
Advanced Information Systems. 2025. Vol. 9, No. 2 ISSN 2522-9052 

58 

UDC 004.048   doi: https://doi.org/10.20998/2522-9052.2025.2.08 
 

Svitlana Krepych1, Iryna Spivak1, Serhii Spivak2, Roman Krepych3 

 

1 West Ukrainian National University, Ternopil, Ukraine 
2 Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine 
3 Kamianets-Podilskyi State Institute, Kamianets-Podilskyi, Ukraine 
 

THE METHOD OF ASSESSING THE RELIABILITY OF SOFTWARE SYSTEMS 

BASED ON A GRAPHIC MODEL OF THE DEPENDENCE 

OF METHODS OF THE SYSTEM UNDER TEST 
 

Abstract .  Today, software has become an integral part of many areas of our daily life — from automation and 

optimization of production processes to the creation of individual comfort. Programs make our lives easier, solving tasks in 

seconds that used to take hours or even weeks, as well as giving us convenience and comfort that people of previous 

generations could not even dream of. In order to meet the growing demand for new IT software, the market around the 

world and in the country in particular is also growing and changing rapidly. According to the IT Ukraine Association, 

compared to 2017, the number of employed specialists in the labor market of Ukraine increased by approximately two 

times, and the volume of export of IT services - by two and a half. Despite the fact that due to the full-scale invasion, the 

pace of development has slowed down in 2022-2024, it is clear that the industry has not reached its peak, which means that 

it will continue to develop. In addition to the obvious changes related to the expansion of the market, there are also internal 

changes in the processes of the industry due to the desire to increase the speed of program development, as well as to reduce 

the final price of the software product. It is common knowledge that high quality software is an integral part of a successful 

product. However, even at a fairly low pace of development, developers often make mistakes that lead to serious problems, 

affecting security, reliability, and user satisfaction. So what can be said about the development in a short time? That is why 

ensuring the high quality of the software product is one of the main tasks that must be solved at the development stage. The 

object of the research is the process of assessing the reliability of software systems. The subject of the research is a method 

of assessing the reliability of software systems based on a graphic model of the dependence of the methods of the system under 

test. Conclusion: on the basis of the method of evaluating the reliability of software systems based on the graphical model of 

the dependence of the methods of the system under test, software was developed in the Java and Kotlin programming 

languages for evaluating the reliability index of software systems of any architectural complexity. 

Key words :  software quality; software reliability; testing; modeling of complex systems; graphical system model. 
 

Introduction 

Today, software has become an integral part of 

many areas of our daily life — from automation and 

optimization of production processes to the creation of 

individual comfort. Programs make our lives easier, 

solving tasks in seconds that used to take hours or even 

weeks, as well as giving us convenience and comfort 

that people of previous generations could not even 

dream of. 

In order to meet the growing demand for new IT 

software, the market around the world and in the 

country in particular is also growing and changing 

rapidly. According to the IT Ukraine Association, 

compared to 2017, the number of employed specialists 

in the labor market of Ukraine increased by 

approximately two times, and the volume of export of 

IT services - by two and a half [1, 2]. Despite the fact 

that due to the full-scale invasion, the pace of 

development in 2022-2024 has slowed down, it is 

obvious that the industry has not reached its peak, which 

means that it will continue to develop [3]. 

In addition to the obvious changes associated with 

the expansion of the market, there are also internal 

changes in the processes of the industry due to the desire 

to increase the speed of software development, as well as 

to reduce the final price of the software product [4]. 

It is common knowledge that high quality software 

is an integral part of a successful product [5, 6]. 

However, even at a fairly low pace of development, 

developers quite often make mistakes that lead to 

serious problems, affecting security, reliability and user 

satisfaction. So what can be said about the development 

in a short time? That is why ensuring the high quality of 

the software product is one of the main tasks that must 

be solved at the development stage. 

Many concepts and approaches to software 

reliability assessment have been adapted from older but 

successful hardware systems reliability assessment 

methods [7]. However, due to significant fundamental 

differences in the nature of hardware and software and 

their failure processes, such approaches can (and usually 

do) not work very well for software [8, 9]. Since the 

processes of natural destruction are statistically 

independent, in the context of hardware, the use of 

redundancy, that is, hot or cold redundancy, allows 

creating systems with very high reliability indicators. 

Another source of failure is design errors. Mostly they 

arise due to the human factor in the process of 

development or maintenance. The probability of a 

design defect, as a rule, depends only on the method of 

use and does not depend on time. Unlike hardware, 

software, at least in theory, can be completely error-free 

[10, 11]. 

Let's take a closer look at the existing evaluation 

models and start with models based on the black box. A 

large number of models of this type have been created, 

but the basis of all of them is the study of two subjects: 

● the number of failures for a certain time 

(calendar time or time in computing units, which takes 

into account the load on the software); 

● time intervals between failures. 

