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COMPRESSION OF NOISY GRAYSCALE IMAGES 

WITH COMPRESSION RATIO ANALYSIS   
 

Abstract .  The object of the study is the process of compressing noisy images in a lossy manner by better portable graphics 

(BPG) encoder. The subject of the study is the method for adaptive selection of the coder parameter Q depending on noise 

intensity and image complexity. The goal of the study is to consider the basic characteristics of lossy compression of remote 

sensing images contaminated by additive white Gaussian noise with giving recommendations of preferable Q setting. 

Methods used: numerical simulation, verification for test images. Results obtained: 1) the dependencies of compression 

ratio on Q are monotonically increasing functions; 2) their characteristics are strongly dependent on noise intensity and image 

complexity; 3) dependencies of logarithm of CR on Q contain information on possible existence and position of optimal 

operation point for compressed noisy images; 4) compression ratios for large Q contain information on image complexity 

with low sensitivity to noise presence and intensity; 5) it is possible to get useful information from dependences of 

compression ratio on Q. Conclusions: the results of this research allow: 1) estimating image complexity; 2) adapting Q to 

noise intensity and image complexity.   
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Introduction 

Modern imaging systems produce a great amount of 

image data in remote sensing [1], medical diagnostics [2], 

social networking [3], military [4], ecological 

monitoring, agriculture [5], etc. One tendency is the 

increase of image average size due to better resolution of 

new sensors and the use of more components as this 

happens in multispectral [4, 5] and hyperspectral [6] 

imaging. Then, one might run into problems with image 

storage on-board or on-land as well as with data 

transferring via communication lines with a limited 

bandwidth [5-7]. Note that lossless image compression 

[7, 8] is often unable to satisfy requirements to 

compression ratio (CR) that occurs to be too small and 

not variable. These are the reasons why lossy 

compression has become popular [6, 8, 9]. Lossy 

compression introduces inevitable distortions and they 

increase if a desired CR is larger [6, 9]. Then, in practice, 

one has to provide some compromise between introduced 

distortions (a compressed images quality) and CR [9, 10].  

There are several ways to reaching the compromise. 

First, it is possible to find a coder providing the best 

rate/distortion characteristics for a considered type of 

images. In this paper, we analyze a better portable graphics 

(BPG) encoder [11-13] that has shown itself to be one of the 

best possessing several advantages [11]. Second, it is quite 

easy to provide a desired CR if this is of prime importance 

[13]. Third, it is also quite easy to provide a desired peak 

signal-to-noise ratio (PSNR) by setting a proper Q that 

serves as a parameter that controls compression (PCC) that 

can be only integer from 0 to 51 [14].    

It is worth stressing that most papers on image lossy 

compression consider images as noise-free or, at least, pay 

no attention to possible noise presence in images. 

Meanwhile, there are numerous reasons why noise can be 

present in real-life images [6, 15, 16]. Visible noise takes 

place in optical images if they are acquired in bad 

illumination conditions [15], in medical and radar images 

[16] as well as in some components of hyperspectral data 

[6]. Then, lossy compression irrespectively to a used coder 

might have two specific phenomena [6, 14, 17]. First, for a 

rather large CR, a noise filtering effect due to lossy 

compression exists - this effect was discovered in [16, 17]. 

Second, the optimal operation point (OOP) that is associated 

with such PCC that a compressed image is extremely close 

to the corresponding true (noise-free) image according to a 

considered similarity metric is possible. It has been shown 

that both effects can be observed for different coders, 

various noise types, and different metrics [6, 14, 16-18] 

including visual quality ones [19, 20]. 

The OOP existence provides favorable pre-

conditions for image compression in OOP or its 

neighborhood [6, 14, 16]. On the one hand, a rather high 

quality of the compressed image is provided. On the other 

hand, a quite large CR is attained. Note that OOP 

existence and Q for it can be predicted [14, 18] under 

assumption that noise type and characteristics are a priori 

known or accurately pre-estimated. If OOP is absent for 

a given noisy image, it is reasonable to compress such an 

image with a smaller Q (and, respectively, CR) with 

introducing less distortions into the image information 

content [14]. We would like to stress here that, for 

additive white Gaussian noise (AWGN) considered here 

for grayscale images, the BPG coder produces better rate-

distortion characteristics than other modern coders [21]. 

