Advanced Information Systems. 2025. Vol. 9, No. 2

ISSN 2522-9052

UDC 004.048

doi: https://doi.org/10.20998/2522-9052.2025.2.08

Svitlana Krepych?, Iryna Spivak?, Serhii Spivak?, Roman Krepych?®

1West Ukrainian National University, Ternopil, Ukraine
2Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
3 Kamianets-Podilskyi State Institute, Kamianets-Podilskyi, Ukraine

THE METHOD OF ASSESSING THE RELIABILITY OF SOFTWARE SYSTEMS
BASED ON A GRAPHIC MODEL OF THE DEPENDENCE
OF METHODS OF THE SYSTEM UNDER TEST

Abstract. Today, software has become an integral part of many areas of our daily life — from automation and
optimization of production processes to the creation of individual comfort. Programs make our lives easier, solving tasks in
seconds that used to take hours or even weeks, as well as giving us convenience and comfort that people of previous
generations could not even dream of. In order to meet the growing demand for new IT software, the market around the
world and in the country in particular is also growing and changing rapidly. According to the IT Ukraine Association,
compared to 2017, the number of employed specialists in the labor market of Ukraine increased by approximately two
times, and the volume of export of IT services - by two and a half. Despite the fact that due to the full-scale invasion, the
pace of development has slowed down in 2022-2024, it is clear that the industry has not reached its peak, which means that
it will continue to develop. In addition to the obvious changes related to the expansion of the market, there are also internal
changes in the processes of the industry due to the desire to increase the speed of program development, as well as to reduce
the final price of the software product. It is common knowledge that high quality software is an integral part of a successful
product. However, even at a fairly low pace of development, developers often make mistakes that lead to serious problems,
affecting security, reliability, and user satisfaction. So what can be said about the development in a short time? That is why
ensuring the high quality of the software product is one of the main tasks that must be solved at the development stage. The
object of the research is the process of assessing the reliability of software systems. The subject of the research is a method
of assessing the reliability of software systems based on a graphic model of the dependence of the methods of the system under
test. Conclusion: on the basis of the method of evaluating the reliability of software systems based on the graphical model of
the dependence of the methods of the system under test, software was developed in the Java and Kotlin programming
languages for evaluating the reliability index of software systems of any architectural complexity.

Keywords: software quality; software reliability; testing; modeling of complex systems; graphical system model.

Introduction

Today, software has become an integral part of
many areas of our daily life — from automation and
optimization of production processes to the creation of
individual comfort. Programs make our lives easier,
solving tasks in seconds that used to take hours or even
weeks, as well as giving us convenience and comfort
that people of previous generations could not even
dream of.

In order to meet the growing demand for new IT
software, the market around the world and in the
country in particular is also growing and changing
rapidly. According to the IT Ukraine Association,
compared to 2017, the number of employed specialists
in the labor market of Ukraine increased by
approximately two times, and the volume of export of
IT services - by two and a half [1, 2]. Despite the fact
that due to the full-scale invasion, the pace of
development in 2022-2024 has slowed down, it is
obvious that the industry has not reached its peak, which
means that it will continue to develop [3].

In addition to the obvious changes associated with
the expansion of the market, there are also internal
changes in the processes of the industry due to the desire
to increase the speed of software development, as well as
to reduce the final price of the software product [4].

It is common knowledge that high quality software
is an integral part of a successful product [5, 6].
However, even at a fairly low pace of development,
developers quite often make mistakes that lead to

serious problems, affecting security, reliability and user
satisfaction. So what can be said about the development
in a short time? That is why ensuring the high quality of
the software product is one of the main tasks that must
be solved at the development stage.

Many concepts and approaches to software
reliability assessment have been adapted from older but
successful hardware systems reliability assessment
methods [7]. However, due to significant fundamental
differences in the nature of hardware and software and
their failure processes, such approaches can (and usually
do) not work very well for software [8, 9]. Since the
processes of natural destruction are statistically
independent, in the context of hardware, the use of
redundancy, that is, hot or cold redundancy, allows
creating systems with very high reliability indicators.
Another source of failure is design errors. Mostly they
arise due to the human factor in the process of
development or maintenance. The probability of a
design defect, as a rule, depends only on the method of
use and does not depend on time. Unlike hardware,
software, at least in theory, can be completely error-free
[10, 11].

Let's take a closer look at the existing evaluation
models and start with models based on the black box. A
large number of models of this type have been created,
but the basis of all of them is the study of two subjects:

e the number of failures for a certain time
(calendar time or time in computing units, which takes
into account the load on the software);

e time intervals between failures.

58

© Krepych S., Spivak I., Spivak S., Krepych R., 2025

ISSN 2522-9052

CyuacHi inpopmariiiai cuctemu. 2025. T. 9, Ne 2

The distribution of the number of failures over time
plays an important role in the classification of reliability
models. According to this principle, they are divided into
Poisson and binomial [12]. Binomial-type models assume
that there is an initial specific number of errors in the
program, and that there is a one-to-one correspondence
between errors and failures. After each failure, its cause is
eliminated, so that this failure is no longer repeated, and
the number of errors decreases (no new errors are
introduced).

This assumption causes each bug in the software to
occur only once and is independent of the others. At the
same time, each failure occurs randomly according to the
failure intensity, which is the same throughout the
debugging time [13, 14].

Piason-type models are based on the fact that the
initial number of faults is a Poisson random variable
with a certain mean [15].

As an alternative to these models, models that
assume debugging imperfections have been proposed,
assuming that [15, 16]:

e failure detection coefficient is not a constant
value;

e during each failure, the error that caused the
failure is corrected, but new errors may occur.

Architecture-Based Reliability Models (White
Box). Large software systems almost always consist of
smaller blocks that are responsible for separate parts of
the functionality [17]. The main advantage of
architectural reliability prediction models is that it is
possible to predict system reliability already at the early
stages of software design. System-wide failure data is
not required, as is the case with black-box models, so
potential quality problems can be identified before the
system or prototype is fully completed and where a
black-box approach can be applied [18, 19].