©   Krepych S., Spivak I., Spivak S., Krepych R., 2025 



ISSN 2522-9052 Сучасні інформаційні системи. 2025. Т. 9, № 2 

59 

The distribution of the number of failures over time 

plays an important role in the classification of reliability 

models. According to this principle, they are divided into 

Poisson and binomial [12]. Binomial-type models assume 

that there is an initial specific number of errors in the 

program, and that there is a one-to-one correspondence 

between errors and failures. After each failure, its cause is 

eliminated, so that this failure is no longer repeated, and 

the number of errors decreases (no new errors are 

introduced).  

This assumption causes each bug in the software to 

occur only once and is independent of the others. At the 

same time, each failure occurs randomly according to the 

failure intensity, which is the same throughout the 

debugging time [13, 14]. 

Piason-type models are based on the fact that the 

initial number of faults is a Poisson random variable 

with a certain mean [15]. 

As an alternative to these models, models that 

assume debugging imperfections have been proposed, 

assuming that [15, 16]: 

● failure detection coefficient is not a constant 

value; 

● during each failure, the error that caused the 

failure is corrected, but new errors may occur. 

Architecture-Based Reliability Models (White 

Box). Large software systems almost always consist of 

smaller blocks that are responsible for separate parts of 

the functionality [17]. The main advantage of 

architectural reliability prediction models is that it is 

possible to predict system reliability already at the early 

stages of software design. System-wide failure data is 

not required, as is the case with black-box models, so 

potential quality problems can be identified before the 

system or prototype is fully completed and where a 

black-box approach can be applied [18, 19]. 

Statement for the task 

As mentioned above, in order to reduce the cost of 

development and shorten its terms, it is important to 

detect errors as early as possible, because with iterative 

development, the complexity and, as a result, the cost of 

correcting an failure increases over time, and the 

probability of correcting it correctly (without 

introducing new failures) decreases [20]. On the other 

hand, almost all large software products are too 

complex to contain any bugs at all. In view of the 

above, the task of development is not to guarantee the 

absence of errors, but to maintain a balance between the 

conditional reliability of the final software system and 

costs at all stages of development. 

The purpose of the research is to create software 

that would allow conducting research on the reliability 

of software systems at various stages of testing and 

taking into account their complexity and structure. 

To achieve this goal, the following tasks must be 

solved: 

● Create an algorithm for determining 

dependencies between program methods. 

● Create algorithms for analysis and processing of 

data coming from the evaluated system during the 

testing process. This includes determining the 

probabilities of calling methods, handling exceptions, 

and other aspects. 

● Implement an algorithm that allows you to 

numerically assess the reliability of the program based 

on the received data. In addition to estimating the 

probability of failure-free operation, the algorithm can 

provide for the determination of other reliability 

metrics. 

● Create a user interface that will allow you to set 

the necessary input parameters, as well as display the 

results of the analysis in an easy-to-understand form. 

● Test the program on real examples to check the 

correctness of the developed software, as well as its 

efficiency and accuracy. 

Main part 

A block diagram demonstrating the essence of the 

proposed approach is shown in Fig. 1. The decision to 

develop the main part of the system as a plug-in to the 

integrated development environment IntelliJ IDEA from 

the company JetBrains is due to the fact that the IDE 

has an open and documented API that provides access 

to a large the number of functionalities related to the 

analysis of software code and interaction with it. Thanks 

to this, there is no need to implement algorithms for 

parsing java files, in order to find methods based on 

formalized features, as well as various ways of 

interacting with the code during its execution.  

To isolate the call tree, we will use the IntelliJ Idea 

API, which allows you to get a link to all nested 

methods in the body of the parent in a few lines of code. 

Fig. 2 shows the program code of the processMethod() 

method, which is responsible for building the method 

call tree. 

This code recursively bypasses all nested methods 

in the body of the parent, preserving the structure and 

sequence of calls. For the correct construction of the 

graph, the sequence of calls is very important, since the 

transfer of stack control occurs synchronously, and 

therefore the first submethod in the body of the parent, 

after starting execution, will own the stack until all 

instructions in its body, as well as all its submethods, 

are executed. Only after that, stack control will be 

transferred to the second submethod (if available). 

To increase the efficiency of calculations, the 

algorithm skips getters and setters of objects when 

creating a tree of method calls. 

Getters and setters are special methods that are 

responsible for getting and setting the values of object 

fields. These methods, usually with few exceptions, do 

not contain business logic and are simple, which 

essentially means that they cannot cause the application 

to failure. The isGetter() and isSetter() methods are 

responsible for checking whether a method belongs to 

the category of getters or setters. 

As mentioned above, the program does not have its 

own graphical interface and uses the context menu of 

the studio for interaction. Fig. 3 shows the context menu 

that opens when you right-click on a method in the 

studio editor. 