This is one more reason for considering the BPG coder.  

We have already mentioned that for setting Q that 

corresponds to OOP one has to know or accurately pre-

estimate noise type and characteristics (then, one can use 

available formulas for setting QOOP and predicting OOP 

existence [14, 18]). However, it might be possible that noise 

characteristics are unknown in advance or it is difficult to 

estimate them accurately (for example, this happens for 

highly textural images [22, 23] also called complex structure 

images). Then, some alternative solution for predicting OOP 

existence and QOOP in it as well as assessing image 

complexity is needed. Note that there exist parameters that 

can be used for assessment of image complexity [24, 25] but 

they fail if one deals with noisy images.  
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Thus, the object of our study is the process of lossy 

compression of noisy images by the BPG-based coder. 

Our basic idea is that the OOP might exist and 

compression parameters in it can be predicted. The goal 

of this paper is twofold: to design a method for OOP 

prediction in conditions of limited a priori information on 

AWGN variance and to analyze ways of complexity 

assessment for noisy images.  

Background of noiseless 

and noisy image lossy compression 

The case of AWGN with zero mean and a priori 

known variance σ2 is usually considered as the first step 

in analysis of many image denoising and lossy 

compression methods [15, 21, 26]. Also, without losing 

generality, let us consider conventional 8-bit 

representation of images and pay the main attention to 

grayscale ones. Then, the input PSNR is expressed as:  

 PSNRinp=10log10(2552/σ2). (1) 

There are two ways to define PSNR for a lossy 

compressed noisy image Ic:  

 PSNRct=10log10(2552/MSEct),  (2) 

 PSNRcn=10log10(2552/MSEcn),  (3) 

where MSEct and MSEcn are mean square errors 

determined between the compressed Ic and noise-free 

(true) image It and noisy image In, respectively. 

Certainly, the image It is absent in practice (this problem 

will be discussed later) but one has it in simulations 

where noise is artificially added to It with obtaining In 

which is then lossy compressed with obtaining Ic.     

If an image is noise-free and it is compressed, one 

has PSNR that behaves in traditional way, i.e. decreases 

if PCC (Q in the considered case) increases (see the 

dependencies in Fig. 1, a for four test images presented 

in Fig. 2). Note that, in the most important practical 

interval of Q from 10 to 40, the dependencies are almost 

linear and “go almost jointly” where PSNR is slightly 

larger for the simplest structure image Frisco. Fig. 1, b 

shows the dependencies of 10log10(CR) on Q 

(logarithmic scale is applied because of two reasons; 

first, CR (estimated as the ratio of original image size to 

compressed image size) varies in very wide limits; the 

second reason will be understood later). As expected, the 

dependencies are monotonically increasing where the 

largest CR is for any PCC produced for the simplest 

structure image Frisco. Also note that, for Q=50, CR 

exceeds 100 (1og10(CR)>2). Meanwhile, for Q<10, one 

deals for near-lossless compression.       
 

  

a                                                                                                      b 

Fig. 1. Dependencies of PSNR calculated between the original noise-free image and its compressed version (a) and dependencies 

1og10(CR) on Q (b) for four test grayscale images having different complexity that can be characterized, e.g., by entropy E 

(smaller entropy corresponds to simpler structure, E=5.82 for the image Frisco and E>7 for three other test images)  

 

    
a                                                  b                                                  c                                                  d 

Fig. 2. Used test images Frisco (a), Fr01 (b), Fr02 (c), and Diego (d) 

 