Statement for the task

As mentioned above, in order to reduce the cost of
development and shorten its terms, it is important to
detect errors as early as possible, because with iterative
development, the complexity and, as a result, the cost of
correcting an failure increases over time, and the
probability of correcting it correctly (without
introducing new failures) decreases [20]. On the other
hand, almost all large software products are too
complex to contain any bugs at all. In view of the
above, the task of development is not to guarantee the
absence of errors, but to maintain a balance between the
conditional reliability of the final software system and
costs at all stages of development.

The purpose of the research is to create software
that would allow conducting research on the reliability
of software systems at various stages of testing and
taking into account their complexity and structure.

To achieve this goal, the following tasks must be
solved:

e Create an algorithm for
dependencies between program methods.

e Create algorithms for analysis and processing of
data coming from the evaluated system during the
testing process. This includes determining the

determining

probabilities of calling methods, handling exceptions,
and other aspects.

e Implement an algorithm that allows you to
numerically assess the reliability of the program based
on the received data. In addition to estimating the
probability of failure-free operation, the algorithm can
provide for the determination of other reliability
metrics.

e Create a user interface that will allow you to set
the necessary input parameters, as well as display the
results of the analysis in an easy-to-understand form.

e Test the program on real examples to check the
correctness of the developed software, as well as its
efficiency and accuracy.

Main part

A block diagram demonstrating the essence of the
proposed approach is shown in Fig. 1. The decision to
develop the main part of the system as a plug-in to the
integrated development environment IntelliJ IDEA from
the company JetBrains is due to the fact that the IDE
has an open and documented API that provides access
to a large the number of functionalities related to the
analysis of software code and interaction with it. Thanks
to this, there is no need to implement algorithms for
parsing java files, in order to find methods based on
formalized features, as well as various ways of
interacting with the code during its execution.

To isolate the call tree, we will use the IntelliJ Idea
API, which allows you to get a link to all nested
methods in the body of the parent in a few lines of code.
Fig. 2 shows the program code of the processMethod()
method, which is responsible for building the method
call tree.

This code recursively bypasses all nested methods
in the body of the parent, preserving the structure and
sequence of calls. For the correct construction of the
graph, the sequence of calls is very important, since the
transfer of stack control occurs synchronously, and
therefore the first submethod in the body of the parent,
after starting execution, will own the stack until all
instructions in its body, as well as all its submethods,
are executed. Only after that, stack control will be
transferred to the second submethod (if available).

To increase the efficiency of calculations, the
algorithm skips getters and setters of objects when
creating a tree of method calls.

Getters and setters are special methods that are
responsible for getting and setting the values of object
fields. These methods, usually with few exceptions, do
not contain business logic and are simple, which
essentially means that they cannot cause the application
to failure. The isGetter() and isSetter() methods are
responsible for checking whether a method belongs to
the category of getters or setters.

As mentioned above, the program does not have its
own graphical interface and uses the context menu of
the studio for interaction. Fig. 3 shows the context menu
that opens when you right-click on a method in the
studio editor.

Each menu item has validation and is displayed
and activated only under certain conditions, for

59

Advanced Information Systems. 2025. Vol. 9, No. 2 ISSN 2522-9052

example, for the "Add method to assessment™ item to be and secondly, this method must not be in the list of
active, firstly, the click must take place on the method, previously added ones.

(START] l)
Process information about the
= Set the list of exceptions that will number of method calls and
Start Inl;:; :‘le_a and open be ignored by the algorithm determine transition probabilities for
i"ﬁ" ‘ child methods from the parent body
AT T ST T : Runaing e project in debug mode Calculate the failure probabilites of
C program code H all methods
| g |
5 e iead) | HashMap size >0 =] Initialize the DTO for the graph
1 present '
in HaghMap? No E
1 ' No
H H h
] N .
' Select item "Add method to Select item "Remove method | : Get a Iist of project files, loop
E assesment” from assesment” H through them and add all No
[' methods found in them to the
! : HashMap
: E l Yes
! Delete Line Breakpoint : v
' of all child methods : Se all child methods to Line Fill in the matrices and calculate
: ' Breakpoint for each method the probability of trouble-free
' H found in the previous step operation
: Add methed to Remove method from ' v
: HashMap HashMap ' v r Save the calculation results
| ' and the serialized DTO of the
: l : v Pit)=1 graph in the database
Set Line Breakpoini Select item "Add "':""W o v
: to all child methods oL Display a message with the result of
i ' calculations in the nofification area
[E Intellij Idea
H
[. Analyze the log, count the
i f‘. numboer mtanlu;eds for ach View detailed information and a graph in the
H » < ' web application
: el : v
| (END]

Fig. 1. Block diagram of the proposed approach

private fun processMethod(project: Project, method: PsiMethod): StructureMethod?{
val callee = CalleeMethodsTreeStructure(project, method, scopelype: "This Module")
val children: Array<Any> = callee.getChildElements(callee.baselDescriptor)

val containingClass: PsiClass? = method.containingClass
val className: String = containingClass?.qualifiedName ?: return null

if(children.isEmpty() && (isGetter(method) || isSetter(method))) return null
if(method.isConstructor

&& containingClass.name?.matches(Regex(pattern: ".xException$")) == true) return null

val location = className + ":" +
containingClass.containingFile.viewProvider.document.getLineNumber(method.text0ffset)

if(methodsMap.containsKey(location)) return methodsMap[location];

val sMethod = StructureMethod(method.name, location)
methodsMap[location] = sMethod

for(value in children){
val ¢ = value as CallHierarchyNodeDescriptor
val m = c.enclosingElement as PsiMethod

val nMethod = processMethod(project, m)
if(nMethod != null) sMethod.nestedMethods.add(nMethod);

return sMethod

Fig. 2. Program code of the method processMethod()

