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Abstract .  The aim of the research. In this paper, the approach to search for multiple explanations of the CNN image 

classification case is proposed. Research results. The core of the method is recursive division (RD), that performs the 

perturbation of the input image with hiding different rectangular parts. The explanation is represented as a complementary 

images pair (CIP): two images that allow us to visualize the parts of the image which are important enough to change the class 

of the input image when hidden and at the same time are important enough to preserve the initial classification result when 

visible. The parameters of RD method are discussed to choose the criteria to stop the processing when few explanations are 

found or the further processing requires too much time and/or memory resources. Two approaches to merge multiple CIP back 

to single explanation using SLIC segmentation were proposed. They allowed us to reduce the useful image explanation area 

and sometimes find more visually attractive CIP compared to previous RD implementations. Such merging is not strictly 

required just multiple CIP explanations are good enough for analysis of the CNN. Conclusion. The implementation of the 

proposed approach for cats and dogs breed classification problem was compared with other popular methods like RISE and 

Grad-CAM, the benefits and drawbacks are discussed. The performance analysis confirmed the advantage of the proposed 

methods as they are comparable or faster with known and allow us to find multiple explanation images. 

Key words:  Image Classification; CNN; AI; Black-box; Explainability; Image Perturbation; Hiding Parts; Recursive 

Division (RD); Complementary Image Pair (CIP). 
 

Introduction 

Artificial neural networks (ANNs) and 

convolutional neural networks (CNNs) have established 

themselves as the successful technology for image 

classification problems. The effectiveness of these 

models, along with their ability to automatically learn 

features from raw pixel data, has played an important 

role in their widespread usage.  

Despite their success in achieving high predictive 

accuracy, ANNs/CNNs are often characterized as 

"black-box" models due to the intricate nature of their 

architecture. This makes it challenging to understand the 

reasoning of the decisions being made by these models, 

creating significant trust issues and adoption in domains 

where the ability to explain and justify decisions is 

required for building information processing systems, 

including medical imaging, object detection, 

autonomous driving, and many others. 

In response to the interpretability challenges 

presented by artificial neural models, the field of 

Explainable Artificial Intelligence (XAI) has emerged 

as a branch of research. XAI aims to develop methods 

and tools that can make the decision-making processes 

of AI models more transparent and 

interpretable/explainable to humans.  

The fundamental goal of XAI is to bridge the gap 

between the high predictive power of CNNs and their 

limited interpretability, enabling humans in some way to 

understand and trust the decisions made by these neural-

networking systems. The ability to understand the 

reasoning behind a CNN's prediction became a 

fundamental prerequisite for the widespread and ethical 

adoption of such models in real-world applications. 

Another path that has evolved as a separate field of 

research is to develop initially interpretable models 

instead of searching for explanations of existing models. 

1 Literature review 

A lot of methods aimed to enhance user trust and 

facilitate the responsible deployment of CNNs applied 

to image classification problems have been proposed in 

various researches over the last decade [1–11]. There 

are classifications of methods into model-agnostic and 

model-specific (showing whether they are applicable for 

all existing models or only specific ones), and into local 

and global methods, that makes it possible to explain the 

particular output by the model or the entire model 

behavior. Mostly, the practical usage of these methods 

relates to the search for the explainability of the 

particular image following by the interpretation of it by 

humans because of subjectivity of the entire process [3].  

The most famous approaches to find the 

explanations are SHAP [12], LIME [13], RISE [14, 15], 

and Grad-CAM [16]. 

SHAP (SHapley Additive exPlanations) [12] 

assigns an importance value for a particular prediction 

for each feature in the input signal. This value 

represents the contribution of the feature to the 

difference between the actual prediction and the average 

prediction across the dataset. 

LIME (Local Interpreted Model-Agnostic 

Explanations) works by approximating the behavior of a 

black-box model near a specific prediction using a 

simpler, more interpretable surrogate model. It creates a 

perturbation image from the input image, for example 

by selectively turning off its parts. By observing how 

these perturbations affect the decision of the classifier, 
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LIME generates a subset of perturbed samples along 

with their corresponding predictions. Subsequently, the 

interpretable model is trained on this generated data to 

mimic the behavior of the initial black-box classifier. 

