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STATIONARY STOCHASTIC INPUT FLOW MODELING
OF BRANCHED CONVEYOR SYSTEMS

Abstract: The object of research is stochastic stationary input material flow of a conveyor-type transport system. Subject
of research is a method for generating realizations of a stationary stochastic input flow of material on the basis of experimental
data. The goal of the research consists in the development of a random value generator for constructing an implementation
of the input material flow of a transport conveyor, which has specified statistical characteristics, calculated on the basis of
the previously performed experimental measurements results. The results obtained. The stationary stochastic input flow of
material is represented by a canonical expansion as a sum of harmonic oscillations with random amplitudes at various non-
random frequencies. A two-stage approach is proposed for forming realizations of the input material flow. At the first stage,
using the canonical expansion in given coordinate functions, the experimental realization of the input material flow for a
given interval is approximated. At the second stage, statistical characteristics of the implementations of the input material
flow are calculated. The conducted analysis showed that the application of the smoothing method for the realizations of the
material flow, based on the canonical decomposition of the realizations of the input material flow, ensures a sufficiently accurate
reproduction of the statistical characteristics like a flow, which is important when designing effective systems for managing the
flow parameters of a transport system. A comparative analysis of correlation functions for experimental, approximated and
generated implementations of the input material flow is figured out. The length of the time interval required to carry out
experimental changes in the input material flow is justified. Conclusion. The methods of generating input flows based on
experimental data proposed in the paper allow increasing the accuracy of modeling and control of conveyor systems, which in
the long term can lead to a decrease in operating costs and an increase in the productivity of conveyor-type transport systems.

Keywords: material flow; stochastic process; random variable generator; approximation error.

Introduction

Conveyor systems are key elements in the mining
industry and play a vital role in increasing the efficiency
of production processes and reducing material
transportation costs. Reducing the cost of resource
extraction is possible, in particular, by reducing the
specific costs of raw material transportation, which is
achieved through optimal and uniform loading of
materials along the entire length of the transport line
[1,2,3]. Efficient use of conveyor systems allows
achieving maximum loading factor of the transport
conveyor, which significantly improves system
performance and reduces maintenance costs [4,5].
However, one of the main problems remains the uneven
loading of the material, which occurs for several reasons.
Firstly, it is the stochastic nature of the input flow of
material arriving at the entrance of the transport system
[6]. Secondly, the use of control systems to regulate the
speed of the conveyor belt or the flow of material from
the storage bins [7].

The problem of uneven loading becomes even more
complex when using combined control systems, which
simultaneously regulate the speed of the conveyor belt
and the feed of material from the bunkers [8]. These
control systems do not always provide ideal balancing of
material flows due to the complexity of process dynamics
and the presence of variable time lags in the transport
system [9]. As a result, this leads to a decrease in the
efficiency of flow parameter control systems, especially
for long and highly branched transport routes.

In order to minimize the unevenness of the material
flow at each stage of transportation, control systems for
individual conveyor sections are used. These systems
allow the belt speed to be adapted depending on the

current loading conditions, which makes it possible to
achieve a quasi-uniform feed of the material and thus the
required values for the output flow of the material [10].
However, the quasi-stationary flow entering the next
conveyor section usually causes uneven material flow at
subsequent stages of transportation, which leads to a
decrease in the efficiency of the entire system [3].

When designing control systems for such complex
transport systems, various mathematical models are used.
One of the most common approaches is the use of the
finite element method [11], which allows modeling the
behavior of traffic flows taking into account time delays
and other features of the transport system. For more
complex branched transport networks consisting of
several dozen conveyors, preference is given to
analytical models [3, 12], which have the ability to take
into account a large number of variables and interactions
between system elements. However, despite the
effectiveness of these methods, designing control
systems for transport conveyors with a branched
structure is an extremely complex problem. One of the
most promising approaches is the use of models based on
regression equations [13], as well as models using neural
networks [14, 15].

These methods allow modeling complex
relationships between various system parameters and
predicting the behavior of transport flows in real time.
However, their successful application requires the
availability of a large volume of data that contains the
values of the input and output parameters of the transport
system flows under various operating modes. The
formation of adequate training data sets becomes
especially important for creating models capable of
effectively managing the transport system [16]. This
requires collecting a large amount of experimental data
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covering a wide range of changes in the flow parameters
of the transport conveyor. Using the existing transport
system as a source for forming a training data set in a
sufficiently wide range of values based on experimental
measurements causes serious difficulties and is not
always possible. Nevertheless, the problem of forming a
training data set is relevant and requires an effective
solution. The solution to this problem is associated with
the solution of two interrelated subproblems. The first
subproblem is to analyze the statistical characteristics of
the input material flow with the subsequent construction
of a flow value generator with predetermined statistical
properties. The second subproblem involves the use of an
analytical model of a transport conveyor [2] to calculate
the values of the output material flow based on the
generated values of the input flows in a branched
transport system [9].

