
Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052 

82 

Methods of information systems protection 

UDC 004.056.3   doi: https://doi.org/10.20998/2522-9052.2024.4.11 
 

Volodymyr Fedorchenko1, Olha Yeroshenko1, Oleksandr Shmatko2, Oleksii Kolomiitsev2, Murad Omarov1 
 

1 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine  
2 National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine  
 

PASSWORD HASHING METHODS AND ALGORITHMS 

ON THE .NET PLATFORM 
 

Abstract :  Web applications, which are widely used to provide services and collect information, have become a major 

target for attackers, especially with the emergence of government services that process sensitive data. The .NET software 

platform, popular for developing web applications, includes built-in hashing algorithms (HA) and key generation functions 

(KDF) to protect passwords. However, these were developed over two decades ago for different levels of threats. More 

modern alternatives, such as Bcrypt, Scrypt, and Argon2, offer improved protection against modern GPU, ASIC, and 

FPGA attacks, but require third-party implementation. Given the critical role of password protection in protecting user 

information, this research investigates the effectiveness of various hashing mechanisms on the .NET platform, which is an 

urgent need for securing modern web applications. The subject of study in the article is the features of hashing algorithms 

built-in and available in the libraries of the .NET software platform for password protection as the main aspect of user 

authentication. The purpose of the work is to compare and analyse the hashing algorithms built-in and available in the 

libraries of the .NET software platform for password protection as the main aspect of user authentication. Objectives: to 

review built-in algorithms such as MD5, SHA and PBKDF2, as well as third-party implementations of modern key 

derivation functions such as Bcrypt, Scrypt and Argon2, and to investigate their performance and cryptographic strength. 

Methods used: This included measuring hashing speeds for different password sets and analysing attack resistance using 

tools such as Hashcat and data from independent security research. The results show that while built-in algorithms such as 

MD5 and SHA256 are fast, they do not provide protection against modern threats such as rainbow table attacks and GPU-

accelerated brute-force attempts. PBKDF2, which is standard in ASP.NET Core Identity, provides better security but is 

vulnerable to attacks using specialised hardware. Among the modern algorithms, Argon2 demonstrated the best balance of 

security and performance, providing protection against GPU, ASIC, and FPGA-based attacks.  Conclusions. The study 

concluded that Argon2 is the recommended algorithm for password hashing on the .NET platform, while Bcrypt is a 

suitable alternative for legacy applications. PBKDF2 with a high number of iterations can still provide strong protection. A 

promising direction for further research may be to determine whether modern memory-intensive key derivation functions 

can be used to improve password security in .NET applications. 

Key words:  hash function; hashing algorithm; key generation function; computer systems. 

 

Introduction 

Web applications are the most popular means of 

providing services and gathering information for many 

institutions [1, 2]. Because of their wide distribution, 

they are an attractive target for attackers. This is 

worsened by the emergence of state services, "DIIA" 

and others, which process important confidential 

information. Software platform (SP) .NET is a popular 

solution for developing web applications. This is 

because it has strong industry support from Microsoft, 

has quality developer tools, and uses multiple 

programming languages. The vast majority of computer 

systems (CS) uses passwords to ensure data security [3, 

4]. A password is a user-remembered secret [5, 6] 

consisting of several typeable characters. Passwords are 

secured using hashing and other techniques. 

A hashing algorithm (HA) is a mathematical 

function that distorts data and makes it unreadable [7]. 

AHs are one-way programs, so the input cannot be 

deciphered by anyone else. Hashing always protects the 

input data, so even if someone gains access to the 

storage where the hash values are stored, the input data 

will remain secure. Hashing is also used for digital 

signatures and when indexing data. 

Hash functions (HF) also have disadvantages, 

because of them, key generation functions (KDF) are 

now more actively used to protect passwords, some of 

them are based on HF or encryption algorithms. 

SP .NET has built-in APIs such as MD5, SHA-1, 

SHA-2 and the key generation function (KDF) 

PBKDF2, which ASP.NET Core Identity uses for 

hashing by default. These HAs were created more than 

20 years ago for a different level and nature of threats. 

There are also more modern KDF alternatives used 

for hashing passwords, namely Bcrypt, Scrypt and 

Argon2, these HAs promise protection against graphics 

processing units (GPUs), application-specific integrated 

circuits (ASICs), and user-programmable gate arrays 

(FPGA). These KDFs are not built into the .NET 

framework, but their implementations can be obtained 

from third-party libraries. Due to the fact that password 

protection is one of the main aspects of protecting 

confidential user information, the study of this 

mechanism on SP .NET is an urgent task. 

1. Literature Survey 

1.1. Features of hashing functions and 

algorithms. Hashing functions play an important role in 

cryptography because they have important 

characteristics that help in data authentication and 

ensure the security of sensitive data such as passwords 

[8, 9]. Such HFs are known as cryptographic and their 

characteristics include the following [10, 11]: 

©   Fedorchenko V., Yeroshenko O., Shmatko O., Kolomiitsev O., Omarov M., 2024 



ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4 

83 

- irreversibility; 

- determinism; 

- resistance to collisions; 

- avalanche effect; 

- speed. 

Irreversibility of HA. HAs are one-way functions – 

that is, it is not possible to calculate the input data using 

the hash value. This means, it is possible to easily hash 

the input data, but it is not possible to extract the input 

data from its hash value, until the HA is broken. This is 

important because hashes are used to store passwords 

on public servers. Since hashing is irreversible, 

attackers will not be able to recover the password from 

the hash, even if they get their hands on a database of 

password hashes. That is why passwords are never 

stored in public. 

HA determinism. The output length of all HA 

results must be the same, regardless of the length of the 

input data. This is convenient for allocating space for a 

hash value in a data structure, file format, or network 

protocol field because you know how long the hash 

value is. This also helps prevent attackers from knowing 

how large the input value was because all output hashes, 

regardless of how long or short the input value is, are of 

fixed length and do not change. 

Resistance to collisions or collisions of HA. When 

hashing, a collision is considered to have occurred when 

identical hash values were obtained as a result of 

hashing different input data. If the attackers become 

aware of the collision, it will be possible to bypass the 

CS protection. This is known as a hash collision attack. 

