Advanced Information Systems. 2024. Vol. 8, No. 4

ISSN 2522-9052

UDC 004.056.3

Methods of information systems protection

doi: https://doi.org/10.20998/2522-9052.2024.4.11

Volodymyr Fedorchenko?, Olha Yeroshenko?, Oleksandr Shmatko?, Oleksii Kolomiitsev?, Murad Omarov!

! Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
2 National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

PASSWORD HASHING METHODS AND ALGORITHMS
ON THE .NET PLATFORM

Abstract: Web applications, which are widely used to provide services and collect information, have become a major
target for attackers, especially with the emergence of government services that process sensitive data. The .NET software
platform, popular for developing web applications, includes built-in hashing algorithms (HA) and key generation functions
(KDF) to protect passwords. However, these were developed over two decades ago for different levels of threats. More
modern alternatives, such as Bcrypt, Scrypt, and Argon2, offer improved protection against modern GPU, ASIC, and
FPGA attacks, but require third-party implementation. Given the critical role of password protection in protecting user
information, this research investigates the effectiveness of various hashing mechanisms on the .NET platform, which is an
urgent need for securing modern web applications. The subject of study in the article is the features of hashing algorithms
built-in and available in the libraries of the .NET software platform for password protection as the main aspect of user
authentication. The purpose of the work is to compare and analyse the hashing algorithms built-in and available in the
libraries of the .NET software platform for password protection as the main aspect of user authentication. Objectives: to
review built-in algorithms such as MD5, SHA and PBKDF2, as well as third-party implementations of modern key
derivation functions such as Bcrypt, Scrypt and Argon2, and to investigate their performance and cryptographic strength.
Methods used: This included measuring hashing speeds for different password sets and analysing attack resistance using
tools such as Hashcat and data from independent security research. The results show that while built-in algorithms such as
MD5 and SHA256 are fast, they do not provide protection against modern threats such as rainbow table attacks and GPU-
accelerated brute-force attempts. PBKDF2, which is standard in ASP.NET Core Identity, provides better security but is
vulnerable to attacks using specialised hardware. Among the modern algorithms, Argon2 demonstrated the best balance of
security and performance, providing protection against GPU, ASIC, and FPGA-based attacks. Conclusions. The study
concluded that Argon2 is the recommended algorithm for password hashing on the .NET platform, while Berypt is a
suitable alternative for legacy applications. PBKDF2 with a high number of iterations can still provide strong protection. A
promising direction for further research may be to determine whether modern memory-intensive key derivation functions
can be used to improve password security in .NET applications.

Keywords: hash function; hashing algorithm; key generation function; computer systems.

now more actively used to protect passwords, some of

Introduction them are based on HF or encryption algorithms.

Web applications are the most popular means of
providing services and gathering information for many
institutions [1, 2]. Because of their wide distribution,
they are an attractive target for attackers. This is
worsened by the emergence of state services, "DIIA"
and others, which process important confidential
information. Software platform (SP) .NET is a popular
solution for developing web applications. This is
because it has strong industry support from Microsoft,
has quality developer tools, and uses multiple
programming languages. The vast majority of computer
systems (CS) uses passwords to ensure data security [3,
4]. A password is a user-remembered secret [5, 6]
consisting of several typeable characters. Passwords are
secured using hashing and other techniques.

A hashing algorithm (HA) is a mathematical
function that distorts data and makes it unreadable [7].
AHs are one-way programs, so the input cannot be
deciphered by anyone else. Hashing always protects the
input data, so even if someone gains access to the
storage where the hash values are stored, the input data
will remain secure. Hashing is also used for digital
signatures and when indexing data.

Hash functions (HF) also have disadvantages,
because of them, key generation functions (KDF) are

SP .NET has built-in APIs such as MD5, SHA-1,
SHA-2 and the key generation function (KDF)
PBKDF2, which ASP.NET Core Identity uses for
hashing by default. These HAs were created more than
20 years ago for a different level and nature of threats.