The solution to the first subproblem is reduced to
calculating the statistical parameters of the input flows
based on experimental data collected for a real system.
To achieve high calculation accuracy, it is necessary to
have a large number of implementations of the input
material flows, each of which should be recorded over a
certain time interval. The process of forming a sufficient
number of implementations requires a large volume of
experimental data, which can significantly complicate
the problem. However, this stage can be simplified if we
assume that the obtained experimental realization of the
input flow can be approximated as a stationary flow with
ergodic properties. In some cases, this assumption allows
to significantly reduce the number of necessary
experimental realizations. Based on the statistical
characteristics of a limited set of experimental
realizations of the input flow of material, a generator of
random values of the input flows of material of a highly
branched transport conveyor is constructed. The
generator is used to form the required number of input
material flow realizations necessary for the transport
conveyor model, which is the foundation for designing
effective transport system control. To solve the second
problem, related to calculating output material flows, an
analytical model of the transport conveyor is used [2].
This model is based on equations whose boundary
conditions are formed by the generator of input material
flow values. It is important to point out that in highly
branched transport systems with numerous conveyors,
the computational costs of modeling output material
flows are often comparable to the costs of training a
neural network. In this case, the analytical model is only
needed to prepare the training data set, and the neural
network serves as the foundation of the transport system
model. Neural network-based transport system models
are an alternative approach to calculating output material
flow values for highly branched conveyor-type transport
systems [17, 18, 19].

In this study, the results of studies devoted to the
analysis of experimental data [20, 21, 22] were used to
develop a generator of input material flow values. These
papers consider individual implementations of stochastic
input material flows entering the transport system, which
are the basis for creating and refining theoretical models
when typifying input material flows in transport systems.

The flow of material entering the input of the transport
conveyor, depending on the operating conditions of the
transport system, can be either a continuous flow of
material or interrupted at individual time intervals [23].
The implementation of the input flow of material and the
analysis of the statistical characteristics of the input flow
of material are presented in [24].

Main parameters of the input material flow

Let us consider a class of stochastic input material
flows for which the statistical characteristics of the input
material flow do not depend on time. This means that the
statistical characteristics of an arbitrary implementation
do not depend on the start time of the experimental
changes in the values of the input material flow. To
analyze the statistical characteristics of a stationary
stochastic input material flow A(t), dimensionless

parameters are introduced:

G A e SEC O PLTS
O-ﬂ, Uﬁ, Gﬂ
=2 tn:[a; t_mi:ﬂn s maxz?tmin ' (1)
m = M{l(t)—_m’l}: M[y(r)]=0,
o,

2
% =M [/1(0_—”11] - M[;/z(r)]zl, @)
o

k(9)=Mly(D)y(r-9)] r<[-11]
where mj is the mathematical expectation of the values

of the stationary stochastic flow of material A(t); o is

the standard deviation of the values of the stationary
stochastic flow of material A(t). Using dimensionless

parameters, the stationary stochastic input flow of
material A(t) in dimensionless form y¢(z) s

represented as:
re(@)=mg +y(7). @)

The dimensionless stochastic input flow »(z) is a

centered stationary random process with mathematical
expectation m=0 and standard deviation o=1. The
correlation function of the input material flow y(z) isa

normalized function satisfying the equality
k(0) =1. 4)
Decomposition of a stationary material flow
and verification of ergodicity conditions
Let us represent a stationary centered random

process y(r) on a fixed time interval 7 e[-11] in the
form of a canonical expansion:

y(r):Z@cj cos(wjr)@sj sin(wjr) oj=, (5)
=1
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where O, O are centered random variables with
M)

standard deviation M [(@Cj )2} =M [(st )2} -

mathematical ~ expectation M[@Sj]:o and
cs%. Let us

define the statistical characteristics of the dimensionless
stationary stochastic input material flow y(7):

a) mathematical expectation

M[y(r)]=M i@d Cos(a)jr)+@sj Sin(a)jr) =
j=1

ZCOS a)J

b) standard deviation

M [0 J+sinlo;cM[og]=0;  (6)
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c) correlation function
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From the condition

T
1 9
Tll_r)noo?o(l—?Jk(S)dl9=O, ©)

where

l.(l——j (9)dg= I(l—g)écos(mjg)gﬁdlg:
Zj[l——]coswj 8)o3ds = Z_l COSwT))

i=lo
it follows that the canonical expansion (5) of the
stationary random process y(z) is ergodic with respect

to the mathematical expectation. Satisfaction of
condition (9) makes it possible to use integration over

time on the interval re[—l,l] to determine the
mathematical expectation of the random process y (7).