Another problem is rainbow tables. Attackers can 

create a huge number of precomputed combinations of 

input data and their hash values. This table will allow 

you to quickly search for input data. 

This is why all HAs must be collision resistant. 

One way to reduce password hashing collisions and 

reduce the risk of rainbow table attacks is to use salting. 

Avalanche effect of HA. A feature of hash functions 

is that even the slightest change in the input data leads to 

a significant change in the output hash value. This 

ensures that no one can decipher the original text. 

HA speed. Many areas of use of hashing require 

high-speed algorithms to calculate the hash value. 

However, not all hash functions need to be fast. Some 

functionality requires hash functions to be slow. This is 

necessary so that it is more difficult for attackers to use the 

method of sorting or rainbow tables to obtain input data. 

1.2. Key generation functions. KDF is used to 

generate one or more cryptographic keys from a closed 

input value [12]. KDFs return bytes suitable for 

cryptographic operations from passwords or other data 

sources using a pseudorandom function. Different KDFs 

are suitable for different tasks such as [13]: 

- obtaining or stretching a cryptographic key; 

- hashing passwords. 

In cryptography, key stretching techniques are 

used to make a potentially weak key, usually a 

password or passphrase, more secure against an iterative 

attack by increasing the resources, time, and possibly 

space required to test each possible key. Human-

generated passwords or passphrases are often short or 

predictable enough to make passwords easy to crack, 

and key stretching is designed to make such attacks 

more difficult by making the basic step of trying to pick 

a single candidate password more difficult. Key 

stretching also improves security in some real-world 

applications where the key length was limited by 

simulating a longer key length from the perspective of 

an attacker using an iterative method. 

When storing passwords, it is advisable to use an 

algorithm that requires high computational costs. Users 

would only need to calculate it once, while attackers 

would need to do it billions of times. An ideal password 

store with KDF would be demanding on both 

computational and memory resources [13]. 

Different KDFs have different additional 

parameters such as duty ratio and context information 

fields. 

At a minimum, KDF for hashing passwords has 

the following parameters [14]: 

- incoming data; 

- salt; 

- number of iterations or work factor. 

KDFs with adjustable duty ratios are used to store 

passwords. KDF is better than simple HF even with the 

use of salt, because the work factor can be chosen in 

such a way as to make an exhaustive search in the space 

of probable passwords expensive (Fig. 1). 
 

 

 

Fig. 1. General view of the key generation function 

 

Therefore, for SP .NET, it is an urgent task to 

establish the most optimal algorithm for password 

protection. The work analyzes built-in algorithms, 

namely HF MD5, SHA and KDF PDKDF2. Among the 

algorithms that are not built into SP.NET, the following 

KDFs are selected: 

- Bcrypt; 

- Scrypt; 

- Argon2. 

Data AH was chosen according to the 

recommendations of the OWASP organization 

regarding password protection [15]. Indicators based on 

which analysis will be performed [16]: 

- minimum, maximum and average hash value 

calculation speed; 

- the time required to obtain the input value by the 

method of complete enumeration. 



Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052 

84 

1.3. Built-in hash functions and key generation 

functions. Hashing functions are represented as classes 

in the namespace System.Security.Cryptography SP 

.NET: 

- MD5; 

- SHA1; 

- SHA256; 

- SHA384; 

- SHA512. 

These abstract classes are derived from a class 

HashAlgorithm. To calculate the hash value using these 

functions, the following steps are required [17]: 

- instantiate the hash algorithm. You can choose 

from MD5, SHA1, SHA256, SHA384 and SHA512; 

- call the ComputeHash method, passing an 

array of bytes. A byte array can be derived from any 

raw data; 

- the ComputeHash method, upon successful 

execution, will return a byte array representing the hash 

value. 

After a successful ComputeHash execution, the 

byte array of the hash value can be converted to another 

type for more convenient storage. 

Key generation functions are presented as classes 

in the System.Security.Cryptography namespace 

SP.NET (Fig. 2): 

- PasswordDeriveBytes; 

- Rfc2898DeriveBytes. 
 

 

Fig. 2. Built-in hashing functions 
 

Rfc2898DeriveBytes is an implementation of the 

PDKDF2 AX and is used by default in applications 

using ASP.NET. The implementation of the algorithm, 

depending on the environment where the application is 

deployed, is selected using the KeyDerivation.Pbkdf2 

wrapper class from the Microsoft.AspNetCore.Crypto-

graphy.KeyDerivation namespace. 

The conducted analysis of built-in HF shows that 

in SP.NET built-in HA passwords that provided 

sufficient protection at the time of their creation. But 

since then, the demand for password protection has 

increased [18–20]. 

HF MD5 has been cracked, but is still used by a 

large number of CS. HFs of the SHA family can provide 

protection against attackers with limited capabilities, but 

by default are vulnerable to attacks using rainbow 

tables. The PBKDF2 algorithm, which is a standard 

means of hashing passwords in .NET, like other classic 

HFs, is vulnerable to attacks using GPUs, ASICs, and 

FPGAs that were not widespread at the time of their 

creation. To protect against these threats, more modern 

algorithms are proposed, the implementations of which 

are not built into SP.NET. 

2. Current key generation functions 

Although the PBKDF2 key function has 

advantages over MD5 and SHA, it also has the 

disadvantage that it is not resistant to brute-force attacks 

using GPUs and ASICs, because PBKDF2 uses a 

relatively small amount of RAM and can be computed 

on GPUs or ASICs. 

Modern key generation functions such as Bcrypt, 

Scrypt, and Argon2 are designed to be resistant to 

dictionary, GPU, and ASIC attacks. These functions 

generate a key from a password and require a large 

amount of memory, which does not allow for fast 

parallel computations on GPUs or ASICs. 

Algorithms such as Bcrypt, Scrypt, and Argon2 are 

considered more secure key generation functions 

because they require: 

- salt; 

- a large number of iteration iterations; 

- a lot of CPU resources; 

- a large amount of RAM. 

This makes it very difficult to develop hardware to 

significantly accelerate password cracking. Modern 

computer computing is more limited by the speed of 

memory, so memory access is the bottleneck of 

computing [21, 22]. Faster access to RAM will speed up 

calculations. 

When deriving a key from a given password uses a 

lot of CPU resources and a lot of RAM, password 

cracking is slow and inefficient, even with very good 

password cracking hardware and software. The purpose 

of modern key generation functions is to make it 

virtually impossible to perform a brute-force attack. 