60

ISSN 2522-9052

CyuacHi inpopmariiiai cuctemu. 2025. T. 9, Ne 2

The function "Remove method z¢("hasRole(' EDIT_PROJECT')")

from assessment" works according to the (valve = {o-"/project/editItenPopup®}, method = RequestMe
reverse principle, the only difference is |tic String editProject™ =~ = ° s 1
that when removing a method from the | model.addAttribute(= ¥ Show ContextActions 3tE
tree, the presence of dependencies of | model.addAttribute(Paste 1
other branches on this method is Copy / Paste Special
checked, and if there are any, then the | retern "erojects/edit RN
method is removed only from that e
branch, according to the method which Find Usages
was clicked with the mouse. To take into Go To
account the complexity of the software 2o

. R (valuve = { Folding d.i
system in the process of reliability
assessment, a probabilistic graph model | ;. spsect cqitprodect Analyze L
of methods is used, which allows you to projectService.editPr Befactor
present the program in the form of a Ganerate.-
directed graph. The vertices are the | return JsonBuilder.co
methods (functions) of the program, and Atach Session
the connections between these methods Open In
are the edges. Figure 4 shows a graphical
representation of a program containing 4 (valve = {{ LocalHistory tH
methods. This directed graph contains 6 |tic String editProject — Git el
vertices, four of which are responsible | bist<Prejectfoldersha . =~ in Cloboard aet
for methods, and two more are fictitious, | Preject ereject = pro
representing entry and exit points from | F#th projectfath = pr iT piagrams
e Cqﬁr?é values P, P,,P; and P, are | "ooc -ecoAttributeCH L

! ! model.addAttribute(* Add method to assessment
the probabilities of failure-free operation | model.addAttribute(= wi
of the corresponding methods, and | model.addAttribute(= 1Se
p(i, j) are the probabilities of calling | model.addAttribute(e e i =y mrmme =85
the method J from the body of the node‘..addfctlmjbute(remoteDesktops™, '.|1lS;"L"l.’.'»'.L‘DE":‘:-'-LUD:
model.addAttribute(| providers™, this.userDetailsService.

method i . The probability of failure-free

operation of each method is calculated as
the ratio of the number of its calls that
resulted in an error to the total number of method calls.

P2

2
p(2,5)
p(12) il [
PO P1 o i
P03
| 0 ——poi—> 1 o p(4.5)

A

P4

4

Fig. 4. An example of a graphical program model

Transition probabilities are calculated in
proportion to the number of calls of nested methods
from the body of the i -th method, so that the sum of all

transition probabilities from the body of the i-th
method equals:
jmax L.
> pG.j)=1. @
i=Jmin

The next step is to construct a matrix of transition
probabilities P with dimension m, where m is the
number of vertices of the graph. In this matrix, the value
of the element R ; is the value of the probability of the

Fig. 3. Program code of the method processMethod()

corresponding transition between the corresponding
methods, i.e. p(i,j). If there are no connections

between the corresponding methods, zero is written in
place of the corresponding element. The next step is to
calculate the matrix G, for which the j-th row of the
matrix P is multiplied by the probability of failure-free
operation of the j-th method (for fictitious vertices,
this parameter is equal to one).

Finally, it is necessary to calculate the matrix T,
which in the case of an acyclic graph is calculated
according:

T=1+G+G?+G%+..+G™,

where | is the unit square matrix of dimension m.

If the graph of the studied program is not acyclic,
that is, it contains paths leading from the vertex to itself,
then the matrix T is calculated:

T=(1-6)".

@

©)

The probability of failure-free operation of the
studied program will be the value of the element
To,m—1 Of the matrix T .

The next important element of the algorithm is the
construction of connections between methods in the
chain, determination of transition probabilities, as well
as the probability of error-free operation of each method

61

Advanced Information Systems. 2025. Vol. 9, No. 2

ISSN 2522-9052

to build a graph. To solve this problem, it is necessary
to count the number of executions of each method, as
well as the number of failures that occurred in each of
them [21]. The debug mode in Intellij l1dea will do a
great job with this, in which the studio can record
method entries and all exception generation in the log.
When adding a method to a HashMap, a "Breakpoint™ is
automatically set on it. All breakpoints set in the code
can be viewed by going to the Intellij Idea settings [22].
Fig. 5 shows the code that is responsible for fixing
the number of method calls. This code is called every
time the session is stopped. It checks whether this stop
was caused by a row-level Breakpoint, commits the call
(if all conditions are met) and resumes the session.
Although stopping the session also slows down the
execution of the main program, it ensures that all calls
will be caught, because attempts to catch calls in
asynchronous mode can cause problems because the
plugin code does not keep up with the main code. To
increase the speed of the program, a variable of type
unsigned long is used to save the number of method
calls, which allows you to store values up to 254 — 1.
This information, together with data on the number

of calls and a tree of methods, allows you to build a
graphical model of this software system, as well as fill
in the matrices necessary to calculate its reliability. It is
important to understand that the method tree constructed
above does not contain enough information to construct
a graph [23]. This is due to the fact that this hierarchy of
methods in no way takes into account the conditional
statements and various checks that may be present in the
program code. The very task of estimating transition
probabilities is extremely non-trivial and cannot be
solved algorithmically. Within the framework of the
considered model, transition probabilities are calculated
statistically as the ratio of the number of calls of the
child method to the number of calls of the parent
method. Table 1 shows an example illustrating the
influence of conditional operators on the structure of the
graph [24, 25].

To obtain a reliability indicator, you need to use the
last item of the context menu (Assess App Reliability),
as shown in Fig. 6. This method is active only when the
studio was started in debug mode, the HashMap
contains at least one method, and the call count table
contains at least one method called by the debug input.

class ViewFileAction : DebuggerAction() {
override fun actionPerformed(e: AnActionEvent) {

val session = DebuggerUIUtil.getSession(e)

session.project.mes

override fun pr

3}
}
val session = debugProcess.session
session.addSessionListener(object :
override fun sessionPaused() {

if (source is XLineBreakpoint){

1

session.resume()

B

if(session != null && session.debugProcess is JavaDebugProcess){
2Bus.connect().subscribe<XDebuggerManagerListener>(XDebuggerManager. TOPIC,
Started(debugProcess: XDebugProcess) {
attachDebugBreaklListener(debugProcess)

fun attachDebugBreaklistener(debugProcess: XDebugProcess) {

XDebugSessionListener {

val source = SuspendContextFactory.getSource(session.suspendContext)

registerMethodInvocation(source.getData(CommonDataKeys.PSI_ELEMENT))

Fig. 5. Program code for registration of method calls

Table 1 — The influence of conditional operators on the structure of graphs

void rootMethod(){ void rootMethod(){
methodA(); methodA();
methodB(); if (something) methodB();
} }
rootMethod methodA methodB rootMethod methodA methodB
Y > 2 y 3 4 -—-» 1 > 2 » 3 —> 4

62

ISSN 2522-9052

CyuacHi inpopmariiiai cuctemu. 2025. T. 9, Ne 2

) Create Gist...