1 1
%ny(r)drsz, %J'y(r)dr:o (10)
e e

To check the fulfillment of the ergodicity condition
with respect to the standard deviation, the stationary
centered random process is considered

7e@=r*@-Y of =y (-1, ()

j=1
with mathematical expectation determined in accordance

with formula (7):
[7 (r)} iaf—o
j=

My, (0)]=M (12)

Let’s represent random process y.(r) by a
canonical decomposition of the form:

Ve (7) = 72(2') - i(cosz (a)jz')+ sin? (a)Jz'))JJZ = (13)
j=1
=368 -2 kos?(oje)+ (63 —o? kir?ye)+

j=1
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o ®cj®cicos(mjr)cos(ml-r)+

5ID)
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+®Sj®3i sin ((J)J"E)Sin ((Di’lf)

The decomposition of a random process y.(7)
corresponds to the correlation function

Ky (9) = M[y, (2)74(z + 9)]= Z(cos(a) i9)fon?. (19)

j=1
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which is constructed by analogy with the expression for
the correlation function (8). From the condition

T o
.1 9 1 2
nm—j' 1-2 )k (9dg== 0,
T—>ooT0( TJG() 4121:"'31

[1_$jz<cos(w,.g))z%§dg:

=L

- g((l—COS(Zm ) / (8m§T2)+%ch%,

it follows that for a dimensionless stationary stochastic
input flow ¥(z) the ergodicity condition for the standard

deviation is not satisfied.
To check the ergodicity condition for the correlation
function, the random process is considered.

Ykor (D) =7(@)y(r +9)—-K(9), S=const (17)
with mathematical expectation defined by expression (8):
M[or ()] =My (2)y (s + 9)]-k(# =0.  (18)
Let us write down the correlation function that
corresponds to a random process yyo(7) :
kkor(9) = My D)7k (7 + )] -k (9) =
=Mp @)y (e +9)r(z+@)y(r+9+9)]-k* (9. (19)

When constructing an analytical expression for the
correlation function, it is necessary to calculate moments
up to the fourth order. For simplicity, it is assumed that

(16)

where l
T

O ey, —

random variables &, O have a normal distribution

law. Then, expressing the central moment of the fourth
order of function y(z) through the correlation function

k() , the expression for the correlation function kyq(¢)
of the random process yyqr(7) is obtained

Kior () = k2(@) + k(@ + Dk (9 — 9).
From the condition

T o

1 0 O cos(2wj3) 9
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0 =
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4 wiT?

GD?dd) =

it follows that for a dimensionless stationary stochastic
input flow ¥ (z) the ergodicity condition with respect to

the correlation function k() is not satisfied. This
conclusion is obtained for a random process for which

random variables &, O have a normal distribution

law. A similar conclusion regarding the ergodicity
condition can be obtained for a random process yyqr(7)

at $=0 with an arbitrary distribution law of random

variables O, O . Indeed, at $=0 equality

7k0r(7)|9=0 =y,(r) follows, for which the correlation

function is represented by expression (14) and the
ergodicity condition (21) takes the form (16).

Thus, for y(z), the ergodicity condition is not
satisfied with respect to the correlation function k(9),
and accordingly, condition (21) as a whole is not
satisfied. An important conclusion follows from this: due
to the fulfillment of the ergodicity condition for the
random process y(z), the value of the mathematical

expectation m¢ is determined based on formula (10)

using a single implementation of the random process
v+ (r) . To determine the mean square value & and the

correlation function k(9) of the random process y ¢ (7),

a sufficiently large number of implementations of the
random process is required. Thus, the problem of
constructing a generator of input material flow values is
divided into two separate subproblems:

a) determination of the distribution law of random

variables @cj , O in the canonical expansion (5) of a

stationary random process y(7);

b) determination of the standard deviation o and the
type of correlation function k(9) of a stationary random
process y(z) for calculating the values of the standard

deviations o of random variables &, O in the

canonical expansion (5) of a stationary random process
y(7).

This paper examines in detail the solution of these
subproblems.