The weights assigned to each feature in the resulting 

local model indicate its relative importance for the 

model.  

One known drawback of the LIME is the 

instability of the explanations. Due to the random 

sampling process involved in creating the perturbed 

data, LIME explanations for the same model and input 

can vary across different runs. Additionally, LIME's 

performance is sensitive to the choice of several 

hyperparameters, e.g., the size of the neighborhood 

around the instance being explained, the quantity of 

features (or superpixels for images) used to represent 

the image. Determining the good values for these 

parameters can be a non-trivial task and might require 

experimentation and tuning.  

Another known method for explaining CNN 

predictions in image classification is RISE (Randomized 

Input Sampling for Explanation) [14, 15]. RISE 

calculates the importance of each pixel in the input 

image by generating a large set of random binary masks, 

and applying each mask to the original input image, 

occluding different parts of the image. For each masked 

image, the classification is performed. The importance 

of a particular pixel is then determined by aggregating 

the predictions of all the masked images where that 

pixel was not occluded. 

The main drawback of RISE is its computational 

cost. RISE typically requires a large number of random 

masks (1000, 2000, etc.) to be generated and stored in 

memory to obtain a reliable estimate of pixel 

importance. This extensive sampling process can be 

particularly time-consuming and computationally 

expensive for large CNN models and high-resolution 

input images.  

Gradient-weighted Class Activation Mapping 

(Grad-CAM) [16] is another popular method for 

generating visual explanations for CNNs classification 

results. Grad-CAM analyzes the internal gradients of the 

CNN to create a localization map that highlights the 

image regions important for predicting a specific class. 

The process involves first performing a forward pass of 

the input image through the CNN to obtain the feature 

maps of the final convolutional layer and the score for 

the target class. Then, a backward pass is performed to 

compute the gradient of the target class score with 

respect to these feature maps. These gradients are 

globally average-pooled across the spatial dimensions to 

obtain neuron importance weights for each feature map, 

indicating their contribution to the target class 

prediction. Finally, a weighted linear combination of the 

forward activation maps of the final convolutional layer 

is computed using these weights, followed by a ReLU 

activation function, resulting in the Grad-CAM 

localization map. 

The resulting heatmap has the same spatial 

resolution as the feature maps of the final convolutional 

layer, which is typically much lower than the input 

image, leading to a low-resolution explanation. In some 

instances, due to the gradient averaging step, Grad-

CAM might highlight regions that were not actually 

used by the model for classification, potentially leading 

to unreliable explanations. Another limitation is that 

Grad-CAM may struggle to properly localize objects 

when an image contains multiple instances of the same 

class.  

While the explanation methods mentioned above 

(as well as numerous other methods based on them) 

provide valuable insights into the decision-making 

processes inside CNNs, the reliance on a single 

explanation image often presents limitations in 

achieving a complete understanding of the model's 

reasoning. Typically, an explanation in the form of 

single image highlights the most dominant features that 

influenced the classification result but may not capture 

the influence of all contributing features. Users may 

believe that the model's decision is solely based on this 

most prominent feature, even if other factors also 

contributed significantly to the classification.  

Presenting multiple explanations for the same 

input image and its classification can lead to a more 

robust interpretation. If different explanation methods 

consistently highlight similar regions or features as 

being important, it can increase confidence that these 

are indeed the key factors driving the model's decision. 

On the other hand, if different methods emphasize 

different aspects of the input, it could indicate that the 

model's reasoning is more complex or that different 

features contribute to the prediction in various ways. 

Analyzing these patterns of agreement and disagreement 

across multiple explanations can provide a better 

understanding of the model's behavior. 

The Structured Attention Graphs (SAG) based on 

beam search, were introduced [17, 18] to generate 

multiple explanations in the form of Minimal Sufficient 

Explanations. These explanations consist of minimally 

masked images that retain the original classification 

result with a high probability (>0.9) while preserving 

essential features. However, a key challenge arises due 

to the factorial growth in the number of possible masked 

images, necessitating the division of each image into 49 

distinct masks. Furthermore, research has demonstrated 

that CNNs have more than one way to classify image 

that justifies the necessity to search more than one 

explanation. 

We have proposed Recursive Division (RD) as a 

way to search for the explanations for CNN image 

classifier [19–21] and used it before to generate fast 

single explanation of the classification result in a form 

of complementary images pair.   