2.1. Bcrypt key generation function. Bcrypt is an 

adaptive HF based on the Blowfish symmetric block 

cipher cryptographic algorithm. It uses a key factor that 

governs the hashing cost, which is the most prominent 

feature of Bcrypt. This provides an opportunity to 

increase the cost – time and computing costs of hashing 

in the future when CSs become more powerful. 

Bcrypt uses a 128-bit salt and encrypts a 192-bit 

magic value. The Bcrypt algorithm encrypts the input 

password according to the established key factor using 

Blowfish. It takes advantage of the expensive key setup 

in eksblowfish [23]. 

Bcrypt was created at the same time as PBKDF2, 

the use of the Blowfish cipher at its core makes Bcrypt 

slower and more secure than PBKDF2 against brute 

force attacks, also Bcrypt requires more memory than 

modern GPU computing units have. But Bcrypt remains 

vulnerable when using ASICs and FPGAs. One of its 



ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4 

85 

drawbacks is the input data size limit of 72 bytes. Using 

longer passwords will require prior hashing with a 

different algorithm. There are a large number of 

implementations of this algorithm in the SP .NET 

libraries, they have a significant number of downloads 

and most were updated in 2022 (Fig. 3). 

 

 
Fig. 3: Implementations of the Bcrypt algorithm in the libraries of the .NET software platform 

 
2.2. Scrypt key generation function. Scrypt is a 

secure cryptographic key generation function The Scrypt 

algorithm is described in the Internet standard RFC 7914. 

It is memory intensive and designed to prevent attacks 

using GPUs, ASICs and FPGAs, highly efficient 

password cracking hardware. The Scrypt algorithm takes 

several input parameters and outputs a derived key as 

output. The Scrypt parameters are as follows: 

- the number of iterations affects memory and 

processor usage; 

- block size affects memory and processor usage; 

- the parallelism factor, threads are executed in 

parallel, affects the amount of memory and processor load; 

- input password, a minimum length of 8-10 

characters is recommended; 

- target generated random bytes, minimum 64 

bits, 128 bits recommended; 

- length of the generated key, how many bytes to 

generate as output data. 

Memory access in Scrypt is performed in a strictly 

dependent order at each step, so memory access speed is 

the bottleneck of the algorithm. 

When properly configured, Scrypt is considered a 

highly secure key generation function, so it can be used 

as a general-purpose password hashing algorithm for, 

for example, encryption of wallet, file, or application 

passwords. Scrypt is popular in cryptocurrency 

validation schemes, primarily Litecoin as well as 

Tenebrix and Dogecoin, and inspired the design of one 

of the winners of the Argon2d password hashing contest 

[24]. On the other hand, large memory requirements 

make this algorithm unpopular for password protection 

in most resource-constrained applications. 

This algorithm has a small number of 

implementations on SP .NET, they have a small number 

of downloads and most were updated more than 5 years 

ago, which creates risks when using this algorithm 

(Fig. 4). 

 

 
Fig. 4: Implementations of the Scrypt algorithm in the libraries of the .NET software platform 

 
2.3. Argon2 key generation function. Argon2 is a 

state-of-the-art secure key generation function that is 

ASIC and GPU resistant. It has better resistance to 

password cracking, when properly configured, than 

PBKDF2, Bcrypt, and Scrypt, for similar CPU and 

RAM usage configuration parameters. 



Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052 

86 

Argon2 was designed with the following primary 

goal in mind: to maximize the cost of exhaustive search 

on non-x86 architectures, so that moving even to 

dedicated ASICs would not provide a significant 

advantage over performing exhaustive search on a 

desktop [17]. 

The Argon2 function has several options: 

- Argon2d, provides strong protection when 

using the GPU, but has potential side-channel attacks 

(possible in very special situations); 

- Argon2i, provides less protection when using 

the GPU, but does not have side-channel attacks; 

- Argon2id is recommended because it combines 

Argon2d and Argon2i. 

This algorithm has a small number of 

implementations on SP .NET, which can be explained 

by the novelty of the algorithm, but there are 

implementations with a significant number of 

downloads and updates in 2022 (Fig. 5). 
 

 

Fig. 5. Implementations of the Argon2 algorithm 

in the libraries of the .NET software platform 

 

2.4. Security of implementations of third-party 

hashing functions. The security and absence of errors 

in the built-in hash functions is guaranteed by the 

Microsoft corporation, which supports SP .NET. The 

HA considered in this section are not built into the .NET 

software platform and their implementation must be 

obtained from the SP libraries. 

The security of libraries is solely the responsibility 

of its developer, and if the library is not already popular, 

updates of such libraries will not be regular, which 

excludes the possibility of quickly fixing vulnerabilities. 

Statistically, among the vulnerabilities of SP .NET 

libraries, vulnerabilities of a high degree of seriousness 

make up 70.7% of the total number, and their correction 

by developers is extremely important [5]. 

Among the algorithms that are being considered, 

implementations of the Scrypt algorithm are raising 

doubts about their security. 

Alternative HAs promise more reliable protection 

against overrun attacks than PBKDF2, which is the 

standard SP .NET defense. Modern algorithms are also 

designed to protect against attacks using GPUs, ASICs, 

and FPGAs, but this protection requires more 

computing time and CS resources. 

3. Methodology 

3.1. Hash speed comparison. To analyze the 

speed, the average, minimum and maximum time spent 

on calculating the hash value using the studied 

algorithms was measured. The hash value was 

calculated for several sets of passwords: 

- set of 1,500 worst passwords; 

- set 2, 10,000 most common passwords; 

- set 3, 20 high entropy generated passwords 

include lowercase and uppercase letters, numbers and 

other characters, length 8 characters; 

- set 4, 20 high entropy generated passwords 

include lowercase and uppercase letters, numbers and 

other characters, length 12 characters; 

- set 5, 20 high entropy generated passwords 

include lowercase and uppercase letters, numbers and 

other characters, length 15 characters. 

The calculation time of the key generation 

functions depends on the function parameters. The 

current parameters were obtained from the resources of 

the organization OWASP, an open project on the 

security of web applications. 