Each menu item has validation and is displayed 

and activated only under certain conditions, for 



Advanced Information Systems. 2025. Vol. 9, No. 2 ISSN 2522-9052 

60 

example, for the "Add method to assessment" item to be 

active, firstly, the click must take place on the method, 

and secondly, this method must not be in the list of 

previously added ones. 

 

Fig. 1. Block diagram of the proposed approach 

 

 

Fig. 2. Program code of the method processMethod() 



ISSN 2522-9052 Сучасні інформаційні системи. 2025. Т. 9, № 2 

61 

 
Fig. 3. Program code of the method processMethod() 

The function "Remove method 

from assessment" works according to the 

reverse principle, the only difference is 

that when removing a method from the 

tree, the presence of dependencies of 

other branches on this method is 

checked, and if there are any, then the 

method is removed only from that 

branch, according to the method which 

was clicked with the mouse. To take into 

account the complexity of the software 

system in the process of reliability 

assessment, a probabilistic graph model 

of methods is used, which allows you to 

present the program in the form of a 

directed graph. The vertices are the 

methods (functions) of the program, and 

the connections between these methods 

are the edges. Figure 4 shows a graphical 

representation of a program containing 4 

methods. This directed graph contains 6 

vertices, four of which are responsible 

for methods, and two more are fictitious, 

representing entry and exit points from 

the code. 

The values 1P , 2P , 3P  and 4P  are 

the probabilities of failure-free operation 

of the corresponding methods, and 

( , )p i j  are the probabilities of calling 

the method j  from the body of the 

method i . The probability of failure-free 

operation of each method is calculated as 

the ratio of the number of its calls that 

resulted in an error to the total number of method calls. 

 

Fig. 4. An example of a graphical program model 

 

Transition probabilities are calculated in 

proportion to the number of calls of nested methods 

from the body of the i -th method, so that the sum of all 

transition probabilities from the body of the i -th 

method equals:  

 
max

min

( , ) 1

j

j j

p i j

−

= . (1) 

The next step is to construct a matrix of transition 

probabilities P  with dimension m , where m  is the 

number of vertices of the graph. In this matrix, the value 

of the element ,i jP  is the value of the probability of the 

corresponding transition between the corresponding 

methods, i.e. ( , )p i j . If there are no connections 

between the corresponding methods, zero is written in 

place of the corresponding element. The next step is to 

calculate the matrix G , for which the j -th row of the 

matrix P  is multiplied by the probability of failure-free 

operation of the j -th method (for fictitious vertices, 

this parameter is equal to one). 

Finally, it is necessary to calculate the matrix T , 

which in the case of an acyclic graph is calculated 

according: 

 
2 3 ... mT I G G G G= + + + + + , (2) 

where I is the unit square matrix of dimension m . 

If the graph of the studied program is not acyclic, 

that is, it contains paths leading from the vertex to itself, 

then the matrix T  is calculated: 

 
1( )T I G −= − . (3) 

The probability of failure-free operation of the 

studied program will be the value of the element 

, 1o mT − of the matrix T . 

The next important element of the algorithm is the 

construction of connections between methods in the 

chain, determination of transition probabilities, as well 

as the probability of error-free operation of each method 



Advanced Information Systems. 2025. Vol. 9, No. 2 ISSN 2522-9052 

62 

to build a graph. To solve this problem, it is necessary 

to count the number of executions of each method, as 

well as the number of failures that occurred in each of 

them [21]. The debug mode in Intellij Idea will do a 

great job with this, in which the studio can record 

method entries and all exception generation in the log. 

When adding a method to a HashMap, a "Breakpoint" is 

automatically set on it. All breakpoints set in the code 

can be viewed by going to the Intellij Idea settings [22].  

Fig. 5 shows the code that is responsible for fixing 

the number of method calls. This code is called every 

time the session is stopped. It checks whether this stop 

was caused by a row-level Breakpoint, commits the call 

(if all conditions are met) and resumes the session. 

Although stopping the session also slows down the 

execution of the main program, it ensures that all calls 

will be caught, because attempts to catch calls in 

asynchronous mode can cause problems because the 

plugin code does not keep up with the main code. To 

increase the speed of the program, a variable of type 

unsigned long is used to save the number of method 

calls, which allows you to store values up to 264 – 1. 

This information, together with data on the number 

of calls and a tree of methods, allows you to build a 

graphical model of this software system, as well as fill 

in the matrices necessary to calculate its reliability. It is 

important to understand that the method tree constructed 

above does not contain enough information to construct 

a graph [23]. This is due to the fact that this hierarchy of 

methods in no way takes into account the conditional 

statements and various checks that may be present in the 

program code. The very task of estimating transition 

probabilities is extremely non-trivial and cannot be 

solved algorithmically. Within the framework of the 

considered model, transition probabilities are calculated 

statistically as the ratio of the number of calls of the 

child method to the number of calls of the parent 

method. Table 1 shows an example illustrating the 

influence of conditional operators on the structure of the 

graph [24, 25]. 