It is also worth analyzing the dependencies 

d(1og10(CR))/dQ. They are presented in Fig. 3. Although 

it seems from visual analysis that the dependencies 

1og10(CR) are very smooth (see Fig. 1, b), this is not so 

and fluctuations are observed. For all four curves and all 

Q, d(1og10(CR))/dQ does not exceed 0.1. The derivative 

d(1og10(CR))/dQ is the largest for the test image Frisco for 

Q < 30, but for Q > 30 the derivative d(1og(CR))/dQ starts 

to be the largest for the most complex structure image 

Diego. Thus, having these initial data for analysis, one can 

expect that behavior and parameters of the curves 

d(1og10(CR))/dQ can characterize image complexity (recall 

that, for lossless compression, CR also depends on entropy 

characterizing image complexity). 
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Fig. 3. Dependencies d(1og10(CR))/dQ 

for noise-free test images 

Analysis of the results for noisy test images 

Consider now the dependencies for noisy images. Let 

us start from σ2 = 25, i.e. intensity of the noise that can be 

hardly seen in noisy images. In this case, OOP is obviously 

observed for the test image Frisco for Q = 30 (Fig. 4, a). 

Moreover, local maxima take place for the test images 

Fr01 and Fr02 for the same Q. Only for the test image 

Diego the dependence is monotonically decreasing and, 

thus, to avoid undesired distortions of image content, it is 

reasonable to compress this image using Q ≈ 27.   

Interesting conclusions can be drawn from analysis 

of dependencies in Fig. 4, b. 

  

a                                                                                                      b 

Fig. 4. Dependencies of PSNRct calculated between the noise-free and compressed noisy images (a) 

and dependencies 1og10(CR) on Q (b) for four test grayscale images having different complexity, σ2=25 

 

First, considerably smaller CRs are observed for 

near-lossless compression (Q < 10) of noisy images 

compared to noise-free ones (compare data in Fig. 4, b and 

1, b). This is due to the influence of the noise that is 

compressed “badly”. Second, CR values for large PCC (Q) 

are almost the same for compressed noisy and noise-free 

images. This can be explained as follows. For large Q the 

noise is anyway removed and CR is mainly determined by 

the image content (complexity). Third, behavior of the 

curves 1og10(CR) on Q for the test image Frisco 

considerably differs for Q≈30, i.e. in OOP neighborhood 

(compare green curves in Fig. 1, b and 4, b). There is a 

specific inflection area that appears itself in the derivative 

dependence in Fig. 5 where the derivative maximum 

exceeds 0.1 and is observed for Q=28. We associate this 

effect with the fact that the lossy compression starts to 

suppress noise effectively for Q slightly smaller than QOOP 

and this results in fast increasing of CR if Q increases. The 

results for more intensive noise (σ2=49) are presented in 

Fig. 6. As seen, OOP is observed not only for the simplest 

structure image Frisco but for the test images Fr01 and 

Fr02 as well (Fig. 6, a). However, the OOP positions have 

moved to larger Q (QOOP≈32). This not surprising since 

earlier results [14] have already shown that: 

 QOOP≈14.9+10log10(σ2).   (4) 
 

 

Fig. 5. Dependencies d(1og10(CR))/dQ  

for noisy test images, σ2=25 
 

  

a                                                                                                      b 

Fig. 6. Dependencies of PSNRct calculated between the noise-free and compressed noisy images (a) 

and dependences 1og10(CR) on Q (b) for four test grayscale images having different complexity, σ2=49 
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This means that QOOP for OOP if it exists can be 

easily determined in advance if σ2 is a priori known or 

accurately pre-estimated in advance. However, if one 

uses inaccurate estimate of σ2 instead of its true value in 

(4), QOOP can be estimated wrongly (with a significant 

error). The consequences of wrong estimation of QOOP 

can be predicted from analysis the dependencies in 

Fig. 4, a and 6, a. Shifting of Q with respect to the true 

QOOP might lead to considerably worse quality of 

compressed images.  

Analysis of the dependencies in Fig. 6, b shows that 

inflection area exists for the image Frisco and, probably, 

inflection areas also exist for the test images Fr01 and 

Fr02. The derivative curves presented in Fig. 7 confirm 

this. Note that maxima of d(1og10(CR))/dQ for σ2=49 

(Fig.7) have shifted to larger values compared to the case 

of σ2=25 and they are observed for Qmax ≈ QOOP-1.   