The following parameters were selected for key 

generation functions: 

- PBKDF2 (on order), correspond to the 

configuration in ASP.NET Core Identity. Number of 

iterations 10000, salt size 128 bits, hash size 256 bits; 

- PBKDF2 (recommended), modified according 

to recommendations. Number of iterations 310000, salt 

size 128 bits, hash size 256 bits; 

- Bcrypt, the parameters are left unchanged 

because the operating factor is set by default to 11, 

which exceeds the recommended 10; 

- Scrypt (degree of parallelization 1), degree of 

parallelization 1, block size 8, memory size 64 MіB; 

- Scrypt (degree of parallelization 4), degree of 

parallelization 4, block size 8, memory size 16 MіB; 

- Argon2 (1 iteration), degree of parallelization 

1, minimum number of iterations 1, minimum memory 

size 37 MіB; 

- Argon2 (2 iterations), degree of parallelization 

1, minimum number of iterations 2, minimum memory 

size 15 MіB. 

Hashing and measurements were performed on a 

CS with an AMD Ryzen 7 6800H CPU and an NVIDIA 

GeForce RTX 3050 Ti Laptop GPU. Operating system 

CS Windows 11, version SP .NET 6. .NET and Visual 

Studio diagnostic tools were used to measure metrics 

2022. 

As a result of hashing the sets, files with hash 

values and calculation metrics were obtained. For 

demonstration, the results for Argon2 AX are given 

(Fig. 6). 

The obtained hash values were used for security 

analysis, and the metrics allowed us to compare the 

speed. 

For all sets of passwords, measurements of the 

average, minimum and maximum time to calculate the 

hash value were performed. The analysis was performed 

on the average value of the results for all sets, the graph 

for the relative comparison of the HA speed is shown 

below (Fig. 7). A detailed comparison of the hash value 

calculation results for each HA and its set parameters 

provides the average time, minimum and maximum 

time in nanoseconds (Table 1). 



ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4 

87 

 
Fig, 6: Calculated hash values and calculation metrics 

 

 
Fig. 7. Average password hash rates for all sets 

 

Table 1 – Metrics for calculating hash values in nanoseconds 

Metrics Minimum time Average time Maximum time 

MD5 320 14042.2 395240 

SHA256 180 1123.2 532380 

PBKDF2 (by default) 2001580 2178747.4 4974460 

PBKDF2 (recommended) 66961080 70902501 90793120 

BCRYPT 119422860 121843986.8 140523459.6 

SCRYPT (degree of parallelization 1) 31593020 34807792.4 52724700 

SCRYPT (degree of parallelization 4) 31740859.8 34016152.6 49895700 

ARGON2 (1 iteration) 41610720 47300997.6 70995859.8 

ARGON2 (2 iteration) 33106679.8 37634215.2 78174880 

 
From the measurement results, it can be seen that 

classical HF and PBKDF2 with default parameters are 

very fast. Other algorithms take more time, but this is 

still enough for use in web applications. Bcrypt has the 

slowest speed, the other key generation functions take 

about the same amount of time to calculate the hash 

value. 

3.2. Security comparison. To analyze the security 

of the algorithms, attacks on sets of passwords were 

performed. The attacks used a full sweep method, a 

dictionary attack was also performed for sets with 

common passwords, the Rockyou dictionary was used, 

this dictionary contains 32 million passwords that were 

obtained in the attack on the company of the same 

name. To carry out the attack, a CS with an AMD 

Ryzen 7 6800H central processor and an NVIDIA 

GeForce RTX 3050 Ti Laptop GPU was used. Hashcat 

attack tool. 

For algorithms that have sufficient protection 

against existing CS or that have failed to be attacked 

using the Hashcat tool. The analysis was carried out 

using research materials of independent organizations. 



Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052 

88 

As mentioned above, the MD5 

algorithm is currently not considered suitable 

for hashing passwords, primarily due to the 

presence of collisions. 

Dictionary attacks performed. For the 

worst 500 passwords, it was possible to get 

497 passwords or 99.60% in 2 seconds. For 

the most common 10,000 passwords, it was 

possible to get 9,471 passwords or 94.71% in 

31 seconds. 

The worst 500 passwords brute force 

attack (Fig. 8): 

- 358 passwords or 71.74% were 

received in 1 second; 

- 454 passwords or 90.98% were 

received in 21 seconds; 

- 498 passwords or 99.80% were 

received in 3 minutes and 16 seconds; 

- it took 8 minutes and 3 seconds to 

get all the passwords. 

The most common 10,000 passwords 

attack by the method of exhaustive search: 

- 1078 passwords or 10.78% were 

received in 4 seconds; 

- 5495 passwords or 54.95% were 

received in 10 seconds; 

- 7451 passwords or 74.51% were 

received in 27 seconds; 

- 8977 passwords or 89.77% were 

received in 2 minutes 36 seconds; 

- 9198 passwords or 91.98% were 

obtained in 4 minutes and 19 seconds; 

- 9326 passwords were obtained in 9 

minutes 34 seconds or 93.26% maximum 

speed of 7892 mega hashes per second, then 

the sorting of passwords with a length of 9 

characters began, which is unproductive for 

equipment of this level; 

- in 2 hours, 9931 passwords or 

99.31% were obtained, the predicted time for 

sorting other 9-character combinations was 6 

hours 14 minutes, the attack was stopped. 

From the above data, it can be seen that 

the MD5 algorithm is vulnerable to overrun 

attacks with a general-purpose CS, 

increasing the length of the password 

increases the time to obtain it, but for more 

powerful systems, this is not a problem. 

HiveSystems research results were used 

to confirm the results for long passwords 

[25].  

The MD5 algorithm research results 

from HiveSystems are shown below (Fig. 9). 

The number of hash values that the RTX 2080 

calculates in 1 second is 37085000000, for the current 

most powerful GPU RTX 3090, this value is 

69379700000. MD5 also lacks protection against 

attacks using rainbow tables. For this reason, this 

algorithm is not recommended for password protection. 

SHA256 is still considered suitable for protecting 

passwords, but it lacks protection against dictionary 

attacks and rainbow tables. 

Let's perform dictionary attacks. For the worst 500 

passwords, it was possible to get 497 passwords or 

99.60% in 3 seconds.  