The goals for this paper include: 

- to formalize the recursive description of RD, 

termination criteria and hyperparameters for it; 

- to evaluate the possibility to generate multiple 

explanations of the image classification result as 

complementary images pairs (CIP); 

- to embed superpixels segmentation at the final 

stages of RD to produce better and more specific visual 

explanations (instead of producing rectangles only), and 

build the single explanation result gathered back from 

multiple ones.  
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Our contribution in this paper includes the 

modification of the RD method proposed before in order 

to find multiple explanations in a form of CIP, improve 

their visual quality with SLIC segmentation, and reduce 

the size of the explanatory regions. 

2 Complementary images 

The main idea we follow across this research is the 

pair of complementary images (Complementary Images 

Pair – CIP). We think that the single explanatory image 

with the parts which are important (that is typical for a 

lot of other perturbation explanators) is not enough. The 

motivation for this is that if the part of image is 

important for the classification, this doesn’t guarantee 

automatically that the other parts are not important 

enough at the same time. 

Let’s assume, that we have some black-box image 

classifier and we used it to predict the class for some 

initial image, the classification result has the label of 

class C . Our goal is to find such pair of images (created 

with perturbations from the initial one), first one of 

which is still classified as C , but the second one has 

other class label. Both these images should have 

different parts hidden similarly, and each part of the 

initial image may be hidden only in one image in this 

pair (Fig. 1). 

Forming CIP in such a way make us sure that 

hidden parts are important enough to change the 

classification result of the CNN, and vice versa – that 

saving these parts is important enough to preserve the 

initial classification result. 
 

 

Fig. 1. Complementary Images Pair (CIP) 

3 Multiple Recursive Division Explanations 

In our previous researches [19–22] we were 

focused on the search of the single CIP to deliver 

explanation result as quick as possible. But the initial 

version of algorithm proposed in [23] demonstrated the 

ability to find multiple explanations out of the box.  

The entire processing pipeline remained as 

described in our previous research. Let it be )(IBO =  

as the output vector that comes from the black-box 

CNN classifier for the input image I , the length of the 

vector O  is K  and corresponds to the quantity of 

classes being classified. Let C  be the label of the 

classification result and we assume that this 

classification is correct. We mark the quantity of images 

to divide image for as 1w  and 1h  for the first division of 

the initial image, and mw  and mh  for all subsequent 

(“m” stands for “middle”) division layers. 

The initial image I  is split into hw  non-

intersecting parts, where w  is the quantity of horizontal 

parts, and h  is the quantity of vertical ones, 

wwidthw /= , hheighth /= , width , height  – are 

the width and height of the image I  respectively.  

Replacing each generated part with the hiding color 

(e.g., black) allows to obtain the set of hw  perturbed 

images   hjwiI ji ,1,,1,, == : 

jiji MII ,, = , 

   



 −−

=
otherwise. ,1

,1,1 0, hh,j)(jyww,i)(ix(x,y):, 
M ji  

It is worth noting, that selection of color to hide 

part with could influence classification results itself. 

Perturbed images are generated one by one and 

checked immediately in place that allows us to save 

memory.  

The main idea of RD is shown in Fig. 2. The initial 

image has “Maine coon” class label and is classified 

correctly. At the first division stage with 211 == wh , 

four perturbed images are generated and classified 

immediately. All of them are still “Maine coon” (
jiC ,
 

are the same as initial C ) and the division continues. 

 

Fig. 2. First division stage 

 

We chose just one of these four images and 

process only it in our previous RD implementations. 

Now we switched to breadth first search instead of 

depth first search of CIP before, and we continue the 

search until all perturbed images in the current depth 

level are processed (by default) or other stop condition 

is met. 

Let’s look at the first perturbed image and divide it 

again (let it be 2== mm wh ), so the size of the hiding 

rectangle is 4 times less compared to the previous stage. 

There are 12 such images (Fig. 3) and they are 

processed one by one again. The third image is 

classified as Japanese chin, so the complementary image 
jiII ,−  is built and verified. Its classification result is 

the same as initial CC = and thus the explanation in 

the form of complementary images pair is successfully 

found. If the classification result of complementary 

image is other than the initial ( CC  ) this pair is not 

useful anymore and is dropped. Our previous 

implementations of the method included termination of 

algorithm at this point and we returned the explanation 

immediately. For this research we continue to 

investigate other images searching for multiple CIP (as 
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it appeared there are three such explanation pairs 

amongst 12 images). 