Modification of the decomposition of a
stationary random flow of material and
calculation of statistical characteristics

When choosing the expansion of the stationary
random process y(z) in the form (5), it is assumed that

a single realization of the input flow of material would be
used to calculate the statistical characteristics of the
stationary random process. However, as was
substantiated above, for the stationary random process
y(r), the ergodicity condition is satisfied only with

respect to the mathematical expectation. This
circumstance requires that a sufficiently large number of
realizations of the random process y(z) be used to

calculate the statistical characteristics of the stationary
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random process y(z) . In this regard, expansion (5) of the
stationary random process y(r) is modified to the
following form

o

y(t) =6+ Z@Cj cos(a)jr)Jr@sj sin(a)jr), wj=1,(22)
j=1

where ©g;, O, Og are random variables with

mathematical expectation and standard deviation

Ml@o]=0, M[og]=0, Mleg]-0, (3

2 2 2 2 2
AALDO ] =00, hﬂLDq ] ::“AL9q ] Z(Tj.

Let us expand the realization y,,(z) of the stationary
random process y(z) (22) on the interval z € [-11] into

a Fourier series

Oon .
}/n(r)— Z&ml cos a)J )+95njsm(cuJ ) wj=7, (24)
j=1
where  6gn, Ocnj, Osnj are constant expansion

coefficients.

The correlation function can be defined as the
averaging of correlation functions over individual
realizations y,,(z) of a random process y(z)

N 1
1 1
()= 25 [ e+ 98-
n=0 _1
N 5 oo N (52 2
(28 Ocnj  Onj
=Zﬁ+ : COS(Q)JLQ)Z[N-{-W +
n=1 j=1 n=1
Hsnj‘gcnj N Ol OiOos
Yl | Al Ll
j=1 n=1
N 2 0 N 2 2
_\ " %n _ Ocnj  Onj
_nz_j;w-‘rjz_j;cos(a)rg)nz_j;[m‘i‘m , (25)

1 HT
where _[cos(o)jr)cos(mi (r+9))d9:{cos(“)19)’ 1=
0, j#i;

}1Sin(wl )sm( (z+9))d39= {;05( ) jJi—i';
_j‘lsin(wj 7)cos(a (r+9))d 9= {O,mn( )J il_l
_.tcos(a)] 7)sin(@ (r+9)) g = {:)I,n( )J i:'

From conditions (23) for a stationary random
process ¥(7) (22), it follows

I3 =ty 13, e
N Oj N an snj »
n=1

n=1 n=

IIl
I

2
o0

from where the expression for the correlation function is

finally determined
0
= 0'5 + ZO'JZ Cos(a)j&)
j=1

and also the value of the standard deviation o for the
distribution function of the values of the input material flow

o0
o= 0'@2 + ZO'JZ.
=1

In practical calculations in this paper, the Fourier
series expansion for the first ten terms of series is used
je[1,d =10] . 1t is also assumed that that the material
flow realizations represented by a set of N-intervals are
independent.

If asingle realization of a random stationary process
y(z) is used to calculate statistical characteristics, then

in accordance with (26) the standard deviation o, oj,

(27)

(28)

at N =1 takes on a random value

o2 = % 6'clJ + 9511
og=— " OjR—
4 2
which is determined by the values 6y, Ocnj, Osnj OF

(29)

random variables &, O, Og . It follows that the

correlation function (27), determmed by random values
og and o, is a random function.

Thus, a single realization of a stationary random
process y(z) , even of a sufficiently long duration, cannot

be used to calculate the standard deviation and correlation
function of the stationary random process y(z) , since it

leads to a distortion of the statistical characteristics of the
random process. The required number of realizations of a
centered stationary random process y(r) can be

determined by the following formula

8xV$J] N :tzag

. (30
2 (30)

P{]mx| <&x}= 2@[

Ox
where t=1.96 st Pﬂmx| <&y }z 0.95; X isa centered
random variable &, , O, O ; &y is the permissible
error for determining the mathematical expectation of a

centered random variable X ; M[X 2] ~ 0'3 .

Construction of a generator
of input material flow values

Each realization y,(z) of a stationary stochastic

process y(r) corresponds to values g, Ocpnj, Osnj Of

random variables @, , O, O, 1<n<N. If there are

yn(z), for
X= [@0 164, Oy ] a histogram of the distribution of values

N realizations each random variable

of the random variable can be constructed. Taking into
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account the histogram of the distribution of values of a
random variable, we construct a statistical distribution
function of a random variable F(x)=P{X <x}. Then,
using the inverse function method, we obtain a sequence of
values of &gy, Ocnj , Osnj random variables G, O, Og; :

Oon = Fo " (Uon), (31)
-1 -1
Ocnj = Fej ~(Ucnj), Osnj = Fsj ~ (Ugnj),
with statistical distribution functions:
Fo (60) = Po{@ <o}, (32)

FC] (HCJ) = PC] {@Cj < QCJ}’ FS] (051 ) = PSJ {@Sj < 951}

Functions Fp~2(ugpn), ch_l(ucnj), st_l(usnj) are
inverse functions of functions Fq(6pn), Fej(Genj),
Fsj(Osnj), where Ugp, Ucnj, Usyj are sequences of
values of independent random variables Ug, Uj, Uy

with uniform distribution law for the range  [0.0;1.0].