For the most common 10,000 passwords, it was 

possible to get 9,471 passwords or 94.71% in 30 

seconds (Fig. 10). 

The worst 500 passwords brute force attack 

(Fig. 11): 

- 358 passwords or 71.74% were received in 

2 seconds, these are passwords up to 6 characters long; 

 
Fig. 8. The worst 500 passwords method of exhaustive search 

 

 
Fig. 9. Time to get an MD5-protected password using the RTX 2080 [25] 

 

 
Fig. 10. The most common 10,000 password attack by dictionary 

 



ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4 

89 

- 454 passwords or 90.98% were 

received in 1 minute, these are passwords up 

to 7 characters long; 

- it took 26 minutes and 28 seconds to 

get all the passwords. 

The most common 10,000 passwords 

attack by the method of exhaustive search 

(Fig. 12): 

- 5852 passwords or 58.52% were 

received in 11 seconds, these are passwords 

up to 6 characters long; 

- 7904 passwords or 79.04% were 

received in 1 minute 2 seconds, these are 

passwords up to 7 characters long; 

- 9834 passwords or 98.34% were 

received in 40 minutes 34 seconds, these are 

passwords with a length of 8 characters; 

- 9326 passwords or 93.26% were 

obtained in 9 minutes 34 seconds, then the 

search for passwords with a length of 9 

characters began, which is unproductive for 

equipment of this level; 

- estimated time to go through other 

combinations of 9 symbols 29 hours, the 

attack was stopped. 

SHA256 remains a reliable CHF, but 

lacks protection against dictionary attacks 

and rainbow tables require self-salting. 

Using SHA256 is possible, but not 

recommended because there are algorithms 

based on this HF, which require salt and 

number of iterations to slow down the 

algorithm. 

The PBKDF2 algorithm is a key 

generation function, it requires a salt and the 

number of iterations, it basically uses the HF 

of the SHA family. 

Applications that use SHA256-based 

PBKDF2 include password storage solutions 

LastPass, 1Password, and Bitwarden. The 

Hashcat tool supports PBKDF2 hashes in a 

specific format, so open source data was 

used for analysis. Below are the results of a 

full sweep attack using the RTX 3090 GPU 

from HiveSystems (Fig. 13) [25]. 

It can be seen that passwords with a 

significant length and high entropy are quite 

secure, the disadvantage of PBKDF2 is only 

the possibility of increasing the security by 

increasing the iterations. 

Bcrypt is one of the slowest algorithms, 

which should make brute force attacks more 

difficult (Fig. 14). 

Even when running a dictionary attack 

in 6 minutes, only 146 passwords or 29.26% 

were obtained. Which shows the impossibility of attacks 

by the method of complete search on this CS. 

ScatteredSecrets research was studied to 

investigate protection against more powerful CS and 

FPGA [24]. Below for Bcrypt are hash calculations per 

second for AMD EPYC 7401P CPU and Nvidia RTX-

2080Ti GPU (Table 2). 

The slow calculation speed on the GPU is due to 

the fact that Bcrypt requires more than 4 kilobytes of 

memory for maximum speed, while the RTX-2080Ti 

only has 1 kilobyte. So, the current protection thanks to 

the memory from graphics processors is enough, but 

this parameter is unchanged and over time there may be 

devices for which this will not be an obstacle. 

 
Fig. 11. The worst 500 passwords brute force attack 

 

 
Fig. 12. The most common 10,000 passwords attack 

by the method of exhaustive search 
 

 
Fig. 13. Time to get a PBKDF2 SHA256 protected password  

using an RTX 3090 [25] 

 



Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052 

90 

 
Fig. 14. The worst 500 passwords dictionary attack 

 
Table 2 – Calculating Bcrypt hash values 

Work 

factor 

FPGAs: hashes per 

second 

GPU: hashes per 

second 

05 25,200 28,000 

07 6,300 7,000 

08 3,150 3,500 

10 788 875 

11 394 438 

12 197 219 

14 98 109 

 
John The Ripper password security auditing and 

password recovery tool supports FPGA boards. They 

are efficient enough to run 124 optimized Bcrypt cores 

on an FPGA. This results in Bcrypt's high hash rate, 

higher than the hash rate of the latest generation of high-

end GPUs (Table 3). 

 
Table 3 – Calculation of hash values of Bcrypt using FPGA 

Work factor 
FPGAs: hashes 

per second 

GPU: hashes 

per second 

05 120k 28k 

 
So, Bcrypt is a protected algorithm against modern 

threats, but not the ability to configure protection due to 

memory creates risks when using ASIC and FPGA. 

Scrypt is an extension of the ideas of Bcrypt and 

adds the ability to configure the amount of memory 

required. But on SP.NET there are no popular 

implementations that can be recommended for use in 

real applications. According to research, the cost of 

calculating a password using Scrypt is several times 

more expensive than Bcrypt and several times more 

expensive than PBKDF2 [23]. 

Argon2 is the winning algorithm for the 2015 

Password Hashing Contest, the goal of the contest is to 

select one or more password hashing functions that can 

be recognized as a recommended standard.  

According to research by RedHat, cracking the 

eight-character passphrase used to unlock an encrypted 

volume in about two seconds on a Raspberry PI could 

require up to 1,085 NVIDIA Tesla P100 GPUs, costing 

about $120 million [24]. 

4. Result Analysis 

Below are the threats against which each of the 

algorithms provides protection. 

It can be seen from Table 4 that Argon2 and 

Scrypt provide protection against the most threats, but 

Scrypt does not have an implementation that can be 

recommended as secure. Bcrypt does not have the 

ability to configure the required memory, but the 

amount used is enough to protect against GPU-based 

attacks.  

PBKDF2 provides protection against attacks using 

the method of full traversal and the use of rainbow 

tables, which is the minimum protection required. MD5 

and SHA256 do not provide protection against modern 

threats. 
 

Table 4 – Defense analysis 

Metrics 

Rainbow 

table 

attack 

(presence 

of salt) 

Overrun 

attack 

(slow 

func-

tion) 

GPU 

pro-

tec-

tion 

FPGA/ 

ASIC 

protec-

tion 

Imple-

menta-

tion 

secu-

rity 

MD5 No No No No Yes 

SHA256 No No No No Yes 

PBKDF2 Yes Yes No No Yes 

Bcrypt Yes Yes Yes No Yes 

Scrypt Yes Yes Yes Yes No 

Argon2 Yes Yes Yes Yes Yes 

Conclusion and Future Work 

Password protection on SP .NET, which is 

widespread in enterprise and web applications, is an 

important issue. Hashing algorithms built into SP are 

characterized by high speed and sufficient protection 

against threats that existed at the time of their creation. 