— Remove method from assessment Ctrl+Alt+R

Ctri+Alt+.

Wt Assess App Reliability

Fig. 6. The Assess App Reliability function
in the context menu

After activating this item, the program analyzes
the log entries, determines all the necessary values for
building the matrices and calculates the probability of
the program's error-free operation (Ps, Table 1). First,
the probability of error-free operation is calculated as
one minus the number of errors divided by the number
of calls. Since the number of calls is counted only for
methods on which Breakpoint is set, errors in all other
methods will be missed in the counting process.

Table 2 — Log analysis results

Number Number
Method of calls of failures Pr
calculateSomething() | 2147483647 | 23798952 | 0.9889
generateDivident() 2147483647 | 102261126 | 0.9524
genRandomValue() 613566756 | 18592932 | 0.9697
getConstantValue() | 1431655765 | 15070061 | 0.9895
generateDivisor() 2011559528 0 1

The next step is to calculate the probability of
calling the method from the parent's body. For this, for
each method, the body of which method was called is
checked and the number of calls "with context" is
counted. Context is important because the same method
can be used in different parts of the program. At this
step, transition probabilities are calculated, that is,
values for each of the edges of the graph.

Next, the program proceeds to actual calculations
of the probability of failure-free operation. After all
operations and calculations are completed, the final data
will be automatically written to the database, and an
informational message with the result will be displayed
in the notification area, as shown in Fig. 7.

i) The probability of failure-free operation of this program

is 0.9838

Fig.7. Information message with the result
of the reliability assessment

For a visual representation of the implementation
of the proposed approach for evaluating the reliability of
a software system based on a graph model of method
dependence, we will illustrate the reliability evaluation
of a simple program, the program code of which is
shown in Fig. 8. For the convenience of visual
demonstration, all methods of the software system are
located in one class, but the proposed approach will
work even if all methods belong to different classes. To
emulate the presence of failures, conditional operators
are added to the body of methods that generate
exceptions of the NumberFormatException type for
certain values of the iterative variable. Binding to the

iterative variable was done purely from the point of
view of repeatability of results for ease of testing [26].
After the calculations are completed, a browser window
containing the constructed graph of the program with
probability indicators opens automatically.

public class Main {
private static int i = §;
public static void maein(String[] args){
for(; is+ < Integer.MAX_VALUE;)
tryd
colculoteSomething();
} catch (Exception ignored){}

}

public static void calculateSomething(){
double

}

= generoteDividend() / generatelivisor();

public static double generateDividend(){
if(i X 21 == B)
throw new NumberFormatException(“Something happened®);
if(i % 3 ==
else return getConstantValue();

B) return genRandonValue();

private static double genRandomValue(){
if(i % 99 == 9)
thron news NumberFormatException("Something happensed”);

return (Math.rondon() * (Math.rondow() > d 2 1 : -1));

private static double getConstantValue(){
if(i X 95 == B)
throw new NumberFormatException(“Something happened”);
return
}
public static Double generateDiviser(){
if(1 X 75 B) return null;

return Math.rondon();

Fig. 8. Program source code containing 5 methods

A screenshot of the graph is shown in Fig. 9. It is
worth noting that despite its simplicity of operation and
free for commercial use, the dracula.js library has a not
very optimized algorithm for calculating Bezier curves
for constructing the edges of the graph, so quite often
the graph does not look very obvious and requires
manual manipulation with nodes In addition, this library
has certain performance problems - it takes 0.5 seconds
to build a graph containing 100 nodes, 5.5 seconds to
build a graph with 500 nodes, but a graph for a program
containing 1000 methods will be built in 40 seconds.

Since the graph contains seven vertices, the
matrices P, G and T will also have dimension 7 x 7.
Fig, 10 shows the values of all matrices [27].

As it was mentioned above, the probability of

failure-free operation of the system is equal to T g,

since in our case m=7, then Ty ;3 =T =0.93.

We will apply the proposed method to determine
the reliability of a more complex program. The class
diagram of the test program is shown in Fig. 11.

After the completion of the program execution and
completion of calculations, we receive information
about the number of method calls and errors that
occurred. The resulting data are shown in Table 3.

63

Advanced Information Systems. 2025. Vol. 9, No. 2

ISSN 2522-9052

genR,andnmwlue[,u

0.3 ganarmeclwla-:-n:]