To obtain a reliability indicator, you need to use the 

last item of the context menu (Assess App Reliability), 

as shown in Fig. 6. This method is active only when the 

studio was started in debug mode, the HashMap 

contains at least one method, and the call count table 

contains at least one method called by the debug input.  
 

 

Fig. 5. Program code for registration of method calls 

 

Table 1 – The influence of conditional operators on the structure of graphs 

void rootMethod(){ 
       methodA(); 
       methodB(); 
} 

void rootMethod(){ 
       methodA(); 
       if (something) methodB(); 
} 

 
 

 



ISSN 2522-9052 Сучасні інформаційні системи. 2025. Т. 9, № 2 

63 

 

Fig. 6. The Assess App Reliability function 

in the context menu 

 

After activating this item, the program analyzes 

the log entries, determines all the necessary values for 

building the matrices and calculates the probability of 

the program's error-free operation (Pf, Table 1). First, 

the probability of error-free operation is calculated as 

one minus the number of errors divided by the number 

of calls. Since the number of calls is counted only for 

methods on which Breakpoint is set, errors in all other 

methods will be missed in the counting process. 

 
Table 2 – Log analysis results 

Method 
Number 

of calls 

Number 

of failures 
Pf 

calculateSomething() 2147483647 23798952 0.9889 

generateDivident() 2147483647 102261126 0.9524 

genRandomValue() 613566756 18592932 0.9697 

getConstantValue() 1431655765 15070061 0.9895 

generateDivisor() 2011559528 0 1 

 

The next step is to calculate the probability of 

calling the method from the parent's body. For this, for 

each method, the body of which method was called is 

checked and the number of calls "with context" is 

counted. Context is important because the same method 

can be used in different parts of the program. At this 

step, transition probabilities are calculated, that is, 

values for each of the edges of the graph. 

Next, the program proceeds to actual calculations 

of the probability of failure-free operation. After all 

operations and calculations are completed, the final data 

will be automatically written to the database, and an 

informational message with the result will be displayed 

in the notification area, as shown in Fig. 7. 

 
Fig.7. Information message with the result 

of the reliability assessment 

 

For a visual representation of the implementation 

of the proposed approach for evaluating the reliability of 

a software system based on a graph model of method 

dependence, we will illustrate the reliability evaluation 

of a simple program, the program code of which is 

shown in Fig. 8. For the convenience of visual 

demonstration, all methods of the software system are 

located in one class, but the proposed approach will 

work even if all methods belong to different classes. To 

emulate the presence of failures, conditional operators 

are added to the body of methods that generate 

exceptions of the NumberFormatException type for 

certain values of the iterative variable. Binding to the 

iterative variable was done purely from the point of 

view of repeatability of results for ease of testing [26]. 

After the calculations are completed, a browser window 

containing the constructed graph of the program with 

probability indicators opens automatically. 
 

 

Fig. 8. Program source code containing 5 methods 
 

A screenshot of the graph is shown in Fig. 9. It is 

worth noting that despite its simplicity of operation and 

free for commercial use, the dracula.js library has a not 

very optimized algorithm for calculating Bezier curves 

for constructing the edges of the graph, so quite often 

the graph does not look very obvious and requires 

manual manipulation with nodes In addition, this library 

has certain performance problems - it takes 0.5 seconds 

to build a graph containing 100 nodes, 5.5 seconds to 

build a graph with 500 nodes, but a graph for a program 

containing 1000 methods will be built in 40 seconds. 

Since the graph contains seven vertices, the 

matrices P , G  and T  will also have dimension 7 × 7. 

Fig, 10 shows the values of all matrices [27].  

As it was mentioned above, the probability of 

failure-free operation of the system is equal to , 1o mT − , 

since in our case 7m = , then 0, 1 0,6 0.93mT T− = = . 

We will apply the proposed method to determine 

the reliability of a more complex program. The class 

diagram of the test program is shown in Fig. 11. 

After the completion of the program execution and 

completion of calculations, we receive information 

about the number of method calls and errors that 

occurred. The resulting data are shown in Table 3. 



Advanced Information Systems. 2025. Vol. 9, No. 2 ISSN 2522-9052 

64 

‘  
Fig. 9. Graph of the program under study 

 

P = 

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0.3 0.7 0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

; G = 

0 1 0 0 0 0 0

0 0 0.99 0 0 0 0

0 0 0 0.29 0.67 0 0

0 0 0 0 0 0.97 0

0 0 0 0 0 0.99 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

; T = 

1 1 0.99 0.28 0.66 0.93 0.93

0 1 0.99 0.28 0.66 0.93 0.93

0 0 1 0.29 0.67 0.94 0.94

0 0 0 1 0 0.97 0.97

0 0 0 0 1 0.99 0.99

0 0 0 0 0 1 1

0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 

. 