The general operating principle of the input material
flow value generator is as follows: a) values ug;, Ucyj,

Usyj of random variables Ug, U, Ugj are generated;

b) based on the inverse function method in accordance
with formulas (31), the values 6y, Oc1j, Os1j are

calculated; c) the values g1, Ocyj, Os1j are used in

formula (24) to construct the implementation y4(z) of
the stochastic stationary process y(z) on a fixed time

interval te[-11].

The given computational procedures are repeated
for time intervals 7e[-1+2(n-1)1+2(n-1)], n>1

corresponding to realizations y,(z). The stationary
stochastic process y(z) is thus represented as an infinite
sequence of realizations y,, (7) .

Analysis of results

Let us consider the process of constructing
realizations for a stationary stochastic input material flow
using the developed generator of input flow values. It is
assumed that the realizations of the stochastic material
flow formed using the generator will find wide application
for simulating the input material flow on a transport
conveyor in problems of designing effective control
systems for flow parameters in transport systems. In this
paper, a generator built on the basis of experimental data
is used to demonstrate the methodology for forming
realizations of the input material flow.

The experimental data were obtained by analyzing
the flow of material entering the input of an operating
conveyor [25]. The main focus was on reproducing the
key statistical characteristics of the experimental input
flow of material. The results obtained made it possible to
form an approximate model of the input flow of material,
which is an important step in studying the problems of
optimizing the operation of a transport conveyor. In the

paper [25], a non-uniform bulk material distribution
model based on bulk material flow measurement data
from a laser scanner is proposed. The influence of the
stochastic material flow characteristics on the speed
control parameters of the transport conveyor belt is
studied in detail. It is also worth noting that a limitation
is imposed on the maximum value of the conveyor belt
acceleration, exceeding which can cause the destruction
of the conveyor belt [26].

Experimental values obtained from material flow
measurements cannot be used directly in energy-efficient
belt speed control models. A solution to this problem can
be obtained by developing input material flow models
based on statistical characteristics of the input flow. The
main difficulty in constructing such models is in
calculating statistical characteristics. One way to solve
this problem is to form the required set of experimental
data, which is a set of measurements of the input material
flow values. Another problem is how to evaluate and test
the models directly in production conditions. One of the
options for solving this problem is based on conducting
simulation experiments. These experiments should use
models of statistical characteristics of the material flow
that coincide with the statistical characteristics of the
material flow of the operating system.

In  general, the calculation of statistical
characteristics of the input material flow can be made on
the basis of experimental implementations of the input
material flow of operating transport conveyors. This
paper considers a method for calculating statistical
characteristics based on the presence of a sufficiently
large number of implementations of the input material
flow. The results of calculating statistical characteristics
are the foundation for constructing a generator of input
material flow values with specified statistical
characteristics. The input material flow realizations
required for calculating statistical characteristics are
formed as a result of conducting independent
experimental measurements of the input material flow
values or dividing a single, but sufficiently large,
experimental realization of the input material flow into a
sufficiently large number of time intervals.

The experimental implementation of the input
material flow used in this study for dividing into time
intervals, as well as the distribution function of the input
material flow values, are shown in Fig. 1. To form a
dimensionless implementation of the input material flow
in accordance with the dimensionless parameters (1), (2),
the mathematical expectation and standard deviation for
the input material flow values are calculated. To calculate
the statistical characteristics of the material flow, the
implementation of the material flow (Fig. 1) is divided
into twenty intervals (N = 20).

For each n-interval, the constant expansion
coefficients are calculated, and the mathematical
expectation and standard deviation of random variables
are determined. Summing up the squares of the standard
deviation for all harmonics in accordance with formula
(28), we obtain the standard deviation for the distribution
function of the input material flow values. The value of the
standard deviation is used to calculate the dimensionless
parameters of the input material flow (1), (2).
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Fig. 2 shows the dimensionless realization of the
material flow and the dimensionless density distribution
of the material flow values. The approximation of the
dimensionless stationary stochastic input material flow
7(z) is shown in Fig. 2. This approximation is based on
the first ten harmonics of the expansion j<J =10 and
is performed in accordance with formula (24). The
approximated realization y,(r) of the dimensionless
input material flow is shown in Fig. 3.