After that the workflow of the method moves to 

the second image from Fig. 2, third and fourth. When all 

perturbed images from the previous stage are processed, 

the flow may go deeper to the next stage, so the first 

image from Fig. 3 is used as the initial for further 

dividing. 

Fig. 3. Second division stage 

 

3.1 Stop criteria 

The decision to find multiple CIP requires the 

processing of a significant number of images, and their 

quantity grows very quickly, so the criteria to terminate 

the work of the method should be chosen.   

As it comes from [23] the quantity of the perturbed 

images (assuming again for simplicity that 211 == wh  

and 2== mm wh ) at the stage n  is  


−

=

−

1

1

22 22

n

k

kn , 

so, for the example described above, the quantity of 

images for the each of twelve images perturbed after the 

stage 2 will be 44 but the size of the hiding rectangle 

will occupy 64 times less area compared to the size of 

the original image. Increasing 1h , 1w , mh , mw  will 

lead to the even faster growing of this function. There is 

also important to note that the deeper the stage ( n  is 

bigger) – the less our chances are to find CIP, but these 

CIP are more specific and interesting, capturing small 

patches of the image. 

The overall quantity Q  of images for the stage n  

could be written as a multiplication of quantity of 

images from previous stage and number of perturbed 

images P  for current stage with the following recursive 

expressions: 

11 −−= nnn PQQ , 11 −= − mmnn whPP , 2n , 

111 whQ = , .1110 −= whP  

Two new decision thresholds were introduced to 

stop the work of the RD method. First one failT  covers 

the case when there are still no explanations found, but 

the quantity of perturbed images is too big for the 

particular stage. The second threshold 1T  was designed 

to stop further processing if at least one explanation was 
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already found. The choice of these thresholds could 

depend on the performance requirements for the method 

in the particular case and provide nice flexibility to 

control the process. 

If we set 301 =T  for the example described above 

the work of the method stops after the processing of 30 

images perturbed taking the first image of Fig. 3 as 

initial, as there are 44 perturbed images for it in total, 

and at least one CIP was already found. If we set 

451 =T  that will mean that all 12x44 images for this 

stage will be processed. 

So, the overall description of the RD method 

requires such hyperparameters to be chosen: 

– minimal size of the image fragment to consider 

as valuable (set to be at least 32 pixels in width and 

height in all experiments); 

– quantity of parts to divide image on each stage – 

1h , 1w  for the initial (first) division, mh , mw  for the all 

next stages, addh , addw  for the additional “last chance” 

split (if enabled, described in previous papers as a last 

chance to find the explanation with making one step 

back and choosing other image from previous stage). 

We considered only equal integer values to divide the 

image; 

– thresholds to stop processing failT  for the case 

when there are no explanations found, and 1T  to stop 

further processing if at least one explanation was 

already found. We used 100=failT , 301 =T  as default 

values. 01 =T  means to stop processing immediately 

when first explanation is found (similar to our previous 

researches). 

3.2 Multiple CIP 

After RD is completed, we may have multiple CIP 

each of which could be used as an independent 

explanation result. A lot of different methods to 

combine them into one joint explanation could be 

created, in this section we propose two to find the CIP 

that has the smallest area. 

Let M  be the binary mask of the explanation 

images E  found after RD (examples are shown in 

Fig. 4) that preserves the initial classification result. 

Let’s assume for simplicity that visible pixels from the 

initial image have value 1 in masks while hidden parts 

are zeros. So, the area of the mask M of size mn  

could be written as 


= =

=

n

i

m

j

jiMMA

1 1

,)( . 

Firstly, we select the single explanation image 

AEmin  with the mask that has the smallest area, if there 

are few of them, we pick any: 

min arg(min ( ))i

i

A A M
E E= . 

It is clear that the area is increased with increasing 

division stage (RD adds new rectangle when going 

deeper), so CIP found at the lowest stages will prevail 

over the more specific ones. It is worth noting that 

minimization of the area is not a strict requirement, just 

first brief idea, any image could be selected also in 

order to find more specific explanation. We expect to 

find the minimal (not guaranteed formally) explanation 

region but not the most specific one in this example. 