But the increasing power of CSs and the proliferation of 

GPUs, ASICs, and FPGAs make CS that use these 

algorithms vulnerable. More modern alternative 

algorithms have been created to protect against these 

threats.  



ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4 

91 

As a result of the performed analysis, Argon2 is 

the best algorithm for use on SP .NET. This algorithm 

provides the most reliable protection at optimal speed, 

the possibility of memory configuration provides 

protection from ASIC and GPU. To support legacy 

applications, you can use Bcrypt, the main threat of 

which is ASIC. PBKDF2 with a sufficiently large 

number of iterations is able to provide fairly reliable 

protection, it should be used for applications. 

Due to the lack of popular implementations, the 

Scrypt algorithm is not recommended. 

Further work in this direction may include the 

creation of CS and software for full local analysis of all 

algorithms. 

REFERENCES 

1. Dotsenko, N., Chumachenko, I., Galkin, A., Kuchuk, H. and Chumachenko, D. (2023), “Modeling the Transformation of 

Configuration Management Processes in a Multi-Project Environment”, Sustainability (Switzerland), Vol. 15(19), 14308, doi: 

https://doi.org/10.3390/su151914308 

2. Yaloveha, V., Orlova, T., Podorozhniak, A., Kuchuk, H. and Gorbulik, V. (2023), “Modern Applications of High-Resolution 

Multispectral EuroPlanet Dataset”, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPI Week 2023 - Conference 

Proceedings, doi: https://doi.org/10.1109/KhPIWeek61412.2023.10312851 

3. Pittalia, Prashant P. (2019), “A comparative study of hash algorithms in cryptography”, International Journal of Computer 

Science and Mobile Computing, vol. 8, is. 6, pp. 147–152, available at: https://ijcsmc.com/docs/papers/June2019/V8I6201928.pdf 

4. Datsenko, S., and Kuchuk, H. (2023), “Biometric authentication utilizing convolutional neural networks”, Advanced Information 

Systems, vol. 7, no. 2, pp. 67–73, doi: https://doi.org/10.20998/2522-9052.2023.2.12 

5. Bowne, S. (2018), Hands-On Cryptography with Python: Leverage the power of Python to encrypt and decrypt data, Packt 

Publishing Ltd, 100 p., available at:  https://github.com/PacktPublishing/Hands-On-Cryptography-with-Python 

6. Rezanov, B. And Kuchuk, H. (2022), Fast Two-Factor Authentication Method in Systems With a Centralized User's 

Database, 2022 IEEE 4th KhPI Week on Advanced Technology, KhPI Week 2022 - Conference Proceedings, 03-07 October 

2022, Code 183771, doi: https://doi.org/10.1109/KhPIWeek57572.2022.9916491 

7. Singh, A., Jain, M. and Goyal, S. (2022), “A 3-Lock based Password Hashing Algorithm”, 2022 IEEE Conference on 

Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022, doi: 

https://doi.org/10.1109/IATMSI56455.2022.10119411 

8. Pise, A.A., Singh, S., Hemachandran, K., Pise, G.S. and Imuede, J. (2024), “Utilizing Asymmetric Cryptography and 

Advanced Hashing Algorithms for Securing Communication Channels in IoT Networks Against Cyber Espionage”, Journal 

of Cybersecurity and Information Management, vol. 13(1), pp. 46–59, doi: https://doi.org/10.54216/JCIM.130105 

9. Kuchuk, N., Mozhaiev, O., Semenov, S., Haichenko, A., Kuchuk, H., Tiulieniev, S., Mozhaiev, M., Davydov, V., Brusakova, 

O. and Gnusov, Y. (2023), “Devising a method for balancing the load on a territorially distributed foggy environment”, 

Eastern-European Journal of Enterprise Technologies, vol. 1(4 (121), pp. 48–55, doi: https://doi.org/10.15587/1729-

4061.2023.274177 

10. Menezes, A.J., van Oorschot, P.C. and Vanstone, S.A. (1997), Handbook of Applied Cryptography, 1st ed., CRC Press, doi: 

https://doi.org/10.1201/9780429466335  

11. Semenov, S., Zhang, M., Mozhaiev, O., Onishchenko, Y. and Kuchuk, H. (2023), “Construction of a model of 

steganographic embedding of the UAV identifier into ADS-B data”, Eastern-European Journal of Enterprise Technologies, 

vol. 5(4(125)), pp. 6–16, doi: https://doi.org/10.15587/1729-4061.2023.288178 
12. Catalin, C. (2019), “A quarter of major CMSs use outdated MD5 as the default password hashing scheme”, ZDNet, available 

at: https://www.zdnet.com/article/a-quarter-of-major-cmss-use-outdated-md5-as-the-default-password-hashing-scheme 
13. (1995), FIPS Publication 180-1: Secure Hash Standard, National Institute of Standards and Technology (NIST), available at: 

https://csrc.nist.gov/pubs/fips/180-1/final 
14. Bai, E., Jiang, X.-Q. and Wu, Y. (2022), “Memory-Saving and High-Speed Privacy Amplification Algorithm Using LFSR-Based 

Hash Function for Key Generation”, Electronics (Switzerland), vol. 11(3), 377, doi: https://doi.org/10.3390/electronics11030377 

15. (2002), FIPS Publication 180-2: Secure Hash Standard, National Institute of Standards and Technology (NIST), available at: 

https://csrc.nist.gov/files/pubs/fips/180-2/final/docs/fips180-2.pdf 

16. Haunts, S. (2019), “Safely Storing Passwords”, Applied Cryptography in .NET and Azure Key Vault, Apress Berkeley, CA, 

Berkeley, doi: https://doi.org/10.1007/978-1-4842-4375-6_5 

17. Tyagi, K., Yadav, S. K. and Singh, M. (2021), “Novel cryptographic approach to enhance cloud data security”, Journal of 

Physics: Conference Series, vol. 1998, no. 1: 3rd International Conference on Smart and Intelligent Learning for Information 