gamrmeﬁwdﬂmtl\—) i

i pel.Cnru'Ianl'A.l"zl.lﬂ_l

caloulsteSomelbmng||
¢ (0,588

Fig. 9. Graph of the program under study

010 0 O OO 01 O 0 0 0 O 1 1 099 028 0.66 0.93 0.93
001 0 0 OO 0 0 09 o0 0 0 O 0 1 099 0.28 0.66 0.93 0.93
(0000030700 OO0 O 020067 0 O/ _ |00 1 029 067 094 094
P= 000 O 0 1 O’G_ 00 O 0 0 097 O’T_ 00 O 1 0 097 097
000 0O O 10 00 O 0 0 099 0 00 O 0 1 099 0.99
000 0 O 01 00 O 0 0 0 1 00 O 0 0 1 1
000 0O O 00O 00 O 0 0 0 o0 00 O 0 0 0 1
Fig. 10. The values of the matrices P, Gand T
©@% MainController] . ©% TaskSchedulingService N (©% TaskExecutionService
(T createFolder(String, Path) Object service [& executs(PostponableTask) void executionService | (1) ' createFolder(FolderActionArguments) void
(i scheduleFolderCreation(Path) void +
[& postpone(String, Object, String) vaid screates 1
@' executePostponedTasks() void | \I
) |
postponedTasksRepository i fsService
©= PostponableTask i
(B argumentType String !
(@' argument String . i 1
(®)w postponingReason String €~ =====" ©' PostponedTasksRepository 1
@ methadName Sting | wereates (@' save(String, String, String, String) void v ©%= FileSystemService
(@ creationDate LocalDateTime (% delete(PostponableTask) void ©+ FolderActionArguments {w fsAvailablef) boolean
{E)% uuld uuio @ retrieveAlTasks() List<PostponableTask> (@)% relativePath Path (@ w createFolder(Path) void
Fig. 11. Class diagram of the program under study
Table 3 — Log analysis results
Method Number of calls Number of failures | The probability of failure-free work
MainController.createFolder() 1000 0 1
scheduleFolderCreation() 1000 0 1
TaskExecutionService.createFolder() 3765 0 1
fsAvailable() 3765 35 0.991
postpone() 333 5 0.985
save() 328 2 0.993
FileSystemService.createFolder() 1024 75 0.93
delete() 326 1 0.997
executePostponedTasks() 114 0 1
retriveAllTasks() 114 2 0.982
execute() 2768 13 0.995

64

ISSN 2522-9052

CyuacHi inpopmariiini cuctemu. 2025. T. 9, Ne 2

Fig. 12 shows the values of all matrices P, G and
T for this program.

The probability of failure-free work of the system
is equal to T, ,_q, since in our case m=13, then

TO,m—l =T0’12 =0.97.

The graph of this program, containing 13 vertices
and 17 edges, is shown in Fig. 13 [27].

009000 0 O O 00100 O
001200 0 0O O OO OO O
00010 0 0 0O O0UOUOO O
00001 0 0 0 0O OO0 O
P_O00000.0600.2900000.63_

_0000001000000'6
00000 0O O O 0O OO 1
0 0 00O0O006 0 03 0 0 0O 064
00000 0O O O 0O OO 1
00000 0O O O 0O 10 O
00000 0O O O OO0 O01 0
00010 0 0 0 O0O0OUOO O
00000 0O O O OO0 O0O0 O

109 09 1 1 01 o

01 1 1 1 01 o0

00 1 1 1 01 o0

00 0 1 1 01 O

/oo 0o 0o 1 o1 o0

T‘ooo 0 0 1 0

0 0 0 0 0 o0

00 0 0O 0 0060

00 0 0 0 O

0 0 0 098 098 009 0.

0 0 0 098 098 009 0.

00 0 1 1 009 0

00 0 0 0 O

009 000 O 0 0 0010 O 0
0 0 100 O 0 0 0 0 0 O 0
0 0 010 O 0 0 0 0 0 O 0
0 0 001 O 0 0 0 0 0 O 0

|0 0 00 O0O006 0O 0290 0 0 0 062},

“/o 0o 0OO0OO O 09 0 0 0 0 O o |’
0 0 00O O 0 0 0 0 O 0 099
0 0 00OOO6 O 0280 0 0 0 06
0 0 00O O 0 0 0 0 0 O 1
0 0 00O O 0 0 0 0 1 O 0
0 0 00O O 0 0 0 0 0 098 O
0 0 010 O 0 0 0 0 0 O 0
0 0 00O O 0 0 0 0 0 O 0

09 029 008 01 01 01 097

09 029 008 0 O 0 097

09 029 008 0 O 0 097

09 029 008 0 O 0 097

09 029 008 0 O 0 097

9 0 0 0 0 0 098

1 0 0 0 0 0 0.99

05 1 028 0 O 0 093

0 0 1 0 0 0 1

09 028 008 1 1 098 0.95

09 028 008 0 1 098 0.95

09 029 008 0 O 1 0.96

0 0 0 0 0 0 1

Fig. 12. The values of the

scheculeFolderCreation()
nm

MainController. createFoldes()
11.0)

—_—

ratrivaAlTasks(|
(0.962)

enmcu

)
10.985)

execulePosiponed Tasks()
(o)

Fig. 13. Graph of the

Conclusions

The paper provides a solution to the current
problem of quality analysis of complex software
systems. During the analysis of the available solutions,
various models for assessing the reliability of software
systems were investigated.

Unfortunately, a large number of them were
primarily created to assess the reliability of hardware
systems, so they are based on assumptions and

/hskEm:ullnnS«ruqi:l:.:malnFnldan
.o

matrices P, Gand T

fsvailable(}
{0.881)

posipone |
(0.885)

detate()
(0.997)

Fila SystemService create Folden|)
0083)

program under study

simplifications that are not very common to software
systems, so they are not always able to give an
acceptable result. A method for assessing the reliability
of software systems based on a graph model of the
dependence of the methods of the system under test is
proposed. An experimental study of the software system
was conducted for the possibility of its application to
determine the reliability of real programs written in the
Java programming language. The obtained results show
that the complexity of the program does not

65

Advanced Information Systems. 2025. Vol. 9, No. 2 ISSN 2522-9052

significantly affect the time of execution of calculations. which means that it can calculate reliability indicators
Considering the obtained results, we can see that the for much larger software systems in an acceptable
proposed approach shows good performance indicators, amount of time.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

REFERENCES

Yakovyna, V. and Symets, I. (2021), “Reliability assessment of CubeSat nanosatellites flight software by high-order Markov
chains”, Procedia Computer Science, vol. 192, pp. 447-456, doi: https://doi.org/10.1016/j.procs.2021.08.046

Skanda, V.C., Srinivasa Prasad, S, Dheemanth, G.R. and Kumar, N.S. (2019), “Assessment of quality of program based
on static analysis”, IEEE 10" International Conference on Technology for Education(T4E), pp. 276-277, doi:
https://doi.org/10.1109/T4E.2019.00072