Approximated realization y,(7) is used to estimate
the statistical characteristics of the dimensionless input
material flow. The main goal of the approximation is to
replace the original experimental material flow with a
theoretical material flow with well-studied properties, the

statistical characteristics, distribution function and
correlation function of which correspond to the
experimental material flow with a given accuracy. The
number of terms in the expansion (24) when
approximating the dimensionless realization of the input
material flow yn(t) is selected from the condition of
ensuring a given accuracy of the approximation.

It is also important to point out that during
approximation, the experimental realization of the input
material flow is smoothed. The degree of smoothing (the
degree of averaging), as well as the accuracy of
approximation, is specified by the number of terms in the
expansion of the canonical representation (24). Each
term in the expansion is determined by the statistical
characteristics of the input material flow.

A(t) f(A)
14
12 0.3
10 ] N | i
8 7 0.2 -
6
_ |
4 0.1 A
2
0 0.0 -
0 1 2 3 4 5 6 7 8 4 6 8 10 12
t A
a b
Fig. 1: The measured data of instantaneous non-uniform iron ore powder distribution with a flow
of 8.911 kg/s (3L/s) at a stable speed of 1.0 m/s [22]: a - realization of the input material flow;
b — histogram of the distribution of values A of the input material flow.
YA(T) flyr)
14
12 0.4 A
10 1 0.3 -
8
6 ] 0.2
4
4 l 0.1 -
2
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Fig. 2: Dimensionless input material flow ys(t):
a — realization of the input material flow; b — histogram of the distribution of values y¢ of the input material flow

Along with smoothing the realization of the
experimental input material flow, as a result of
approximation, smoothing of the distribution density of
the values of the experimental realization of the input
material flow occurs (Fig. 3, b). Smoothing (averaging)
of data during approximation reduces the level of noise
and errors, which is critical for accurate calculations and
forecasting the dynamics of the material flow under

uncertainty. The approximation error £(z) is determined
by the expression representing the difference between the
measured values of the experimental realization y¢ (7)
and the values of the approximated realization y,(r) at
the same moment in time 7

&(r) =71 (1) =7a(?). (33)
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Function ¢ () allows quantitative analysis of the
deviation of the approximated implementation ya(z) from the
experimental implementation y«(z). This function is a
criterion for assessing the improvement of the stochastic
input material flow model. Estimation of the approximation
error allows identifying differences between the
experimental and approximated values of the material flow
over time intervals, which provides an understanding of the
system dynamics by identifying areas of the experimental
implementation with increased uncertainty.

It should be noted that the values of experimental
implementation v¢ (1) contain both random and systematic
errors, which have a significant impact on the
approximation results.

To analyze the distribution of the approximation error
of the dimensionless material flow, Q-Q (Quantile-to-
Quantile) graphs were constructed. This analysis method
made it possible to compare the distribution density of the
approximation error with the theoretical distribution density

VA1), Ya(T)

14
12
10

8

° |

41 1

2

0 . : ;
-1.0 -0.5 0.0 0.5 1.0

T
a

of the error (with a normal error distribution law) and
visually assess the deviations. Q-Q graphs clearly
demonstrate the degree of correspondence between the
actual and theoretical error distributions.

According to the results of the analysis, the
distribution law of the approximation error is close to the
normal distribution law, which indicates that random
errors occur mainly due to the summation of a large
number of small independent factors. The normal
distribution law of the error will allow the use of well-
developed statistical methods in future studies to assess
the accuracy of measurements, construct confidence
intervals and test hypotheses.

The approximation error g(t) for the implementation
of the dimensionless material flow yt(z) is shown in Fig. 4.
The graphical representation allows us to evaluate the
nature of systematic and random errors and makes it
possible to determine the most important parameters that
affect the accuracy of the model.

f(va)
0.4 7
0.3 11
0.2 4+ ’
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b

Fig. 3: Dimensionless input material flow: a — comparative analysis of realizations vya(t), y¢(t) of the input material flow;
b — histogram of the distribution of values ya (t) of the input material flow
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Fig. 4: Approximation error &(t) =yt (t) — ya(t) for the realization of dimensionless material flow y (t):
a — histogram of the distribution of values ¢(t); b — Q-Q plots (Quantile-to-Quantile) of values ¢(t)

Fig. 5 shows the experimental realization of the
dimensionless material flow v (x), with visualization of
the process of dividing the experimental realization into
eight separate time intervals (Fig. 5, a). This division
allows for a fixed number of terms of the canonical

expansion (24) to analyze the material flow dynamics in
more detail and accurately. Each interval represents a
separate sample of experimental values of the material
flow, which facilitates a more accurate calculation of
statistical characteristics.
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To simplify the analysis and to demonstrate the
method of smoothing the experimental flow of material
within each interval, a canonical expansion was used,
which assumes the presence of the first two terms of the
expansion (Fig. 5, b).