There are also more modern KDF alternatives used
for hashing passwords, namely Bcrypt, Scrypt and
Argon2, these HAs promise protection against graphics
processing units (GPUs), application-specific integrated
circuits (ASICs), and user-programmable gate arrays
(FPGA). These KDFs are not built into the .NET
framework, but their implementations can be obtained
from third-party libraries. Due to the fact that password
protection is one of the main aspects of protecting
confidential user information, the study of this
mechanism on SP .NET is an urgent task.

1. Literature Survey

1.1. Features of hashing functions and
algorithms. Hashing functions play an important role in
cryptography because they have important
characteristics that help in data authentication and
ensure the security of sensitive data such as passwords
[8, 9]. Such HFs are known as cryptographic and their
characteristics include the following [10, 11]:

82 © Fedorchenko V., Yeroshenko O., Shmatko O., Kolomiitsev O., Omarov M., 2024

ISSN 2522-9052

CyuacHi indopmariitai cuctemu. 2024. T. 8, Ne 4

- irreversibility;

- determinism;

- resistance to collisions;

- avalanche effect;

- speed.

Irreversibility of HA. HAs are one-way functions —
that is, it is not possible to calculate the input data using
the hash value. This means, it is possible to easily hash
the input data, but it is not possible to extract the input
data from its hash value, until the HA is broken. This is
important because hashes are used to store passwords
on public servers. Since hashing is irreversible,
attackers will not be able to recover the password from
the hash, even if they get their hands on a database of
password hashes. That is why passwords are never
stored in public.

HA determinism. The output length of all HA
results must be the same, regardless of the length of the
input data. This is convenient for allocating space for a
hash value in a data structure, file format, or network
protocol field because you know how long the hash
value is. This also helps prevent attackers from knowing
how large the input value was because all output hashes,
regardless of how long or short the input value is, are of
fixed length and do not change.

Resistance to collisions or collisions of HA. When
hashing, a collision is considered to have occurred when
identical hash values were obtained as a result of
hashing different input data. If the attackers become
aware of the collision, it will be possible to bypass the
CS protection. This is known as a hash collision attack.

Another problem is rainbow tables. Attackers can
create a huge number of precomputed combinations of
input data and their hash values. This table will allow
you to quickly search for input data.

This is why all HAs must be collision resistant.
One way to reduce password hashing collisions and
reduce the risk of rainbow table attacks is to use salting.

Avalanche effect of HA. A feature of hash functions
is that even the slightest change in the input data leads to
a significant change in the output hash value. This
ensures that no one can decipher the original text.

HA speed. Many areas of use of hashing require
high-speed algorithms to calculate the hash value.
However, not all hash functions need to be fast. Some
functionality requires hash functions to be slow. This is
necessary so that it is more difficult for attackers to use the
method of sorting or rainbow tables to obtain input data.

1.2. Key generation functions. KDF is used to
generate one or more cryptographic keys from a closed
input value [12]. KDFs return bytes suitable for
cryptographic operations from passwords or other data
sources using a pseudorandom function. Different KDFs
are suitable for different tasks such as [13]:

- obtaining or stretching a cryptographic key;

- hashing passwords.

In cryptography, key stretching techniques are
used to make a potentially weak key, usually a
password or passphrase, more secure against an iterative
attack by increasing the resources, time, and possibly
space required to test each possible key. Human-
generated passwords or passphrases are often short or

predictable enough to make passwords easy to crack,
and key stretching is designed to make such attacks
more difficult by making the basic step of trying to pick
a single candidate password more difficult. Key
stretching also improves security in some real-world
applications where the key length was limited by
simulating a longer key length from the perspective of
an attacker using an iterative method.

When storing passwords, it is advisable to use an
algorithm that requires high computational costs. Users
would only need to calculate it once, while attackers
would need to do it billions of times. An ideal password
store with KDF would be demanding on both
computational and memory resources [13].

Different KDFs have different additional
parameters such as duty ratio and context information
fields.

At a minimum, KDF for hashing passwords has
the following parameters [14]:

- incoming data;

- salt;

- number of iterations or work factor.

KDFs with adjustable duty ratios are used to store
passwords. KDF is better than simple HF even with the
use of salt, because the work factor can be chosen in
such a way as to make an exhaustive search in the space
of probable passwords expensive (Fig. 1).