Lu, S., Li, H. and Jiang, Z. (2020), “Comparative study of open source software reliability assessment tools”, IEEE
International Conference on Artificial Intelligence and Information Systems (ICAIIS), China, pp. 49-55, doi:
https://doi.org/10.1109/ICAI1S49377.2020.9194946

Yakovyna, V., Seniv, M., Symets, I. and Sambir, N. (2020), “Algorithms and software suite for reliability assessment of
complex technical systems”, Radio Electronics, Computer Science, Control 4, pp. 163-177, doi:
https://doi.org/10.15588/1607-3274-2020-4-16

San, K.K., Washizaki, H., Fukazawa, Y., Honda, K., Taga, M. and Matsuzaki, A. (2021), “Deep cross-project software
reliability growth model using project similarity-based clustering”, Mathematics, vol. 9, no. 22, article number 2945, doi:
https://doi.org/10.3390/math9222945

Krepych, S., Stakhiv, P. and Spivak, 1., (2013), “Analysis of the tolerance area parameters REC based on technological area
scattering”, 12" International Conference “The Experience of Designing and Application of CAD Systems in
Microelectronics ”, Polyana Svalyava, Ukraine, pp.179-180. available at: https://ieeexplore.ieee.org/document/6543231

Wu, C.-Y. and Huang, C.-Y. (2021), “A study of incorporation of deep learning into software reliability modeling and
assessment”, IEEE Transactions on Reliability, vol. 70, no. 4, pp. 1621-1640, doi: https://doi.org/10.1109/TR.2021.3105531
Jagtap, M., Katragadda, P. and Satelkar, P. (2022), “Software reliability: development of software defect prediction models
using advanced techniques”, Annual Reliability and Maintainability Symposium (RAMS), pp.1-7, doi:
https://doi.org/10.1109/RAMS51457.2022.9893986

Nafreen, M., Luperon, M., Fiondella, L., Nagaraju, V., Shi, Y. and Wandji, T. (2020), “Connecting software reliability
growth Models to software defect tracking”, IEEE 31% International Symposium on Software Reliability Engineering
(ISSRE), pp.138-147, doi: https://doi.org/10.1109/1SSRE5003.2020.00022

Yakovyna, V. and Symets, 1. (2021), “A method of high-order Markov chain representation through an equivalent first-order
chain for software reliability assessment”, Computer systems and information technologies, vol. 3, pp. 66-73, doi:
https://doi.org/10.31891/CSIT-2021-5-9

Jain, R. and Sharma, A. (2019), “Assessing software reliability using genetic algorithms”, The Journal of Engineering
Research, [TJER], vol. 16(1), pp. 11-17, doi:_https://doi.org/10.24200/tjer.vol16iss1

Micro, R., Chren, S. and Rossi, B. (2022), “Applicability of soft-ware reliability growth models to open source software”,
48™M Euromicro Conference on Software Engineering and Acvanced Applications, (SEAA), pp. 255-262, doi:
https://doi.org/10.1109/SEAA56994.2022.00047

Lu, S., Li, H. and Jiang, Z. (2020), “Comparative Study of Open Source Software Reliability Assessment Tools”, 2020 IEEE
International Conference on Artificial Intelligence and Information Systems, (ICAIIS), Dalian, China, pp. 49-55, doi:
https://doi.org/10.1109/ICAI1S49377.2020.9194946

Kim, T., Ryu, D. and Baik, J. (2024), “Enhancing software reliability growth modeling: a comprehensive analysis of
historical datasets and optimal model selections”, IEEE 24™ International Conference on Software Quality, Reliability and
Security, QRS, pp. 147-158, doi: https://doi.org/10.1109/QRS62785.2024.00024

Chen, Y., Yan, X. and Khan, A.A. (2019), “A Novel Reliability Assessment Method Based on the Effects of Components”,
IEEE 19th International Conference on Software Quality, Reliability and Security (QRS), Sofia, Bulgaria, pp. 69-76, doi:
https://doi.org/10.1109/QRS.2019.00022

Nafreen, M., Luperon, M., Fiondella, L., Nagaraju, V., Shi, Y. and Wandji, T. (2020), “Connecting Software Reliability
Growth Models to Software Defect Tracking”, IEEE 31% International Symposium on Software Reliability Engineering,
ISSRE, Coimbra, Portugal, pp. 138-147, doi: https://doi.org/10.1109/ISSRE5003.2020.00022

Saini G.L., Panwar, D. and Singh, V. (2021), “Software reliability prediction of open source software using soft computing
technique”, Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science),
vol. 14, no. 2, pp. 612-621, doi: https://doi.org/10.2174/2213275912666190307165332

Teuber, S. and Weigl, A. (2021), “Quantifying Software Reliability via Model-Counting”,in: Abate, A., Marin, A. (eds)
Quantitative Evaluation of Systems. QEST 2021. Lecture Notes in Computer Science, vol 12846. Springer, Cham. doi:
https://doi.org/10.1007/978-3-030-85172-9 4.

Nafreen, M., Bhattacharya, S. and Fiondella, L. (2020), “Architecture-based Software Reliability Incorporating Fault
Tolerant Machine Learning”, Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, pp. 1-6,
doi: https://doi.org/10.1109/RAMS48030.2020.9153718.

Kuang, P., Zhao, Q.-M. and Xie, Z.-H. (2015), “Algorithms for solving unconctrained optimization problems”, 12t
International Computer Conference on Wavelet Active Media Technology and Information Processing, pp. 379-382, doi:
https://doi.org/10.1109/ICCWAMTIP.2015.7494013

Bayurskii, A. and Krepych, S. (2018), “Intelligent Syatem Analyzing Quality of Land Plots”, CEUR Workshop Proceedings
2300, pp.166-169, available at: https://ceur-ws.org/\Vol-2300/Paper40.pdf

(2024), Breakpoints|intellij idea documentation, available at: https://www.jetbrains.com/help/idea/using-breakpoints.html
Kuchuk, N., Kashkevich, S., Radchenko, V., Andrusenko, Y. and Kuchuk, H. (2024), “Applying edge computing in the
execution 10T operative transactions”, Advanced Information Systems, vol. 8, no. 4, pp. 49-59, doi:
https://doi.org/10.20998/2522-9052.2024.4.07