Consider now the case of σ2=100. The obtained 

results are presented in Fig. 8 and 9.  
 

 

Fig. 7. Dependencies d(1og10(CR))/dQ  

for noisy test images, σ2=49 

 

 
a 

 
b 

Fig. 8. Dependencies of PSNRct calculated between 

the noise-free and compressed noisy images (a) and 

dependencies 1og10(CR) on Q (b) for four test grayscale 

images having different complexity, σ2=100 

 

Fig. 9. Dependencies d(1og10(CR))/dQ 

for noisy test images, σ2=100 

 

An obvious OOP is observed for the test image 

Frisco. The OOPs for the test images Fr01 and Fr02 are 

“less obvious”. In all cases, OOPs take place for QOOP=36 

(Fig. 8, a). Inflection points are seen in Fig. 8, b. One 

maximum exceeding 0.25 and three maxima about 0.1 

are observed in Fig. 9. 

Finally, the dependencies obtained for σ2=196 are 

given in Fig. 10 and 11.  

In opposite to previous cases, OOPs are formally 

observed for all four test images although the OOP for 

the test image Diego is not obvious (Fig. 10, a). QOOP has 

shifted to 39. Inflection points (Fig. 10, b) associated 

with maxima of d(1og10(CR))/dQ  (Fig. 11) are observed 

as well where Q for inflection points is approximately 

equal to QOOP-1.  

Let us present the compression results. Fig. 12 shows 

the noisy Frisco image (Fig. 12, a, AWGN variance is 

equal to 100, noise is well visible in homogeneous image 

regions) and three compressed images. 

 

 
a 

 
b 

Fig. 10. Dependencies of PSNRct calculated between 

 the noise-free and compressed noisy images (a) and 

dependencies 1og10(CR) on Q (b) for four test grayscale 

images having different complexity, σ2=196 
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Fig. 11. Dependencies d(1og10(CR))/dQ  

for noisy test images, σ2=196 

 

Fig. 12, b presents the image compressed with 

QOOP=35 for which CR=29,7, PSNRct=35,7 dB, i.e. CR 

is quite large and PSNRct is rather high. Fig. 12, c and 

12, d present images compressed with Q=QOOP-5=30 and 

Q=QOOP+5=40, respectively. In the former case, CR≈5, 

PSNRct=28,7 dB, i.e. CR and PSNRct are both worse than 

for OOP and residual noise is quite intensive. In the latter 

case (Fig. 12,d), CR (≈78) is larger than in OOP but 

PSNRct (≈34.1 dB) is worse, oversmoothing is observed. 

This example shows advantages of image compression in 

OOP. 

Let us now summarize the obtained results. First, 

OOP is more probable for simpler structure images and 

higher intensity noise. If noise intensity increases, QOOP 

shifts towards larger values and it can be determined 

using expression (4) if AWGN variance is a priori known 

or accurately pre-estimated. Second, if AWGN variance 

cannot be accurately pre-estimated (this might happen for 

highly textural images, see below), it is possible to 

analyze the dependence d(1og10(CR))/dQ with searching 

for its global maxima and its position. The maximum 

position is usually connected with OOP as Qmax≈QOOP-1 

and, then, QOOP can be determined as Qmax+1. Third, if an 

image has high complexity (and then, OOP is absent or 

not obvious for any noise intensity), the CR provided for 

Q=48 is less than 200. This shows that CR(Q=48) is able 

to characterize image complexity. Fourth, if OOP is 

obvious in dependencies PSNRct on Q (that we cannot 

obtain in practice since It is not available), maximal 

d(1og10(CR))/dQ exceeds 0.12.    

It is also worth taking into account some practical 

aspects. AWGN is practically invisible in images if σ2 is 

smaller than 25 (QOOP<29 if OOP formally exists). Then, 

there is no reason to look for OOP and it is expedient to set 

Q=27 or 28 to provide invisibility of distortions. Besides, 

it is very rare case to have σ2>200 and, thus, QOOP>39.  