Incaming Number of
data iterations
Zalt Ahash function or
other algorithm [

Hazh value <

Fig. 1. General view of the key generation function

Therefore, for SP .NET, it is an urgent task to
establish the most optimal algorithm for password
protection. The work analyzes built-in algorithms,
namely HF MD5, SHA and KDF PDKDF2. Among the
algorithms that are not built into SP.NET, the following
KDFs are selected:

- Becrypt;

- Scrypt;

- Argon2.

Data AH was chosen according to the
recommendations of the OWASP organization
regarding password protection [15]. Indicators based on
which analysis will be performed [16]:

- minimum, maximum and average hash value
calculation speed;

- the time required to obtain the input value by the
method of complete enumeration.

83

Advanced Information Systems. 2024. Vol. 8, No. 4

ISSN 2522-9052

1.3. Built-in hash functions and key generation
functions. Hashing functions are represented as classes
in the namespace System.Security.Cryptography SP
.NET:

- MD5;

- SHAL,;

- SHAZ256;

- SHAZ384;

- SHAb12.

These abstract classes are derived from a class
HashAlgorithm. To calculate the hash value using these
functions, the following steps are required [17]:

- instantiate the hash algorithm. You can choose
from MD5, SHA1, SHA256, SHA384 and SHA512;

- call the ComputeHash method, passing an
array of bytes. A byte array can be derived from any
raw data;

- the ComputeHash method, upon successful
execution, will return a byte array representing the hash
value.

After a successful ComputeHash execution, the
byte array of the hash value can be converted to another
type for more convenient storage.

Key generation functions are presented as classes
in the System.Security.Cryptography namespace
SP.NET (Fig. 2):

- PasswordDeriveBytes;

- Rfc2898DeriveBytes.

System. Security.Oryprography.HashAlgarithm I

—IS‘,‘s1ern.5._=:urit5-.{rg'plm]rap-hy.r-'IDS i

System. et CryptographyeMOSCryproServiceProvider I

—I System.Security. Cryprography.SHAT i

System SecunnyCryprography SHATCryproSerdceProvides I

System.Security.CryprographyEHA 1 Managed i

—I Systern Security.Cryptography SHAZ 56 I

System.SemnLCryprographySHAZ SeManaged |

—I Systemn Security. Cryptography SHAZE4 i

System. SequritCrypiographySHAZE4Managed I

_I Systern Security. Cryptography SHAS12 i

System SecuringCryprography SHAS T2Mamaged l

—I System. Security. CryptographyKeyedHashi lganithm I

Fig. 2. Built-in hashing functions

Rfc2898DeriveBytes is an implementation of the
PDKDF2 AX and is used by default in applications
using ASP.NET. The implementation of the algorithm,
depending on the environment where the application is
deployed, is selected using the KeyDerivation.Pbkdf2
wrapper class from the Microsoft. AspNetCore.Crypto-
graphy.KeyDerivation namespace.

The conducted analysis of built-in HF shows that
in SP.NET built-in HA passwords that provided
sufficient protection at the time of their creation. But
since then, the demand for password protection has
increased [18-20].

HF MD5 has been cracked, but is still used by a
large number of CS. HFs of the SHA family can provide
protection against attackers with limited capabilities, but
by default are vulnerable to attacks using rainbow
tables. The PBKDF2 algorithm, which is a standard
means of hashing passwords in .NET, like other classic
HFs, is vulnerable to attacks using GPUs, ASICs, and
FPGAs that were not widespread at the time of their
creation. To protect against these threats, more modern
algorithms are proposed, the implementations of which
are not built into SP.NET.

2. Current key generation functions

Although the PBKDF2 key function has
advantages over MD5 and SHA, it also has the
disadvantage that it is not resistant to brute-force attacks
using GPUs and ASICs, because PBKDF2 uses a
relatively small amount of RAM and can be computed
on GPUs or ASICs.

Modern key generation functions such as Bcrypt,
Scrypt, and Argon2 are designed to be resistant to
dictionary, GPU, and ASIC attacks. These functions
generate a key from a password and require a large
amount of memory, which does not allow for fast
parallel computations on GPUs or ASICs.