66

https://doi.org/10.1016/j.procs.2021.08.046
https://ieeexplore.ieee.org/author/37087471461
https://doi.org/10.1109/T4E.2019.00072
https://doi.org/10.1109/ICAIIS49377.2020.9194946
https://doi.org/10.15588/1607-3274-2020-4-16
https://doi.org/10.3390/math9222945
https://ieeexplore.ieee.org/document/6543231
https://doi.org/10.1109/TR.2021.3105531
https://doi.org/10.1109/RAMS51457.2022.9893986
https://doi.org/10.1109/ISSRE5003.2020.00022
https://doi.org/10.31891/CSIT-2021-5-9
https://doi.org/10.24200/tjer.vol16iss1
https://doi.org/10.1109/SEAA56994.2022.00047
https://doi.org/10.1109/ICAIIS49377.2020.9194946
https://doi.org/10.1109/QRS62785.2024.00024
https://doi.org/10.1109/QRS.2019.00022
https://doi.org/10.1109/ISSRE5003.2020.00022
https://doi.org/10.2174/2213275912666190307165332
https://doi.org/10.1007/978-3-030-85172-9_4
https://doi.org/10.1109/ICCWAMTIP.2015.7494013
https://ceur-ws.org/Vol-2300/Paper40.pdf
http://www.jetbrains.com/help/idea/using-breakpoints.html
https://www.scopus.com/authid/detail.uri?authorId=57196006131
https://www.scopus.com/authid/detail.uri?authorId=58244269900
https://www.scopus.com/authid/detail.uri?authorId=57189376280
https://www.scopus.com/authid/detail.uri?authorId=59412400500
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85209218056&origin=recordpage
https://www.scopus.com/record/display.uri?eid=2-s2.0-85209218056&origin=recordpage
https://www.scopus.com/sourceid/21101186339?origin=resultslist
https://doi.org/10.20998/2522-9052.2024.4.07

ISSN 2522-9052 CyuacHi inpopmariiiai cuctemu. 2025. T. 9, Ne 2

24. Mezhuev, P., Gerasimov, A., Privalov, P. and Butkevich, V. (2021), “A dynamic algorithm for source code static analysis”,
Ivannikov Memorial Workshop (IVMEM), pp.57-60, doi: https://doi.org/10.1109/IVMEM53963.2021.00016

25. Zhang, Y., Sun, Y., Si, G., Dong, B. and Chen, W. (2022), “An overview of source code static analysis method based on
knowledge graph”, IEEE 5" Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC), vol. 5, pp. 1772-1775, doi: https://doi.org/10.1109/IMCEC55388.2022.10019850

26. Spivak, l., Krepych, S., Litvynchuk, M. and Spivak, S. (2021), “Validation and data processing in json format”,
IEEE EUROCON 2021 19" International ~Conference on Smart Technologies, pp.326-330, doi:
https://doi.org/10.1109/EUROCON52738.2021.9535582

27. Krutko, V., Spivak, I. and Krepych, S. (2023), “An approach to assessing the reliability of software systems based on a graph
model of method dependence”, 61 Worksop for Young Scientists in Computer Science & Software Engineering, pp. 37-47,
available at: https://ceur-ws.org/Vol-3662/paper11.pdf

Received (Haniiuua) 30.10.2024
Accepted for publication (Ilpuitasita 1o apyky) 26.02.2025

B1IOMOCTI ITPO ABTOPIB/ ABOUT THE AUTHORS

Kpennu Ceaitiana S$lpociaBiBHa — KaHAWAAT TEXHIYHUX HAyK, [OLCHT, JIOUEHT Kadeapy KOMITIOTEPHUX HayK,
3axigHOYKpaiHChKUI HAIllOHATBHUN YHiBEpCHUTET, TepHOminb, YKpaiHa;
Svitlana Krepych — Candidate of Technical Sciences, Associate Professor, Associate Professor of Computer Science
Department, Western Ukrainian National University, Ternopil, Ukraine;
e-mail: msya220189@gmail.com ORCID Author ID: https://orcid.org/0000-0001-7700-8367;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=55225606100.

CniBak Ipuna SIpociaBiBHa - KaHAWAAT TEXHIYHAX HAYK, AOIEHT, JOIECHT Kadeapy KOMI IOTEpHUX HAyK, 3aXiTHOYKPATHCHKUI
HaIllOHaJBHUH yHiBepcuTeT, TepHomiib, YKpaina;
Iryna Spivak — Candidate of Technical Sciences, Associate Professor, Associate Professor of Computer Science
Department, Western Ukrainian National University, Ternopil, Ukraine;
e-mail: spivak.iruna@gmail.com ORCID Author ID: https://orcid.org/0000-0003-4831-0780;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=55226024100.

CniBak Cepriii MuxaiiioBu4 — JOKTOp E€KOHOMIYHHMX Hayk, mpodecop, 3aBimyBau kadempu OyXrantepchbkoro oOIiKy Ta
aymuty, TepHONIBChKUI HAIllOHAIBHUN TEXHIYHUN yHiBepcuTeT iMeHi [Bana [lymos, Teprominb, Ykpaina;
Serhii Spivak — Doctor of Economic Sciences, Professor, Head of the Accounting and Audit Department, Ternopil Ivan
Puluj National Technical University, Ternopil, Ukraine;
e-mail: spivak_s@tntu.edu.ua ORCID Author ID: https://orcid.org/0000-0002-7160-2151;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=57210559132.

Kpenuu Poman BosiomumupoBuy — Bukianad, Kam’sHeus-Ilominbchkuit nepxaBHuit iHCTHTYT, Kam’sHeub-IloainbCchkuii,
VYkpaina;
Roman Krepych- lector, Kamianiets-Podilskyi State Institute, Kamianets-Podilskyi, Ukraine;
e-mail: jagmstar@gmail.com ORCID Author ID: https://orcid.org/0000-0003-4831-0780;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=27368089600.