Fig. 10. The values of the matrices P , G and T  
 

 
Fig. 11. Class diagram of the program under study 

Table 3 – Log analysis results 

Method Number of calls Number of failures The probability of failure-free work 

MainController.createFolder() 1000 0 1 

scheduleFolderCreation() 1000 0 1 

TaskExecutionService.createFolder() 3765 0 1 

fsAvailable() 3765 35 0.991 

postpone() 333 5 0.985 

save() 328 2 0.993 

FileSystemService.createFolder() 1024 75 0.93 

delete() 326 1 0.997 

executePostponedTasks() 114 0 1 

retriveAllTasks() 114 2 0.982 

execute() 2768 13 0.995 
 



ISSN 2522-9052 Сучасні інформаційні системи. 2025. Т. 9, № 2 

65 

Fig. 12 shows the values of all matrices P , G and 

T for this program.  
The probability of failure-free work of the system 

is equal to , 1o mT − , since in our case 13m = , then  

0, 1 0,12 0.97mT T− = = . 

The graph of this program, containing 13 vertices 

and 17 edges, is shown in Fig. 13 [27]. 

P = 

0 0.9 0 0 0 0 0 0 0 0.1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0.06 0 0.29 0 0 0 0 0.63

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0.06 0 0.3 0 0 0 0 0.64

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0























 
 
 
 
 
 
 
 
 
 
 



; G = 

0 0.9 0 0 0 0 0 0 0 0.1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0.06 0 0.29 0 0 0 0 0.62

0 0 0 0 0 0 0.99 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.99

0 0 0 0 0 0.06 0 0.28 0 0 0 0 0.6

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0.98 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

; 

T = 

1 0.9 0.9 1 1 0.1 0.09 0.29 0.08 0.1 0.1 0.1 0.97

0 1 1 1 1 0.1 0.09 0.29 0.08 0 0 0 0.97

0 0 1 1 1 0.1 0.09 0.29 0.08 0 0 0 0.97

0 0 0 1 1 0.1 0.09 0.29 0.08 0 0 0 0.97

0 0 0 0 1 0.1 0.09 0.29 0.08 0 0 0 0.97

0 0 0 0 0 1 0.99 0 0 0 0 0 0.98

.0 0 0 0 0 0 1 0 0 0 0 0 0.99

0 0 0 0 0 0.06 0.05 1 0.28 0 0 0 0.93

0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0.98 0.98 0.09 0.09 0.28 0.08 1 1 0.98 0.95

0 0 0 0.98 0.98 0.09 0.09 0.28 0.08 0 1 0.98 0.95

0 0 0 1 1 0.09 0.09 0.29 0.08 0 0 1 0.96

0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

Fig. 12. The values of the matrices P , G and T  

 
Fig. 13. Graph of the program under study 

 

Conclusions 

The paper provides a solution to the current 

problem of quality analysis of complex software 

systems. During the analysis of the available solutions, 

various models for assessing the reliability of software 

systems were investigated.  

Unfortunately, a large number of them were 

primarily created to assess the reliability of hardware 

systems, so they are based on assumptions and 

simplifications that are not very common to software 

systems, so they are not always able to give an 

acceptable result. A method for assessing the reliability 

of software systems based on a graph model of the 

dependence of the methods of the system under test is 

proposed. An experimental study of the software system 

was conducted for the possibility of its application to 

determine the reliability of real programs written in the 

Java programming language. The obtained results show 

that the complexity of the program does not 



Advanced Information Systems. 2025. Vol. 9, No. 2 ISSN 2522-9052 

66 

significantly affect the time of execution of calculations. 

Considering the obtained results, we can see that the 

proposed approach shows good performance indicators, 

which means that it can calculate reliability indicators 

for much larger software systems in an acceptable 

amount of time. 

REFERENCES 

1. Yakovyna, V. and Symets, I. (2021), “Reliability assessment of CubeSat nanosatellites flight software by high-order Markov 

chains”, Procedia Computer Science, vol. 192, pp. 447–456, doi: https://doi.org/10.1016/j.procs.2021.08.046 

2. Skanda, V.C., Srinivasa Prasad, S, Dheemanth, G.R. and Kumar, N.S. (2019), “Assessment of quality of program based 

on static analysis”, IEEE 10th International Conference on Technology for Education(T4E), pp. 276–277, doi:  

https://doi.org/10.1109/T4E.2019.00072 

3. Lu, S., Li, H. and Jiang, Z. (2020), “Comparative study of open source software reliability assessment tools”, IEEE 

International Conference on Artificial Intelligence and Information Systems (ICAIIS), China, pp. 49–55, doi: 

https://doi.org/10.1109/ICAIIS49377.2020.9194946 

4. Yakovyna, V., Seniv, M., Symets, I. and Sambir, N. (2020), “Algorithms and software suite for reliability assessment of 

complex technical systems”, Radio Electronics, Computer Science, Control 4, pp. 163–177, doi: 

https://doi.org/10.15588/1607-3274-2020-4-16 

5. San, K.K., Washizaki, H., Fukazawa, Y., Honda, K., Taga, M. and Matsuzaki, A. (2021), “Deep cross-project software 

reliability growth model using project similarity-based clustering”, Mathematics, vol. 9, no. 22, article number 2945, doi: 

https://doi.org/10.3390/math9222945 

6. Krepych, S., Stakhiv, P. and Spivak, I., (2013), “Analysis of the tolerance area parameters REC based on technological area 

scattering”, 12th International Conference “The Experience of Designing and Application of CAD Systems in 