Algorithms such as Bcrypt, Scrypt, and Argon2 are
considered more secure key generation functions
because they require:

- salt;

- alarge number of iteration iterations;

- alot of CPU resources;

- alarge amount of RAM.

This makes it very difficult to develop hardware to
significantly accelerate password cracking. Modern
computer computing is more limited by the speed of
memory, SO memory access is the bottleneck of
computing [21, 22]. Faster access to RAM will speed up
calculations.

When deriving a key from a given password uses a
lot of CPU resources and a lot of RAM, password
cracking is slow and inefficient, even with very good
password cracking hardware and software. The purpose
of modern key generation functions is to make it
virtually impossible to perform a brute-force attack.

2.1. Berypt key generation function. Berypt is an
adaptive HF based on the Blowfish symmetric block
cipher cryptographic algorithm. It uses a key factor that
governs the hashing cost, which is the most prominent
feature of Bcrypt. This provides an opportunity to
increase the cost — time and computing costs of hashing
in the future when CSs become more powerful.

Berypt uses a 128-bit salt and encrypts a 192-bit
magic value. The Bcrypt algorithm encrypts the input
password according to the established key factor using
Blowfish. It takes advantage of the expensive key setup
in eksblowfish [23].

Berypt was created at the same time as PBKDF2,
the use of the Blowfish cipher at its core makes Bcrypt
slower and more secure than PBKDF2 against brute
force attacks, also Bcrypt requires more memory than
modern GPU computing units have. But Bcrypt remains
vulnerable when using ASICs and FPGAs. One of its

84

ISSN 2522-9052

CyuacHi in¢opmariitai cuctemu. 2024. T. 8, Ne 4

drawbacks is the input data size limit of 72 bytes. Using
longer passwords will require prior hashing with a
different algorithm. There are a large number of

implementations of this algorithm in the SP .NET
libraries, they have a significant number of downloads
and most were updated in 2022 (Fig. 3).

' BCrypt by fabian Viless, 411K downlosds
® barypt is an encryption utiity implementing the Blowfish cipher.

'& BCrypt.Net-Next by Chiis McKee Ryaa . Emer, Dammsen Miker, 9.21M downloads an3
Afued enhanced and namespace compatible version of BCrypt.Net port of jBCeypt implemented in C2. 1t uses a varant of the Blowfish encryptson algonthm’s
keymng schedule, and mtroduces » work factor, whach allows you to determine how expenteve the hash functicn will be, allowing the aigonthm to be "future-p..

100

. BCrypt-Official by rdez, 2.36M downloads

' BCrypt.Net by Vadim Chekan, 905K downloads
C® pont of BCrypt ibeary to CF

.s BCrypt.Net-Core by Steve Donaghy (donaghy steve@goog lLcom), 4.28M downloads 160
BCrypt Net .net Coce Class Libtary
' Pinvoke.BCrypt @ by Andrew Amctt, 5.5M downloads o1
C® 1/ invoke methods for the Windows BCeypt i,
S 01109

A Net port of BCrypt implemented in C2, %t uses a vanant of the Blowfish encryption algorithm's keying schedule, and introduces a work factor, which allows
you to determine how expensive the hash function will be, allowsng the algorthm to be “future-proof”.

Fig. 3: Implementations of the Bcrypt algorithm in the libraries of the .NET software platform

2.2. Scrypt key generation function. Scrypt is a
secure cryptographic key generation function The Scrypt
algorithm is described in the Internet standard RFC 7914.
It is memory intensive and designed to prevent attacks
using GPUs, ASICs and FPGAs, highly efficient
password cracking hardware. The Scrypt algorithm takes
several input parameters and outputs a derived key as
output. The Scrypt parameters are as follows:

- the number of iterations affects memory and
processor usage;

- block size affects memory and processor usage;

- the parallelism factor, threads are executed in
parallel, affects the amount of memory and processor load,;

- input password, a minimum length of 8-10
characters is recommended;

- target generated random bytes, minimum 64
bits, 128 bits recommended;

- length of the generated key, how many bytes to
generate as output data.