Optimization, 9-10 July 2021, Hyderabad, India, IOP Publi, doi: https://doi.org/10.1088/1742-6596/1998/1/012022 

18. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L. and Tessaro, S. (2017), “Scrypt Is Maximally Memory-Hard”, Advances in 

Cryptology – EUROCRYPT 2017, vol 10212, Springer, Cham, doi: https://doi.org/10.1007/978-3-319-56617-7_2 

19. Prasol, I. and Yeroshenko, O. (2023), “Modeling and estimating the model adequacy in muscle tissue electrical stimulator 

designing”, Radioelectronic and Computer Systems, vol. 2(106), pp. 18–26,doi: https://doi.org/10.32620/reks.2023.2.02 

20. Fedorchenko, V., Prasol, I. and Yeroshenko, O. (2021), “Information Technology For Identification Of Electric Stimulating 

Effects Parameters”, CEUR Workshop Proceedings, pp. 189-195, available at: https://ceur-ws.org/Vol-3200/paper26.pdf 

21. Petrovska, I. and Kuchuk, H. (2023), “Adaptive resource allocation method for data processing and security in cloud 

environment”, Advanced Information Systems, vol. 7(3), pp. 67–73, doi: https://doi.org/10.20998/2522-9052.2023.3.10 

22. Kuchuk, H. and Malokhvii, E. (2024), “Integration of IOT with Cloud, Fog, and Edge Computing: A Review”, Advanced 

Information Systems, vol. 8(2), pp. 65–78, doi: https://doi.org/10.20998/2522-9052.2024.2.08 

23. (2023), Are Your Passwords in the Green?, available at: https://www.hivesystems.io/blog/are-your-passwords-in-the-green 

24. (2023), Bcrypt password cracking extremely slow? Not if you are using hundreds of FPGAs!, available at: 

https://scatteredsecrets.medium.com/bcrypt-password-cracking-extremely-slow-not-if-you-are-using-hundreds-of-fpgas-

7ae42e3272f6 

25. (2023), What Is a Hash Function in Cryptography?, A Beginner’s Guide,. available at: https://www.thesslstore.com/blog/what-

is-a-hash-function-in-cryptography-a-beginners-guide/ 

https://www.scopus.com/authid/detail.uri?authorId=57204939770
https://www.scopus.com/authid/detail.uri?authorId=57194419994
https://www.scopus.com/authid/detail.uri?authorId=57194199918
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=58194260300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85174185888&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85174185888&origin=resultslist
https://www.scopus.com/sourceid/21100240100?origin=resultslist
https://doi.org/10.3390/su151914308
https://www.scopus.com/authid/detail.uri?authorId=57211756298
https://www.scopus.com/authid/detail.uri?authorId=57958079300
https://www.scopus.com/authid/detail.uri?authorId=57202229410
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=57829918200
https://www.scopus.com/record/display.uri?eid=2-s2.0-85179508848&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85179508848&origin=resultslist
https://doi.org/10.1109/KhPIWeek61412.2023.10312851
https://ijcsmc.com/docs/papers/June2019/V8I6201928.pdf
https://www.scopus.com/authid/detail.uri?authorId=57218596147
https://doi.org/10.20998/2522-9052.2023.2.12
https://github.com/PacktPublishing/Hands-On-Cryptography-with-Python
https://www.scopus.com/authid/detail.uri?authorId=57957409700
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85141448702&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85141448702&origin=resultslist
https://doi.org/10.1109/KhPIWeek57572.2022.9916491
https://doi.org/10.1109/IATMSI56455.2022.10119411
https://doi.org/10.54216/JCIM.130105
https://doi.org/10.15587/1729-4061.2023.274177
https://doi.org/10.15587/1729-4061.2023.274177
https://doi.org/10.1201/9780429466335
https://www.scopus.com/authid/detail.uri?authorId=57202908821
https://www.scopus.com/authid/detail.uri?authorId=58730711400
https://www.scopus.com/authid/detail.uri?authorId=57201729490
https://www.scopus.com/authid/detail.uri?authorId=57195524203
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85178215631&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85178215631&origin=resultslist
https://doi.org/10.15587/1729-4061.2023.288178
https://www.zdnet.com/article/a-quarter-of-major-cmss-use-outdated-md5-as-the-default-password-hashing-scheme
https://csrc.nist.gov/pubs/fips/180-1/final
https://doi.org/10.3390/electronics11030377
https://csrc.nist.gov/files/pubs/fips/180-2/final/docs/fips180-2.pdf
https://doi.org/10.1007/978-1-4842-4375-6_5
https://doi.org/10.1088/1742-6596/1998/1/012022
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Jo_l-Alwen
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Binyi-Chen
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Krzysztof-Pietrzak
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Leonid-Reyzin
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Stefano-Tessaro
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.32620/reks.2023.2.02
https://ceur-ws.org/Vol-3200/paper26.pdf
https://doi.org/10.20998/2522-9052.2023.3.10
https://doi.org/10.20998/2522-9052.2024.2.08
https://www.hivesystems.io/blog/are-your-passwords-in-the-green
https://scatteredsecrets.medium.com/bcrypt-password-cracking-extremely-slow-not-if-you-are-using-hundreds-of-fpgas-7ae42e3272f6
https://scatteredsecrets.medium.com/bcrypt-password-cracking-extremely-slow-not-if-you-are-using-hundreds-of-fpgas-7ae42e3272f6
https://www.thesslstore.com/blog/what-is-a-hash-function-in-cryptography-a-beginners-guide/
https://www.thesslstore.com/blog/what-is-a-hash-function-in-cryptography-a-beginners-guide/


Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052 

92 

Received (Надійшла) 13.07.2024 

Accepted for publication (Прийнята до друку) 16.10.2024 

ВІДОМОСТІ ПРО АВТОРІВ/ ABOUT THE AUTHORS 

Федорченко Володимир Миколайович – кандидат технічних наук, доцент, доцент кафедри електронних обчислювальних 

машин, Харківський національний університет радіоелектроніки, Харків, Україна; 

Volodymyr Fedorchenko – PhD in Engineering, Associate Professor, Associate Professor of the Department of Electronic 

Computers, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine; 

e-mail: volodymyr.fedorchenko@nure.ua; ORCID Author ID: https://orcid.org/0000-0001-7359-1460; 

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57716883800. 