This approach allows for the effective smoothing of
the experimental material flow. In most cases, the first
two terms of the canonical expansion often provide a
fairly good qualitative approximation to the form of the
experimental implementation of the input material flow,
allowing for the identification of key process
characteristics. Increasing the number of intervals

improves the quality of the approximation, providing a
more detailed picture of random fluctuations in the
material flow.

To achieve high accuracy of results in practical
applications, the number of intervals is determined in
accordance with formula (30), ensuring an optimal ratio
between the volume of data and the accuracy of
calculations. The value of the mathematical expectation
and the standard deviation for the approximation
containing a different number of intervals of partitioning
a single realization of the input material flow is presented
in Table 1.
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Fig. 5: Approximation of the experimental implementation of the input material flow:
a — comparative analysis of the experimental implementation yr (t) and the approximated implementation
of the input material flow for eight intervals; b — approximated implementation of the input material flow ya (1)
Table 1 — Comparative analysis of experimental and approximation implementation of the input material flow
Number of separation intervals of experimental implementation
Parameter ;
_Experimental 8 16 32 64 128
implementation
Mathematical expectation 8.51 8.51 8.51 8.51 8.51 8.51
Standard deviation 1.37 1.20 1.18 1.16 1.10 1.04

With an increase in the number of partition
intervals, the value of the standard deviation
characterizing the approximation realization of the input
material flow tends to the steady-state value of the
standard deviation for the experimental realization of the
material flow. Dividing the flow into intervals helps to
improve the accuracy of estimating statistical
characteristics such as the mathematical expectation and
standard deviation.

Conclusion

This paper considers the problem of constructing a
generator of values of a stochastic input material flow for
modeling a branched conveyor-type transport system.
The main attention is paid to transport systems for which
the input material flow is approximated by a spectral
decomposition of a stationary stochastic input material
flow.

The stationary stochastic input flow of material is
represented by a canonical expansion as a sum of
harmonic oscillations with random amplitudes at various

non-random frequencies. The coefficients of the
canonical expansion are related to the coefficients of the
expansion of the correlation function of the stationary
stochastic input flow of material.

The developed method for generating realizations
of a stationary stochastic input flow of material allows
one to approximate experimental realizations of the input
flow of material with a given accuracy.

A two-stage approach is proposed for forming
realizations of the input material flow. At the first stage,
using the canonical expansion in given coordinate
functions, the experimental realization of the input
material flow for a given interval is approximated. At the

second stage, statistical characteristics of the
implementations of the input material flow are
calculated.

These characteristics are used in constructing a
random value generator for the input material flow of the
transport conveyor.

The generator of stochastic input material flow,
constructed on the basis of experimental data, plays an
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important role in modeling conveyor-type transport
systems.

It allows simulating various implementations of
input material flows, which can be used to study the
regularities of the dynamics of the material flow of the
transport system. Implementations of the input material
flow constructed in this way act as input parameters for
the analytical model of the conveyor when designing
effective systems for controlling the flow parameters of
the transport conveyor.

The conducted analysis showed that the application
of the method of smoothing the realizations of the
material flow, based on the canonical decomposition of
the realizations of the input material flow, ensures a
sufficiently accurate reproduction of the statistical
characteristics of such a flow, which is important when
designing effective systems for managing the flow
parameters of a transport system.

Approximation of the material flow based on the
first ten harmonics of the decomposition allowed us to
achieve satisfactory accuracy in reproducing the
dynamics of the input material flow. To design efficient
algorithms for controlling the flow parameters of a

transport system, it is proposed to use a smoothed
material flow that takes into account only the first few
terms of the decomposition. The number of the first terms
of the decomposition is significantly less than the total
number of terms of the decomposition for approximated
implementations. Particular attention is paid to the
estimation of approximation errors. According to the
analysis results, the distribution of the approximation
error is close to normal, which confirms the stability of
the model. Analysis of Q-Q graphs confirms a
sufficiently high degree of correspondence between the
theoretical and experimental density distributions of
errors.