Memory access in Scrypt is performed in a strictly
dependent order at each step, S0 memory access speed is
the bottleneck of the algorithm.

When properly configured, Scrypt is considered a
highly secure key generation function, so it can be used
as a general-purpose password hashing algorithm for,
for example, encryption of wallet, file, or application
passwords. Scrypt is popular in cryptocurrency
validation schemes, primarily Litecoin as well as
Tenebrix and Dogecoin, and inspired the design of one
of the winners of the Argon2d password hashing contest
[24]. On the other hand, large memory requirements
make this algorithm unpopular for password protection
in most resource-constrained applications.

This algorithm has a small number of
implementations on SP .NET, they have a small number
of downloads and most were updated more than 5 years
ago, which creates risks when using this algorithm

(Fig. 4).

' SCrypt by James F. Belinger, 309K downloads

Scrypt.NET by Vinicius Choele, 332K downloads
A NET implen of serypt alg

P

6’

Scrypt implementation for dotnet core

@

scrypt key-derivation function in mixed-mode assembly for NET

CryptSharpOfficial by James F. Bellinger, 829K downloads

This subset of CryptShaep contains only its SCrypt and any-HMAC PEKDF2 functicaakty.
if you need these algorthms for purposes unrelated to passwords, this package may be sufficient foe you. If you are dealing with passwords, use the “CeyptSh...

Norgerman.Cryptography.Scrypt by Neegerman, 311K downloads

Replicon.Cryptography.SCrypt by Replicon Inc., 92.2K downloads

2002

130

230

11613

210

E.

CryptSharp peovides a number of password crypt algorithms - BCrypt, LDAP, MDS5 (and Apache's htpasswd vanant), PHPass (WordPress, phpBB, Drupal),
SHA256, SHAS12, and Tradtional and Extended DES. Additionally it includes Blowfish, SCrypt, and PEXDF2 for any HMAC (NET's buikt-in PBKDF2 implementati...

Fig. 4: Implementations of the Scrypt algorithm in the libraries of the .NET software platform

2.3. Argon2 key generation function. Argon2 is a

state-of-the-art secure key generation function that is
ASIC and GPU resistant. It has better resistance to

password cracking, when properly configured, than
PBKDF2, Bcrypt, and Scrypt, for similar CPU and
RAM usage configuration parameters.

85

Advanced Information Systems. 2024. Vol. 8, No. 4

ISSN 2522-9052

Argon2 was designed with the following primary
goal in mind: to maximize the cost of exhaustive search
on non-x86 architectures, so that moving even to
dedicated ASICs would not provide a significant
advantage over performing exhaustive search on a
desktop [17].

The Argon2 function has several options:

- Argon2d, provides strong protection when
using the GPU, but has potential side-channel attacks
(possible in very special situations);

- Argon2i, provides less protection when using
the GPU, but does not have side-channel attacks;

- Argon2id is recommended because it combines
Argon2d and Argon2i.

This algorithm has a small number of
implementations on SP .NET, which can be explained
by the novelty of the algorithm, but there are
implementations with a significant number of
downloads and updates in 2022 (Fig. 5).

‘@B Konscious.Security.Cryptography.Argon2 by Keef Aragon, 1.18M 13
An implementation of Argon2 winner of PHC

. Isopoh.Cryptography.Argon2 by Michael Heyman, 648K downloads 1112
Argon2 Password Hasher written in C2. Uses
isopoh.Cryptographry.Blake2 for hashing and

'@ Liphsoft.Crypto.Argon2 by Kevin Spinar (Afpha), 47K downlcads 15
A NET wrapper to invoke 2 C implementation of Argon2.

Fig. 5. Implementations of the Argon2 algorithm
in the libraries of the .NET software platform

2.4. Security of implementations of third-party
hashing functions. The security and absence of errors
in the built-in hash functions is guaranteed by the
Microsoft corporation, which supports SP .NET. The
HA considered in this section are not built into the .NET
software platform and their implementation must be
obtained from the SP libraries.