Referring to the picture presented in Fig. 2 and 

Fig. 3 first four masks have the same area and one of 

them (the last) is chosen (Fig. 4) for further processing. 
 

 
Fig. 4. Explanatory images E (top row) and corresponding 

masked images M (bottom row) for CIP found after RD 

 

After that we perform SLIC segmentation for the 

chosen image AEmin  searching for approximate 10 

segments, and try to remove some superpixels 

preserving the CIP properties: 

 10 min( ( ))final AE CIP SLIC E= , (1) 

where ()10SLIC  means the partition of the masked 

image into 10 superpixels, and ()CIP  means the 

function that checks whether hiding particular 

superpixels preserves the CIP properties of the 

explanations. 

Let’s assume that there were s  superpixels found. 

Firstly, all combinations of 1−s  superpixels are 

considered, they are disabled (filled with black) one by 

one in turn, leaving only one superpixel active, 

complementary image is created and classification 

results for new pair is checked.  

If they form a CIP – the process is stopped, 

otherwise all perturbed pairs from 2−s  superpixels are 

analyzed and so on. So, actually, this procedure 

implements one more iterative minimization (again – 

not strictly formal as sizes of superpixels are not 

guaranteed to be exactly the same) over the useful mask 

area with early stopping. This process is illustrated in 

Fig. 5. 

The other way is to apply the abovementioned 

iterative procedure to all images obtained after RD and 

minimize the area after SLIC application:  

 10min ( ( ( )))final i
i

E A CIP SLIC E= .     (2) 

This approach usually needs more time but 

sometimes allows us to reduce the important area 

significantly (the chances for this are about 0.35 

according to modeling, and in 65% cases both these 

approaches return same explanation). The example of 

result is presented in Fig. 6, where the third picture (the 

first one in the second row) has the minimal area and 

represents the final CIP. 

Searching for multiple explanations made it 

possible to decrease the quantity of such cases when RD 

failed to find explanation at all. 
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Fig. 5. Reducing the CIP area with SLIC: segmented 

superpixels (top), reduced part of the image that preserves 

correct classification (bottom, left), and corresponding  

mask (bottom, right) 

4 Experimental modeling 

We used Oxford-IIIT Pet Dataset [25, 26] to train 

and evaluate different models. It contains 37 cats and 

dogs breed classes (12 for cats and 25 for dogs), about 

200 images per class. This dataset is convenient because 

each image has an associated ground-truth annotation of 

breed, region of interest containing head, and 

background/foreground/undefined pixel masks. The 

initial training/validation parts of the dataset contain 

1846 and 1834 respectively, but we redistribute images 

to have 3310 of them for the training and 370 (first 10 

validation images of each class) for validation purposes. 

Test set contains 3669 images. 

  

  

 
Fig. 6. Image explanations after minimizing  

mask area over SLIC results 

 

We trained CNN following the transfer learning 

approach: weights from MobileNet V2 [27] pretrained 

on ImageNet were used as feature extractor layers 

followed by dense layers. The architecture of CNN is 

shown in Fig. 7, it contains the initial input layer for the 

image scaled to 300x300 pixels, MobileNet V2 

convolution layers, global average max pooling layer, 

and two dense layers. Second dense layer contains 37 

neurons (according to quantity of the classes for cats 

and dogs) with softmax activation function. 

 
Fig. 7. CNN architecture 

 
The training of all models was done using Adam 

optimizer during 500 epochs (at most). Early stop 

procedure was implemented to terminate learning after 

50 epochs without validation dataset accuracy 

improving and saving only the best model weights. 

The accuracy of the model obtained for the test 

part of the dataset was 0.8833.  

4.1 Search for explanations 

In our previous research [21], we used IOU metric 

and compared the obtained explanation mask with 

ground-truth masks available for this dataset. But for 

this paper such comparison seems to be not relevant as 

the ground-truth masks are of full-size contour for 

cat/dog breed and we are searching for small regions 

that preserve classification result. So, we used 

implementations of Grad-CAM [24] and RISE [14] as 

baseline models to compare the proposed RD method 

with. 