Thus, to minimize time and computational expenses 

for searching possible OOP, the following procedure can 

be proposed. Step 1: compress the image with Q=48 and 

calculate CR. If CR<200, the image is of high complexity 

and it is not worth searching for OOP for this image. 

Compress this image using Q=28 as the final step. If 

CR(Q=48)>200, the following should be done. Compress 

the considered image using Q from 27 to 40 and calculate 

1og10(CR) for each Q. Then, obtain d(1og10(CR))/dQ for 

Q from 28 to 40.  

 

  
a b 

  
c d 

Fig. 12. Noisy image Frisco (a) and its compressed versions for Q=QOOP=35 (b), Q=QOOP-5=30 (c) and Q=QOOP+5=40 (d)  
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If all d(1og10(CR(Q)))/dQ<0.1 (as for the plots in 

Fig. 3), the image is, probably, noise-free and it is worth 

compressing it using Q=28 to provide invisibility of 

distortions. 

If d(1og10(CR(Q)))/dQ>0.1+0.003(Q-28) for Q from 

28 to 40 (the term 0.003(Q-28) is used to take into account 

the trend of non-informative maximum increasing if Q 

increases), then find Qmax in these limits, and set Q=Qmax+1 

for final compression. 

It might seem that such a procedure might take a long 

time. However, BPG-based compression is quite fast and 

decompression is not needed.  

Besides, there are many cases when only comparison 

of CR(Q=48) to 200 is needed and then Q for final 

compression is set equal to 28.  

At the moment, we have verified the procedure only 

for AWGN (several other test images have been analyzed 

and the obtained results were similar to those presented 

above). To our opinion, in the future, it is necessary to 

study the cases of signal-dependent and spatially 

correlated noise.  

Conclusions 

In this paper, we have considered behavior of the 

dependence of CR on Q for the BPG encoder for 

grayscale images that can be either noise-free or 

contaminated by AWGN.  

It is shown that, although CR(Q) are monotonously 

increasing dependencies, their analysis allows extracting 

important information on images and noise.  

First, CR for Q approaching 50 allow finding 

complex structure image for which it is not worth trying 

to find OOP and compress images in OOP. Second, 

analysis in the limits from Q=28 to 40 allows getting 

information on OOP existence and QOOP. If OOP exists, 

then it is reasonable to use QOOP for image compression.  

The studies have been carried out for AWGN. More 

complex noise models are worth studying.  
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Стиснення зображень в градаціях сірого з шумом з аналізом коефіцієнта стиснення 

С. С. Кривенко, В. В. Лукін, Б. Бонджуліч, Н. Стояновіч 

Анотація .  Об’єктом дослідження є процес стиснення зашумлених зображень із втратами за допомогою 

покращеного портативного графічного кодера (BPG). Предметом дослідження є метод адаптивного вибору параметра Q 

кодера залежно від інтенсивності шуму та складності зображення. Метою дослідження є розгляд основних характеристик 

стиснення із втратами зображень дистанційного зондування, спотворених адитивним білим гаусовим шумом, з наданням 

рекомендацій щодо бажаного налаштування Q. Використані методи: чисельне моделювання, перевірка на тестових 

зображеннях. Отримані результати: 1) залежності ступеня стиснення від Q є монотонно зростаючими функціями; 2) їх 

характеристики сильно залежать від інтенсивності шуму та складності зображення; 3) залежності логарифма CR від Q 

містять інформацію про можливе існування та положення оптимальної робочої точки для стиснутих зашумлених 

зображень; 4) коефіцієнти стиснення для великих Q містять інформацію про складність зображення з низькою чутливістю 

до наявності та інтенсивності шуму; 5) можна отримати корисну інформацію із залежностей ступеня стиснення від Q. 

Висновки: результати цього дослідження дозволяють: 1) оцінити складність зображення; 2) адаптація Q до інтенсивності 

шуму та складності зображення. 

Ключові  слова:  стиснення з втратами; краща портативна графіка; інтенсивність шуму; складність зображення. 
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