Microelectronics”, Polyana Svalyava, Ukraine, pp.179–180. available at: https://ieeexplore.ieee.org/document/6543231 

7. Wu, C.-Y. and Huang, C.-Y. (2021), “A study of incorporation of deep learning into software reliability modeling and 

assessment”, IEEE Transactions on Reliability, vol. 70, no. 4, pp. 1621–1640, doi: https://doi.org/10.1109/TR.2021.3105531 

8. Jagtap, M., Katragadda, P. and Satelkar, P. (2022), “Software reliability: development of software defect prediction models 

using advanced techniques”, Annual Reliability and Maintainability Symposium (RAMS), pp. 1–7, doi: 

https://doi.org/10.1109/RAMS51457.2022.9893986 

9. Nafreen, M., Luperon, M., Fiondella, L., Nagaraju, V., Shi, Y. and Wandji, T. (2020), “Connecting software reliability 

growth Models to software defect tracking”, IEEE 31st International Symposium on Software Reliability Engineering 

(ISSRE), pp.138–147, doi: https://doi.org/10.1109/ISSRE5003.2020.00022 

10. Yakovyna, V. and Symets, I. (2021), “A method of high-order Markov chain representation through an equivalent first-order 

chain for software reliability assessment”, Computer systems and information technologies, vol. 3, pp. 66–73, doi: 

https://doi.org/10.31891/CSIT-2021-5-9 

11. Jain, R. and Sharma, A. (2019), “Assessing software reliability using genetic algorithms”, The Journal of Engineering 

Research, [TJER], vol. 16(1), pp. 11–17, doi: https://doi.org/10.24200/tjer.vol16iss1 

12. Micro, R., Chren, S. and Rossi, B. (2022), “Applicability of soft-ware reliability growth models to open source software”, 

48th Euromicro Conference on Software Engineering and Acvanced Applications, (SEAA), pp. 255–262, doi: 

https://doi.org/10.1109/SEAA56994.2022.00047 

13. Lu, S., Li, H. and Jiang, Z. (2020), “Comparative Study of Open Source Software Reliability Assessment Tools”, 2020 IEEE 

International Conference on Artificial Intelligence and Information Systems, (ICAIIS), Dalian, China, pp. 49–55, doi: 

https://doi.org/10.1109/ICAIIS49377.2020.9194946 

14. Kim, T., Ryu, D. and Baik, J. (2024), “Enhancing software reliability growth modeling: a comprehensive analysis of 

historical datasets and optimal model selections”, IEEE 24th International Conference on Software Quality, Reliability and 

Security, QRS, pp. 147–158, doi: https://doi.org/10.1109/QRS62785.2024.00024 

15. Chen, Y., Yan, X. and Khan, A.A. (2019), “A Novel Reliability Assessment Method Based on the Effects of Components”, 

IEEE 19th International Conference on Software Quality, Reliability and Security (QRS), Sofia, Bulgaria, pp. 69–76, doi: 

https://doi.org/10.1109/QRS.2019.00022 

16. Nafreen, M., Luperon, M., Fiondella, L., Nagaraju, V., Shi, Y. and Wandji, T. (2020), “Connecting Software Reliability 

Growth Models to Software Defect Tracking”, IEEE 31st International Symposium on Software Reliability Engineering, 

ISSRE, Coimbra, Portugal, pp. 138–147, doi: https://doi.org/10.1109/ISSRE5003.2020.00022 

17. Saini G.L., Panwar, D. and Singh, V. (2021), “Software reliability prediction of open source software using soft computing 

technique”, Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 

vol. 14, no. 2, pp. 612–621, doi: https://doi.org/10.2174/2213275912666190307165332 

18. Teuber, S. and Weigl, A. (2021), “Quantifying Software Reliability via Model-Counting”,in: Abate, A., Marin, A. (eds) 

Quantitative Evaluation of Systems. QEST 2021. Lecture Notes in Computer Science, vol 12846. Springer, Cham. doi: 

https://doi.org/10.1007/978-3-030-85172-9_4. 

19. Nafreen, M., Bhattacharya, S. and Fiondella, L. (2020), “Architecture-based Software Reliability Incorporating Fault 

Tolerant Machine Learning”, Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, pp. 1–6, 

doi: https://doi.org/10.1109/RAMS48030.2020.9153718. 