The security of libraries is solely the responsibility
of its developer, and if the library is not already popular,
updates of such libraries will not be regular, which
excludes the possibility of quickly fixing vulnerabilities.
Statistically, among the vulnerabilities of SP .NET
libraries, vulnerabilities of a high degree of seriousness
make up 70.7% of the total number, and their correction
by developers is extremely important [5].

Among the algorithms that are being considered,
implementations of the Scrypt algorithm are raising
doubts about their security.

Alternative HAs promise more reliable protection
against overrun attacks than PBKDF2, which is the
standard SP .NET defense. Modern algorithms are also
designed to protect against attacks using GPUs, ASICs,
and FPGAs, but this protection requires more
computing time and CS resources.

3. Methodology

3.1. Hash speed comparison. To analyze the
speed, the average, minimum and maximum time spent

on calculating the hash value using the studied
algorithms was measured. The hash value was
calculated for several sets of passwords:

- set of 1,500 worst passwords;

- set 2, 10,000 most common passwords;

- set 3, 20 high entropy generated passwords
include lowercase and uppercase letters, numbers and
other characters, length 8 characters;

- set 4, 20 high entropy generated passwords
include lowercase and uppercase letters, numbers and
other characters, length 12 characters;

- set 5, 20 high entropy generated passwords
include lowercase and uppercase letters, numbers and
other characters, length 15 characters.

The calculation time of the key generation
functions depends on the function parameters. The
current parameters were obtained from the resources of
the organization OWASP, an open project on the
security of web applications.

The following parameters were selected for key
generation functions:

- PBKDF2 (on order), correspond to the
configuration in ASP.NET Core ldentity. Number of
iterations 10000, salt size 128 bits, hash size 256 bits;

- PBKDF2 (recommended), modified according
to recommendations. Number of iterations 310000, salt
size 128 hits, hash size 256 bits;

- Becrypt, the parameters are left unchanged
because the operating factor is set by default to 11,
which exceeds the recommended 10;

- Scrypt (degree of parallelization 1), degree of
parallelization 1, block size 8, memory size 64 MiB;

- Scrypt (degree of parallelization 4), degree of
parallelization 4, block size 8, memory size 16 MiB;

- Argon2 (1 iteration), degree of parallelization
1, minimum number of iterations 1, minimum memory
size 37 MiB;

- Argon2 (2 iterations), degree of parallelization
1, minimum number of iterations 2, minimum memory
size 15 MiB.

Hashing and measurements were performed on a
CS with an AMD Ryzen 7 6800H CPU and an NVIDIA
GeForce RTX 3050 Ti Laptop GPU. Operating system
CS Windows 11, version SP .NET 6. .NET and Visual
Studio diagnostic tools were used to measure metrics
2022.

As a result of hashing the sets, files with hash
values and calculation metrics were obtained. For
demonstration, the results for Argon2 AX are given
(Fig. 6).

The obtained hash values were used for security
analysis, and the metrics allowed us to compare the
speed.

For all sets of passwords, measurements of the
average, minimum and maximum time to calculate the
hash value were performed. The analysis was performed
on the average value of the results for all sets, the graph
for the relative comparison of the HA speed is shown
below (Fig. 7). A detailed comparison of the hash value
calculation results for each HA and its set parameters
provides the average time, minimum and maximum
time in nanoseconds (Table 1).

86

ISSN 2522-9052 CyuacHi inpopmaniiini cuctemu. 2024. T. 8, Ne 4

B 50-wortir- Notepad B 50wontmericin - Hotpsd

)

e B Vew B Fe B8 Vew

BEITCSCILTIIO0N04080 LABAIFLX0AE N DEFSENMEN IRAIATSALD | dgund

ASEEAF I0DAEF ATOF ASY TISA1A1 1 SO0 LERASAR L0 4808000 THSF T 2 IEED

EOSGEE1F MERSIH I TR E 1 REHF AL TS 1688 L FRAF BREAAFCRR T EBLSABRAYL Averapt tise tloks: SEISGR.STNIEIGAT | ro: SHLESHRR.1IAIGET | ms: SL.186R5LMER
FALRBCE] Y151 TAMME ADE CRNIFFBGERE SRS 525 3 M00CFFASTUSSH T A0ES

