, maximum  value
distribution, minimum value distribution, Birnbaum-
Saunders distribution, Burr type XII distribution,
generalized extreme value distribution, inverse Gaussian
distribution, and Weibull distribution.

6. Invariance conditions for extreme statistics
distribution laws relative to initial distributions were
confirmed in only 12 out of 48 possible cases using
STATGRAPHICS, and in only 5 out of 18 cases using
MATLAB.

7. Modeling results revealed a significant
difference between actual and theoretically possible
extreme value distribution laws. The reason for this may
be in the peculiarities of random number generation
algorithms and the selection of the best distributions
used in the STATGRAPHICS and MATLAB systems.
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BusHauyeHHs1 oHiHOK 00MeKeHHUX 32 MapaMeTPaMH 3aKOHIB PO3MOIiJy eKCTpeMaJbHUX BEJTUYHH Ta MOJAETIOBAHHSI YMOB
ix BuankHenHs 3acooamu STATGRAPHICS ta MATLAB

C. B. l'agenrka, B. 1O. youunpkuii, 0. 1. Kymuepyxk, 0. JI. TlonouosHwuii, O. 1. Xoaupes

AHoTaunisi. Mera HOCTII:KeHHSI. BHU3HAYCHHA METOJOM MAaKCHMyMy IIPaBIOIOIIOHOCTI OIIIHOK IapaMeTpiB 3aKOHIB
pO3MOJiTy eKCTpeMaldbHHX BENMYMH, OOMEXKEHMX 3a MapaMeTpaMH Ta MOJCTIOBAaHHA YMOB IX BHHHUKHEHHS 3acobaMu
STATGRAPHICS i MATLAB. Ilpeamer pociaimkenHs: kBapreT Enckomb6a, mepmmii (I'ymGens), apyruit (®peme), Tperiit
(BetiOyma) 3aKoHH PO3MOMALTY SKCTPEMAIbHHUX 3HaueHb. MeTom MOCTiMKeHHSI: YHUCEIbHI METOMU PO3B’SA3aHHS CHUCTEM PiBHSHb,
OTPUMaHUX 32 METOJOM MaKCHMYMy IPaBJONOAIOHOCTI, METOJM CTaTHCTUYHOrO MojenroBaHHs. OTpuMaHi pe3yJabTaTH: Ha
MPUKJIa/i CTATUCTHYHOTO aHaJi3y JaHUX kBapTeTy EHCKoMOa mokasaHa HEOOXiqHICTh MEepeBipKH BIAMIOBIIHOCTI (i3MYHOTO 3MiCTy
TMPOIIECIB, 1[0 BHBYAIOTHCS, MOXJIMBOCTSIM 3aCTOCYBaHHS JUISl iX aHAJI3y 3aKOHIB PO3MOAULY eKCTpEeMaJbHHMX 3HAueHb. PiBHSIHHS
TiHIAHOT perpecii, ske BiIMOBiZa€ BCIM MOMIIMBUM KOMOIHAISIM JaHUX IIHOTO KBajpara, HE € ONTUMAIGHHM TI0 KpPHTEPiro
MakcuMyMy KoedimieHTa nerepminamii. [Ipu 3acTocyBaHHI IIBOTO KPHUTEPil0 BCTAHOBICHO, IO Pi3HI MapH NaHUX MAalOTh Pi3Hi
PIBHSHHSL HENiHIWHOI perpecii. IrHOpyBaHHS i€l 0OCTaBHHH MOKE TPHUBECTH 10 MOMHJIOK B YIPABIiHHI MpOLECaMHU, SKi BOHH
MoJemoroTh. [loka3aHo, Mo JaHi, sKi HaBelIeHO B KBapTeTi EHckomOa, posmojineHi 3rimHO i3 3akoHOM ['ymOens, Xoda cxema
noOynoBu kBaptery EHckomMOa He BimmoBizmae ymoBaM HOro mosiBH. ['paHMYHI 3aKOHH PO3MOIITY EKCTPEMalbHUX 3HA4YeHb
HPECTaBICHO Yy BUIVISIII, 3pYYHOMY JUISl 3aCTOCYBaHHsS B MPAKTHI NPOEKTYBAHHS IH)KEHEPHHX CIOPYJ 3 OOMEXKEHHSIMH Ha
HapaMeTpy [UX PO3MO/ALTIB, SKi BUKITHKaHO OCOOIMBOCTAMHM NMPOEKTyBaHHs. OLiHKU MapaMeTpiB 3aKOHIB PO3MOLTY eKCTPEMaTbHIX
3Ha4YeHb BUKOHYBAJIU 32 METOJIOM MaKCUMyMy MPaBAONOAIOHOCTI. PO3risiHyTO YncenbHUI METO PO3B’I3aHHsI BiMOBIHUX CHCTEM
piBHSHB. Iyl MOIENIOBAaHHS CXEMH MOSBU €KCTPEMalbHHUX 3HAYeHb OTPUMYBAIM MATPHINO BHIIAJKOBHX BEIHYHMH, ABAHAAILITH
CTOBIIIIB SKOT MOJICITIOBAIIH MIOMICSYHI peeCTpallii CIOCTEPEKEHb AEIKOro Te0(hi3HIHOTO SBUINA, CTO PSAAKIB MATPHIIL BiITOBI M
CTOPIYHOMY TEepioy croCTepeKeHb. MOMKIIMBI PO3IOIITH €IEMEHTIB IUX MaTpPHIIb (TI0YaTKOBI PO3MOILUTH) IPUHHATI HACTYTHUMHU:
MOJBIHHHUN MOKA3HUKOBHH po3MoAlt, po3noxainr Jlaminaca, JTOrHOpMambHUE pO3MOmiN, po3monin Permes, HOpManbHHN PO3MOMILT,
posnonin YammnepHayma, po3MOAiN HaifOibIIOro 3HAYCHHs, PO3MOIL HalMEHIIOro 3HaueHHs, po3nonin bipuOayma-Canzmepca,
posnoxnin Byppa tun XII, y3arajgbHeHHiT po3Moi eKCTpeMalbHUX BEIMUYMH, oOepHeHuid po3moain [aycca, posnoain BeiiOyia.
YMOBH iHBapiaHTHOCTI 3aKOHIB PO3IOJIIY €KCTPeMaJbHHX CTATUCTHK BiJHOCHO JO TOYAaTKOBHMX PO3MOAUIIB MPH MOJCTIOBAHHI
3acobamu STATGRAPHICS miareepmxeno numie B 12 Bunaakax 3 48 MOXIMBUX, IPH MoeTtoBaHHI 3acobamu MATLAB — Tinbku
B 5 Bumaakax 3 18 moxmBHX. 3a pe3ysibTaTaMy MOJICTIOBAHHS BCTAHOBJICHA ICTOTHA PI3HHILI MDK (PaKTHUYHUMHU Ta TEOPETHIHO
MOKJIMBHMH 3aKOHAMH PO3IOALTIB €KCTPEMabHIX BEIIMYNH, IPUYHHA K0T MOXe OYTH B OCOOIMBOCTSIX aITOPUTMIB MOJIETIOBAHHS
BHIQIKOBHX YHCEN Ta BHOOPY HAMKPAIINX PO3MOALTIB, siki BuKopucTaHo B cucteMax STATGRAPHICS ta MATLAB.

Kuaw4doBi caoBa: ksaprer Enckomba; 3akOHH pO3NOIITYy eKCTPEMAIbHHX 3HAYCHb, METOJ MAaKCHMYMy
MPaBIONOAIOHOCTI; METO CTATUCTUYHOTO MOJICTIOBAHHSIL.
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