20. Kuang, P., Zhao, Q.-M. and Xie, Z.-H. (2015), “Algorithms for solving unconctrained optimization problems”, 12th 

International Computer Conference on Wavelet Active Media Technology and Information Processing, pp. 379–382, doi:  

https://doi.org/10.1109/ICCWAMTIP.2015.7494013 

21. Bayurskii, A. and Krepych, S. (2018), “Intelligent Syatem Analyzing Quality of Land Plots”, CEUR Workshop Proceedings 

2300, pp.166-169, available at: https://ceur-ws.org/Vol-2300/Paper40.pdf 

22. (2024), Breakpoints|intellij idea documentation, available at: https://www.jetbrains.com/help/idea/using-breakpoints.html 

23. Kuchuk, N., Kashkevich, S., Radchenko, V., Andrusenko, Y. and Kuchuk, H. (2024), “Applying edge computing in the 

execution IoT operative transactions”, Advanced Information Systems, vol. 8, no. 4, pp. 49–59, doi: 

https://doi.org/10.20998/2522-9052.2024.4.07 

https://doi.org/10.1016/j.procs.2021.08.046
https://ieeexplore.ieee.org/author/37087471461
https://doi.org/10.1109/T4E.2019.00072
https://doi.org/10.1109/ICAIIS49377.2020.9194946
https://doi.org/10.15588/1607-3274-2020-4-16
https://doi.org/10.3390/math9222945
https://ieeexplore.ieee.org/document/6543231
https://doi.org/10.1109/TR.2021.3105531
https://doi.org/10.1109/RAMS51457.2022.9893986
https://doi.org/10.1109/ISSRE5003.2020.00022
https://doi.org/10.31891/CSIT-2021-5-9
https://doi.org/10.24200/tjer.vol16iss1
https://doi.org/10.1109/SEAA56994.2022.00047
https://doi.org/10.1109/ICAIIS49377.2020.9194946
https://doi.org/10.1109/QRS62785.2024.00024
https://doi.org/10.1109/QRS.2019.00022
https://doi.org/10.1109/ISSRE5003.2020.00022
https://doi.org/10.2174/2213275912666190307165332
https://doi.org/10.1007/978-3-030-85172-9_4
https://doi.org/10.1109/ICCWAMTIP.2015.7494013
https://ceur-ws.org/Vol-2300/Paper40.pdf
http://www.jetbrains.com/help/idea/using-breakpoints.html
https://www.scopus.com/authid/detail.uri?authorId=57196006131
https://www.scopus.com/authid/detail.uri?authorId=58244269900
https://www.scopus.com/authid/detail.uri?authorId=57189376280
https://www.scopus.com/authid/detail.uri?authorId=59412400500
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85209218056&origin=recordpage
https://www.scopus.com/record/display.uri?eid=2-s2.0-85209218056&origin=recordpage
https://www.scopus.com/sourceid/21101186339?origin=resultslist
https://doi.org/10.20998/2522-9052.2024.4.07


ISSN 2522-9052 Сучасні інформаційні системи. 2025. Т. 9, № 2 

67 

24. Mezhuev, P., Gerasimov, A., Privalov, P. and Butkevich, V. (2021), “A dynamic algorithm for source code static analysis”, 

Ivannikov Memorial Workshop (IVMEM), pp.57-60, doi: https://doi.org/10.1109/IVMEM53963.2021.00016 

25. Zhang, Y., Sun, Y., Si, G., Dong, B. and Chen, W. (2022), “An overview of source code static analysis method based on 

knowledge graph”, IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control 

Conference (IMCEC), vol. 5,  pp. 1772–1775, doi: https://doi.org/10.1109/IMCEC55388.2022.10019850 

26. Spivak, I., Krepych, S., Litvynchuk, M. and Spivak, S. (2021), “Validation and data processing in json format”,  

IEEE EUROCON 2021 19th International Conference on Smart Technologies, pp. 326–330, doi: 

https://doi.org/10.1109/EUROCON52738.2021.9535582 

27. Krutko, V., Spivak, I. and Krepych, S. (2023), “An approach to assessing the reliability of software systems based on a graph 

model of method dependence”, 6th Worksop for Young Scientists in Computer Science & Software Engineering, pp. 37–47, 

available at: https://ceur-ws.org/Vol-3662/paper11.pdf 

 
Received (Надійшла) 30.10.2024 

Accepted for publication (Прийнята до друку) 26.02.2025 

ВІДОМОСТІ ПРО АВТОРІВ/ ABOUT THE AUTHORS 

Крепич Світлана Ярославівна – кандидат технічних наук, доцент, доцент кафедри комп’ютерних наук, 

Західноукраїнський національний університет, Тернопіль, Україна; 

Svitlana Krepych – Candidate of Technical Sciences, Associate Professor, Associate Professor of Computer Science 

Department, Western Ukrainian National University, Ternopil, Ukraine; 

e-mail: msya220189@gmail.com ORCID Author ID: https://orcid.org/0000-0001-7700-8367; 

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=55225606100. 