It is important to note that all experiments were 

performed for those images only, that were initially 

classified correctly. 

The core of RISE [15] method is the random 

masking of the initial image, testing classification after 

that and building the importance map. RISE produces 

responses of different amplitudes, small for some 

images, larger for others. The analysis of responses 

could be a subjective for sure, because for some image 

that’s good to have strong but narrow extremum in the 

map notifying about specific object, but for another 

image, probably, the area of the peak should be wider 

corresponding to the object of other size. 

We used such thresholding of the importance map 

( IM ) obtained after RISE: 

,

1, ( , ) max ( , ),

( , )

0,

i j
b

 if  IM i j IM i j

IM i j

 otherwise,

 


= 


 

where  IM  – is the importance map, bIM  – is a binary 

mask for the importance map,   – is some threshold 

defined beforehand. 

We tested 5.0= , 7.0= , and 8.0=  

thresholds for RISE and found that it is hard to make 
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decision which one is better, as there are a lot of good 

and bad binarizations for all cases. Thresholding with 

5.0=  produces masks with significant importance 

areas, so we looked at 7.0=  or 8.0=  cases mainly. 

Source code [14] with RISE parameters N = 1000, s = 8, 

5.01 =p  was used in experiments. RISE can require a 

lot of RAM memory to generate 1000 masks for images, 

so we applied iterative approach here: we tried to 

generate 1000 masks, if there is not enough memory, 

tried 800, 600, 500, 400, 300, 200, and 100 masks in a 

row to get some explanation finally. 

We conducted similar experiments for Grad-CAM 

method and calculated masks over fused heatmap also 

with thresholds 7.0= , and 8.0= . The main 

problem of Grad-CAM application in our experiments 

was appearance of empty heatmaps (approximately 18% 

of cases). 

The average IOU between masks for Grad-CAM 

(shortened to GC for formatting), RISE and RD are 

shown in Table 1. The options set up for RD were 

211 == wh  and 2== mm wh , 10 superpixels for SLIC, 

100=failT , 301 =T . As one can see, changing the 

threshold leads to sufficient changes of areas even for 

same method, e.g., RISE after thresholding over 0.7 has 

level has IOU only 0.48 with RISE thresholded by 0.8. 

RD methods after optimizing over masks according to 

(1) and optimizing over SLIC (according to (2)) have 

the best degree of agreement with IOU 0.77. But 

commonly Table 1 confirms that different methods 

produce very different explanation masks. 

 
Table 1 – Mean IOU between masks 

 
GC 

0.7 

GC 

0.8 

RISE 

0.7 

RISE 

0.8 

RD 

w/ (1) 

RD 

w/ (2) 

GC 0.7 1 0.43 0.23 0.17 0.19 0.19 

GC 0.8  1 0.19 0.16 0.12 0.13 

RISE 0.7   1 0.48 0.20 0.21 

RISE 0.8    1 0.14 0.15 

RD w/ (1)     1 0.77 

RD w/ (2)      1 

 
We also looked at few sample experiments where 

IOU between explanations provided by RD and other 

methods are close to zero, meaning there are no 

intersection of explanation areas. The reason of this for 

Grad-CAM and RD methods is mostly relates to the 

empty or strange Grad-CAM results. But commonly 

such cases confirm the interesting and challenging 

situations of the explanation problems itself.   

The examples of non-intersected explanations 

obtained for the same classification case by different 

methods are shown in Fig. 8. The input image for the 

first example is classified as American bulldog. RD 

method following the procedure (1) with optimizing 

over masks area found the CIP showing the importance 

of the bottom right corner for decision making: hiding 

just it results in classification of German shorthaired 

breed, and having only that part enabled preserves 

American bulldog prediction. On the other hand, 

thresholding the RISE shows that completely another 

part is important, turning it to black changes the 

classification result as well (German shorthaired), but 

complementary image (containing only the top of the 

dog’s head on the black background) is classified as 

British shorthair breed. So, different parts of the image 

are important here, and all of them can affect the 

decision-making process in its own way. 

Second and third examples show that the region of 

the image highlighted with RISE is important as the 

classification confidence value decreases but not 

important enough to change the prediction result. The 

explanations proposed by RD confirm the importance of 

pixels in the corners of the input image for the decision 

made by CNN. 