MeTon ouiHIOBaHHS HAAiifHOCTI MPOrPaMHHUX CHCTEM
Ha 0cHOBi rpagoBoi Mo/eJIi 32/1e2KHOCTi METO/IiB CHCTEMH, 10 TECTYETHCS

C. 4. Kperny, 1. 4. CriBak, C. M. CmiBak, P. B. Kperma

AnoTanisi. Ha choromni mporpamue 3a0e3reueHHs MEPETBOPIIIOCS HA HEBiN €MHY CKIQIOBY 0araThoxX cdep Hamoro
HOBCSKICHHOTO JKUTTS — BiJ aBTOMaTH3allii i ONTHMi3alii NpoleciB Ha BUPOOHUITBI IO CTBOPEHHS KOM(OPTY OKpeMoi
moauHu. [IporpamMu poOIIATh HAIl YKUTTS MPOCTIIIMMH, B CEKYHAM BHPIIIYIOYH 33/1a4i, HA SKi paHille UM TOAWHHN Y4 HaBITH
TIDKHI, @ TAKOXK Japylodd HaM 3pydYHICTH Ta KOM(OPT, PO sKi JIOAN MHUHYJIUX MOKOJIHb HE MOTJIH HAaBITh i MpisATH. 3 METOIO
3a/I0BOJILHUTH 3POCTAr0YMil MONMUT Ha HOBe mporpamHe 3abesneueHHs [T pHHOK B yCbOMY CBITi i B Y KpaiHi 30KpeMa TaKox
cTpiMKo pocre i 3MmiHeThest. 3a manumu IT Ukraine Association, mopiBasiHO 3 2017 poKOM, KiJIbKICTh HpaleBIAIITOBAHUX
¢baxiBLiB Ha PUHKY mpani YKpaiHH 3pocia NMpuOIN3HO B JBa pasu, a obcsaru excropty IT mocayr - B aBa 3 nonoBuHOo. He
JMBIISTYNCH Ha Te, LII0 Yepe3 MOBHOMACIITA0HEe BTOPTHEHHs TeMIHU po3BUTKY B 2022-2024 pokaxX CHOBLIBHUIINCH, OYCBUIHHM €,
IO Taly3b HE J0CATa CBOTO MiKy, a 3HAYUTH MPOJOBXKUTH Po3BHUBaTHCA. KpiM OueBHAHUX 3MiH, [OB’SI3aHUX 3 PO3MIUPEHHIM
PHHKY, € ¥ BHYTpIIlIHI 3MiHH B IIpoLiecax iHJyCTpil 3yMOBIICHI MParHeHHsIM IiJBUIINTH MIBUIKICTb PO3POOKH MPOrpaM, a TaKOK
3HU3UTH KIiHIEBY LiHy MPOrPaMHOTO NPOAYKTY .3arallbHOBIJOMO, 10 BUCOKA SIKICTh MPOrPaMHOT0 3a0e3MeueHHs € HeBi'€MHOIO
YaCTHHOIO YCIHINIHOTO MpOAyKTy. [IpoTe, HaBiTh TpPH MOBOJII HEBHCOKOMY TEMITi pPO3pOOKH, PO3POOHUKH JOBOJI YacTO
MPHITYCKAIOThCS TIOMHJIOK, SIKi NMPH3BOJATH [0 CEpHO3HUX MpoOJeM, BIUIMBAIOYM Ha Oe3neKy, HaaifHICTh Ta 3a/10BOJICHICTH
kopucTyBadiB. To o Bxke Ka3aTH Impo po3poOKy y ctucii Tepminu? Came ToMy, 3a0e3NedeHHs] BUCOKOI SIK OCTI MPOTPaMHOTO
MPOAYKTY € OJHMM 3 OCHOBHHX 3aBJaHb, SIKC Ma€ BHPILIyBaTHUCS Ha erami po3poOku. O0’€KTOM NOCIiZKEHHs BHCTYIAIOTh
NpOIIECH OI[IHIOBaHHA HAMIWHOCTI mporpamMHuX cucteM. I[IpeaMeToM IOCTiAKEHHSI € METOHI OIIHIOBaHHA HaIiifHOCTI
MPOrpaMHHUX CHCTEM Ha OCHOBI Ipad)OoBOi MOJETI 3aJISKHOCTI METOMIB CHCTEMH, 110 TECTY€EThCsl. BHCHOBOK: Ha OCHOBI MeTOIy
OLIIHIOBAaHHSI HAJAIHHOCTI MpPOrpaMHHUX CHCTEM Ha OCHOBI rpadoBoi Moemi 3aJeKHOCTI METOMIB CHCTEMH, IO TECTY€EThCH,
po3pobieHo mporpamue 3abesrnedeHHs Ha MOBi mporpamyBaHus Java Ta Kotlin st oriHiOBaHHS MOKa3HHKa HaIiHHOCTI
MIPOTPaMHHX CUCTEM Oyab-sIKOI apXiTeKTypHOI CKJIaJHOCTI.

KawyoBi caoBa: skicte nporpaMHOro 3a0e3ledeHHs; HAOIMHICTh MPOrpamMHOrO 3a0e3ledeHHs; TeCTyBaHHS,
MOJIEIIIOBaHHS CKJIQJIHUX CUCTEM; rpad)oBa MOJIEIb CHCTEMH.

67

https://doi.org/10.1109/IMCEC55388.2022.10019850
https://doi.org/10.1109/EUROCON52738.2021.9535582
https://ceur-ws.org/Vol-3662/paper11.pdf
mailto:msya220189@gmail.com
https://orcid.org/0000-0001-7700-8367
https://www.scopus.com/authid/detail.uri?authorId=55225606100
mailto:spivak.iruna@gmail.com
https://orcid.org/0000-0003-4831-0780
https://www.scopus.com/authid/detail.uri?authorId=55226024100
mailto:spivak_s@tntu.edu.ua
https://orcid.org/0000-0002-7160-2151
https://www.scopus.com/authid/detail.uri?authorId=57210559132
mailto:jagmstar@gmail.com
https://orcid.org/0000-0003-4831-0780
https://www.scopus.com/authid/detail.uri?authorId=27368089600