Співак Ірина Ярославівна - кандидат технічних наук, доцент, доцент кафедри комп’ютерних наук, Західноукраїнський 

національний університет, Тернопіль, Україна; 

Iryna Spivak – Candidate of Technical Sciences, Associate Professor, Associate Professor of Computer Science 

Department, Western Ukrainian National University, Ternopil, Ukraine; 

e-mail: spivak.iruna@gmail.com ORCID Author ID: https://orcid.org/0000-0003-4831-0780; 

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=55226024100. 

Співак Cергій Михайлович – доктор економічних наук, професор, завідувач кафедри бухгалтерського обліку та 

аудиту, Тернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна; 

Serhii Spivak – Doctor of Economic Sciences, Professor, Head of the Accounting and Audit Department, Ternopil Ivan 

Puluj National Technical University, Ternopil, Ukraine; 

e-mail: spivak_s@tntu.edu.ua  ORCID Author ID: https://orcid.org/0000-0002-7160-2151; 

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57210559132. 

Крепич Роман Володимирович – викладач, Кам’янець-Подільський державний інститут, Кам’янець-Подільський, 

Україна; 

Roman Krepych– lector, Kamianiets-Podilskyi State Institute, Kamianets-Podilskyi, Ukraine; 

e-mail: jagmstar@gmail.com ORCID Author ID: https://orcid.org/0000-0003-4831-0780; 

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=27368089600. 

 
Метод оцінювання надійності програмних систем 

на основі графової моделі залежності методів системи, що тестується 

С. Я. Крепич, І. Я. Співак, С. М. Співак, Р. В. Крепич 

Анотація .  На сьогодні програмне забезпечення перетворилося на невід’ємну складову багатьох сфер нашого 

повсякденного життя — від автоматизації і оптимізації процесів на виробництві до створення комфорту окремої 

людини. Програми роблять наші життя простішими, в секунди вирішуючи задачі, на які раніше йшли години чи навіть 

тижні, а також даруючи нам зручність та комфорт, про які люди минулих поколінь не могли навіть і мріяти. З метою 

задовольнити зростаючий попит на нове програмне забезпечення IT ринок в усьому світі і в У країні зокрема також 

стрімко росте і змінюється. За даними IT Ukraine Association, порівняно з 2017 роком, кількість працевлаштованих 

фахівців на ринку праці України зросла приблизно в два рази, а обсяги експорту IT послуг - в два з половиною. Не 

дивлячись на те, що через повномасштабне вторгнення темпи розвитку в 2022-2024 роках сповільнились, очевидним є, 

що галузь не досягла свого піку, а значить продовжить розвиватися. Крім очевидних змін, пов’язаних з розширенням 

ринку, є й внутрішні зміни в процесах індустрії зумовлені прагненням підвищити швидкість розробки програм, а також 

знизити кінцеву ціну програмного продукту .Загальновідомо, що висока якість програмного забезпечення є невід'ємною 

частиною успішного продукту. Проте, навіть при доволі невисокому темпі розробки, розробники доволі часто 

припускаються помилок, які призводять до серйозних проблем, впливаючи на безпеку, надійність та задоволеність 

користувачів. То що вже казати про розробку у стислі терміни? Саме тому, забезпечення високої як ості програмного 

продукту є одним з основних завдань, яке має вирішуватися на етапі розробки. Об’єктом дослідження виступають 

процеси оцінювання надійності програмних систем. Предметом дослідження є метод оцінювання надійності 

програмних систем на основі графової моделі залежності методів системи, що тестується. Висновок: на основі методу 

оцінювання надійності програмних систем на основі графової моделі залежності методів системи, що тестується, 

розроблено програмне забезпечення на мові програмування Java та Kotlin для оцінювання показника надійності 

програмних систем будь-якої архітектурної складності. 

Ключові  слова :  якість програмного забезпечення; надійність програмного забезпечення; тестування, 

моделювання складних систем; графова модель системи.  

https://doi.org/10.1109/IMCEC55388.2022.10019850
https://doi.org/10.1109/EUROCON52738.2021.9535582
https://ceur-ws.org/Vol-3662/paper11.pdf
mailto:msya220189@gmail.com
https://orcid.org/0000-0001-7700-8367
https://www.scopus.com/authid/detail.uri?authorId=55225606100
mailto:spivak.iruna@gmail.com
https://orcid.org/0000-0003-4831-0780
https://www.scopus.com/authid/detail.uri?authorId=55226024100
mailto:spivak_s@tntu.edu.ua
https://orcid.org/0000-0002-7160-2151
https://www.scopus.com/authid/detail.uri?authorId=57210559132
mailto:jagmstar@gmail.com
https://orcid.org/0000-0003-4831-0780
https://www.scopus.com/authid/detail.uri?authorId=27368089600