 

Fig. 8.  Examples of different explanations having zero IOU 

(all sample images are from Oxford-IIIT Pet Dataset [25, 26]) 

4.2 Performance 

We have measured the average time required by 

Grad-CAM, RISE and RD with optimizations (1) and 

(2) for the single image using first 500 images from test 

part of the dataset. The results are presented in Table 2. 

While performance of Grad-CAM and RD seems to be 

similar in average, it could be very different for same 

images. Measured times for particular images do not 

vary a lot for Grad-CAM, but vary from 5 to 200 

seconds for different images for RD. At the same time, 

about 46% of explanations were found within 13 sec. 

and about 70% were within 25 sec. 

 
Table 2 – Average seconds per image, sec 

Grad-CAM RISE RD with (1) RD with (2) 

25 58 28 32 
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Conclusions 

The paper describes the approach to search for 

multiple explanations of the particular CNN image 

classification case. The core of the method is the updated 

version of recursive division (RD) we used in our previous 

works. The main idea (except of recursive hiding of 

rectangles) is to represent explanation as a complementary 

images pair (CIP) that allows us to visualize the parts of 

the image which are important enough to change the 

class of the input image when hidden and at the same 

time are important enough to preserve the initial 

classification result when visible. RD does not 

guarantee that these are the only such pieces though. 

RD searches for the explanations with the hiding 

1-4 rectangular areas of different sizes, that is complex, 

and generates a lot of perturbation images during the 

work. The parameters of RD method are discussed to 

choose the criteria to stop the processing when few 

explanations are found or the further processing requires 

too much time and/or memory resources.  

The merging of multiple explanations back to 

single using SLIC superpixels segmentation applied to 

the explanations found was proposed. This allowed us 

to reduce the image explanation area and sometimes 

find more visually attractive CIP, but such merging is 

not strictly required if we are satisfied with just multiple 

CIP explanations.  

We compared results of searching for multiple 

explanation images based on RD with other popular 

methods like RISE and Grad-CAM. RD appeared to be 

somewhat better than Grad-CAM (because it finds more 

successful explanations), and faster than RISE (because 

RD requires less memory and time on average), but RD 

has its own drawbacks and the decision on which 

method is the best depends on a lot of other 

circumstances.  
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Множинні пояснення рекурсивним поділом для проблем класифікації зображень 

О. В. Гороховатський, О. О. Передрій, О. В. Тесленко 

Анотація .  Мета дослідження. У цій статті пропонується підхід до пошуку множинних пояснень випадку 

класифікації зображень CNN. Результати дослідження. Основою методу є рекурсивний поділ (RD), який виконує 

збурення вхідного зображення з приховуванням різних прямокутних частин. Пояснення представлено у вигляді пари 

зображень, які доповнюють один одного (CIP): така пара зображень дозволяє нам візуалізувати частини зображення, які 

є достатньо важливими, щоб змінити клас вхідного зображення, коли вони приховані, і водночас є достатньо 

важливими, щоб зберегти початковий результат класифікації, коли вони видимі. Обговорюються параметри методу RD 

для вибору критеріїв зупинки обробки, коли знайдено декілька пояснень або подальша обробка вимагає забагато часу 

та/або ресурсів пам'яті. Було запропоновано два підходи до об'єднання кількох CIP назад в одне пояснення за 

допомогою сегментації SLIC. Вони дозволили нам зменшити корисну область пояснення зображення та іноді знайти 

візуально привабливіші CIP порівняно з попередніми реалізаціями RD. Таке об'єднання не є суворо обов'язковим, якщо 

достатньо лише кількох пояснень CIP для аналізу CNN. Висновки. Реалізацію запропонованого підходу для задачі 

класифікації порід котів та собак було порівняно з іншими популярними методами, такими як RISE та Grad-CAM, 

обговорено переваги та недоліки. Аналіз ефективності підтвердив перевагу запропонованих методів, оскільки вони 

порівнянні або швидші за відомі та дозволяють знаходити зображення з кількома поясненнями. 

Ключові  слова:  класифікація зображення; CNN; AI; «чорна скриня»; пояснювальність; збурення зображення; 

приховування частин; рекурсивний поділ; пара доповнюючих зображень (CIP). 
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