Thus, the developed method of forming the input
flow of material based on statistical characteristics can be
successfully used for modeling and designing control
systems for transport conveyors. The methods of
generating input flows based on experimental data
proposed in the paper allow increasing the accuracy of
modeling and control of conveyor systems, which in the
long term can lead to a decrease in operating costs and an
increase in the productivity of conveyor-type transport
systems.
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MopneaoBaHHS CTAIOHAPHOTO CTOXAaCTHYHOIO BXiZTHOTO IMOTOKY PO3rajy’KeHHX KOHBEEPHUX CHCTEM
O. M. Ilirnacruit, B. B. Ycuk, A. Bypayx

AHoTanisi. O6’€KT IOCTITKEHHS] — CTOXaCTHYHHMI CTalliOHAPHUH BXIAHUH MOTIK MaTepialy TPAHCIOPTHOI CHCTEMH
KOHBeepHOro THiy. IIpeamer mocaiakeHHsl - METOA TeHepallii peai3aliif cTal[iloHapHOIO CTOXAaCTHYHOTO BXiTHOTO MOTOKY
Marepiany Ha OCHOBI EKCIEpHMEHTANBHUX AaHMX. MeTa JOCJiKEeHHs1 - po3poOKa reHeparopa BHIIAJAKOBUX 3HAYCHb IJIs
noOyI0BU peaiizalii BXiZHOTO MOTOKY Marepialy TPaHCIOPTHOTO KOHBEEpa, KMl Mae 3ajaHi CTaTUCTHYHI XapaKTePUCTHKH,
po3paxoBaHi 3a pe3yJbTaTaMH IIONEPEHbO IPOBEICHHX CKCHEPUMEHTAJbHUX BHMIipioBaHb. OTpHMaHi pe3yJbTaTH.
CrauioHapHH# CTOXaCTUYHHMN BXIiIHMH TOTIK Marepiajay MpelCTaBlIeHHH KAaHOHIYHMM PO3KJIAJaHHIM SK CyMa TapMOHIHHHX
KOJIMBaHb 3 BUMaJKOBUMH aMILTITYAaMH Ha Pi3HUX HEBUITAIKOBHX YaCTOTAX. 3alPOIOHOBAHO BOSTAITHUM IMTi/IXiJ 10 GOpMyBaHHS
peamizariiii BXiZHOTO MaTepialnbHOr0 MOTOKY. Ha meprioMy erami 3a JOMOMOTOK0 KaHOHIYHOTO PO3KIAJAHHS IO 3aJaHHX
KOOPANHATHUX (QYHKIISAX alpOKCUMYEThCSI eKCIIEPUMEHTAIbHA pealli3allis IIOTOKY BXiIHOTO MaTtepiaiy Uil 3aJaHOrO iHTepBay.
Ha npyromy erami po3paxoBYHOThCSl CTATHCTHYHI XapaKTEPUCTHKM peaiizaliil BXiJJHOr0 MarepianbHOro motoky. IIpoBeneHwmit
aHaJTi3 TI0Ka3aB, IO 3aCTOCYBAaHHS METONy 3IJIa/DKyBaHHsS pealli3alliii MaTepialbHOro MOTOKY, 3aCHOBAHOTO Ha KAaHOHIYHIH
JIEKOMITO3|IIIT peamizaliii BXiZHOTO MaTepiaJbHOTO TIOTOKY, 3a0e3ledye IOCTaTHhO TOYHE BIATBOPEHHS CTAaTUCTUYHHUX
XapaKTEePUCTUK TaKoro IOTOKY, IO BXJIMBO IPH MPOEKTYBaHHI €EKTUBHHX CHCTEM YNpPaBIiHHS NOTOKOBUMH MapameTpamMu
TpaHcopTHOI cucteMu. [IpoBeieHo MOPIBHUIBHUI aHai3 KOPEIALIHHIX QyHKIIH A1 eKcriepiMeHTalIbHOT, alTPOKCHMOBAaHOT Ta
3reHepoBaHol pealizaliifi BXiZIHOro MaTepialibHOro MoToKy. OOIpyHTOBaHO TPUBATICTh IHTEPBAYy Yacy, HEOOXiTHOTO s
MPOBECHHS €KCIIEPUMEHTAILHAX 3MiH MOTOKY BXiZHOTrO Marepiany. BucHoBoK. 3ampornoHoBaHi B poOOTi MeToqu reHepamii
BXiZIHMX TOTOKIB Ha OCHOBI EKCIICPMMEHTalbHHMX [AaHMX JO3BOJIIOTH IiJBHILUTH TOYHICTH MOJEIIOBAaHHS Ta KEpyBaHHS
KOHBEEPHHUMH CHCTEMaMH, IO B IEPCHEKTHBI MOXeE IPU3BECTH [0 3HIDKCHHS eKCIUIyaTallifHMX BUTpAT Ta IIiJABUIICHHST
MIPOJYKTHBHOCTI TPAHCIIOPTHUX KOHBEEPHHUX CHCTEM.

Kaw4oBi ciioBa: MaTepiansHHil IOTIK; BUIIJAKOBHI MIPOLIEC; TEHEPATOP BUMAIKOBOT BETMYNHHI; TIOMUIIKA ATPOKCUMAILT.
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