Єрошенко Ольга Артурівна – асистент кафедри електронних обчислювальних машин, Харківський національний 

університет радіоелектроніки, Харків, Україна; 

Olha Yeroshenko – Assistant of the Department of Electronic Computers, Kharkiv National University of Radio 

Electronics, Kharkiv, Ukraine; 

e-mail:  olha.yeroshenko@nure.ua; ORCID Author ID: https://orcid.org/0000-0001-6221-7158; 

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57808290700. 

Шматко Олександр Віталійович – кандидат технічних наук, доцент, доцент кафедри програмної інженерії та 

інтелектуальних технологій управління, Національний технічний університет “ХПІ”, Харків, Україна; 

Oleksandr Shmatko – PhD in Engineering, Associate Professor, Associate Professor of the Department of Software 

Engineering and Intelligent Management Technologies, National Technical University “KhPI”, Kharkiv, Ukraine; 

e-mail: oleksandr.shmatko@khpi.edu.ua; ORCID Author ID: https://orcid.org/0000-0002-2426-900X;  

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=6602623478. 

Коломійцев Олексій Володимирович –доктор технічних наук, професор, професор кафедри комп’ютерної інженерії та 

програмування Національного технічного університету «Харківський політехнічний інститут», Харків, Україна; 

Oleksii Kolomiitsev – Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming 

Department, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine; 

e-mail: аlexus_k@ukr.net; ORCID ID: https://orcid.org/0000-0001-8228-8404; 

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57211278112. 

Омаров Мурад Анвер огли – доктор технічних наук, професор, професор кафедри комп’ютерно-інтегрованих 

технологій, автоматизації та робототехніки, проректор з міжнародного співробітництва, Харківський національний 

університет радіоелектроніки, Харків, Україна;  

Murad Omarov – Doctor of Technical Sciences, Professor, Professor of the Department of Computer-Integrated 

Technologies, Automation and Robotics, Vice-Rector on International Cooperation, Kharkiv National University of Radio 

Electronics, Kharkiv, Ukraine; 

e-mail: murad.omarov@nure.ua; ORCID Author ID: http://orcid.org/0000-0003-4842-4972;  

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=55659255500. 

 
Методи та алгоритми хешування паролів на платформі .NET 

В. М. Федорченко, О. А. Єрошенко, О. В. Шматко, О. В. Коломійцев, М. А. Омаров  

Анотація .  Веб-додатки, які широко використовуються для надання послуг та збору інформації, стали основною 

мішенню для зловмисників, особливо з появою державних сервісів, що обробляють конфіденційні дані. Програмна 

платформа .NET, популярна для розробки веб-додатків, включає вбудовані алгоритми хешування (HA) та функції 

генерації ключів (KDF) для захисту паролів. Однак вони були розроблені понад два десятиліття тому для різних рівнів 

загроз. Більш сучасні альтернативи, такі як Bcrypt, Scrypt та Argon2, пропонують покращений захист від сучасних атак з 

використанням GPU, ASIC та FPGA, але потребують стороннього впровадження. Враховуючи критичну роль захисту 

паролів у захисті інформації користувача, це дослідження вивчає ефективність різних механізмів хешування на 

платформі .NET, що є нагальною потребою у забезпеченні безпеки сучасних веб-додатків. Предметом вивчення в статті 

є особливості алгоритмів хешування, вбудованих та доступних в бібліотеках програмної платформи .NET для захисту 

паролів, як основного аспекту аутентифікації користувачів. Метою роботи є порівняння та аналіз алгоритмів хешування, 

вбудованих та доступних в бібліотеках програмної платформи .NET для захисту паролів, як основного аспекту 

аутентифікації користувачів. проведено аналіз та порівняння алгоритмів хешування, доступних на програмній 

платформі .NET. Завдання: розглянути вбудовані алгоритми, такі як MD5, SHA та PBKDF2, а також сторонні реалізації 

сучасних функцій виведення ключів, таких як Bcrypt, Scrypt та Argon2 та дослідити їх швидкодію та криптостійкість. 

Використані методи: включали вимірювання швидкості хешування для різних наборів паролів та аналіз стійкості до 

атак за допомогою таких інструментів, як Hashcat, та даних незалежних досліджень з безпеки. Результати показують, 

що хоча вбудовані алгоритми, такі як MD5 та SHA256, є швидкими, вони не забезпечують захисту від сучасних загроз, 

таких як атаки з використанням райдужних таблиць та спроби повного перебору з прискоренням на GPU. PBKDF2, який 

є стандартним в ASP.NET Core Identity, забезпечує кращу безпеку, але вразливий до атак з використанням 

спеціалізованого обладнання. Серед сучасних алгоритмів Argon2 продемонстрував найкращий баланс безпеки та 

продуктивності, забезпечуючи захист від атак на основі GPU, ASIC та FPGA. Висновки. Дослідження дійшло висновку, 

що Argon2 є рекомендованим алгоритмом для хешування паролів на платформі .NET, а Bcrypt є підходящою 

альтернативою для застарілих додатків. PBKDF2 з високою кількістю ітерацій все ще може забезпечити надійний 

захист. Перспективним напрямком подальших досліджень може бути визначення можливості використання сучасних 

функцій виведення ключів з інтенсивним використанням пам'яті для підвищення безпеки паролів у додатках .NET. 

Ключові  слова:  хеш-функція; алгоритм хешування; функція генерації ключів; комп'ютерні системи. 

mailto:volodymyr.fedorchenko@nure.ua
https://www.scopus.com/authid/detail.uri?authorId=57716883800
mailto:volodymyr.fedorchenko@nure.ua
https://orcid.org/0000-0001-6221-7158
https://www.scopus.com/authid/detail.uri?authorId=57808290700
mailto:oleksandr.shmatko@khpi.edu.ua
https://www.scopus.com/authid/detail.uri?authorId=6602623478
mailto:аlexus_k@ukr.net
https://orcid.org/0000-0001-8228-8404
https://www.scopus.com/authid/detail.uri?authorId=57211278112
http://orcid.org/0000-0003-4842-4972
https://www.scopus.com/authid/detail.uri?authorId=55659255500