AL 1 CDEFEESF AL TEIF RER250 TS BB LAAT SO AT HEBRE B 1 Mis niee ticks: 450353 | =s: 45035360 | ms: 49,8353 | s: 0.0450353

TIGGM63 TAIS1ETMEEASF H850 3 LALTAIGE TORSEIAB1L 115 T TS S06 JASEEET

SRECIREEERFUIF TIE FHEAHTLF ADDA TE8 11507 SE FIRHNE T IEF @EATS MERERESS Min tlme thoks: 650533 | ei: E5053090.96005500 | ms: 65.8633] € 0656633
A5 TR S PHIER T S8E TR 36 555 F LAL FOAS SRR IAIE L ES0GE55 7500850 120

PALG9E1 2EEBEM 15 TREREDSE S A2BEL A ZBINARE 3960 (BF 211 M6ERDSFECS 38902

1B TCFORAE L TS ER 3538900 SAGD0B6AM0 BF LA E1F E5TOD00003D

SCFEACAMIDE 53 TRASEERARIF AZE5T1 1 15EIBLER 6F ES6(SER8F FLMINIESIF

ST TE O EAR SACER | SR GIRAE TRLSE DRI S TAE TTF 1T IRAFENET 1M

TAE L5 L 645RRSAT 76T SGE 1A M B I0BIDI 100 I J6SALAATSATCAL (PLAABATIAD]

(DBEAAT £ LOEF 3 54 IERNATET 06T ML T SAE00 IB0FL TFECF 566 11088

BB AN JESER ST TN 20BF BE S AR S AT LABATFE IR0 G4 2R 180657

DCEL N[THEEIS, AN T S5A4ATS A0S 155EE TIARAIEEAFBEC 181

AR BFDAAF BYSAFSFF 4G LA A0 AR CHSIRRF UL SHLRE5CA

OB EDT 110400 SARIEA4 0 148 KB4 50 JAOBDCEFE FEEC L TEI MIABADC 307

AE AL SOBATEALF ST IFT S TATLESSRS0EAL J1 A5 S SURELEMIDTE BF 192061 34

RAALLSIOESAIEG L ESATELF A I AL 1 1Y E5ARNN SO DEEBRLABANI £ FORERS

£ T TR LA L TTTRAREL £ 300 1A TE AE L E B MAEAE T BERE AATS DS

[T o Wingiows KR - Lo g, Lol o g LF U8

Fig, 6: Calculated hash values and calculation metrics

160000000
140000000
120000000
100000000
20000000
GOO0O000

40000000
ﬁ —— — — i — — e

Minimum time Average time Maximum time

B MD5 B 5HAZS6 B PEEDF2 (by default)
PBKDF2 [recommended) = BCRYPT B SCRYPT {dagres of paralisiization 1}
W SCRYPT {dagres of parallsization 4} M ARGON2 [1 iteration) W ARGON2 |2 iteration)

Fig. 7. Average password hash rates for all sets

Table 1 — Metrics for calculating hash values in nanoseconds

Metrics Minimum time Average time Maximum time
MD5 320 14042.2 395240
SHA256 180 1123.2 532380
PBKDF2 (by default) 2001580 2178747.4 4974460
PBKDF2 (recommended) 66961080 70902501 90793120
BCRYPT 119422860 121843986.8 140523459.6
SCRYPT (degree of parallelization 1) 31593020 34807792.4 52724700
SCRYPT (degree of parallelization 4) 31740859.8 34016152.6 49895700
ARGONZ2 (1 iteration) 41610720 47300997.6 70995859.8
ARGON?2 (2 iteration) 33106679.8 37634215.2 78174880

From the measurement results, it can be seen that common passwords, the Rockyou dictionary was used,
classical HF and PBKDF2 with default parameters are this dictionary contains 32 million passwords that were
very fast. Other algorithms take more time, but this is obtained in the attack on the company of the same
still enough for use in web applications. Berypt has the name. To carry out the attack, a CS with an AMD
slowest speed, the other key generation functions take Ryzen 7 6800H central processor and an NVIDIA
about the same amount of time to calculate the hash GeForce RTX 3050 Ti Laptop GPU was used. Hashcat
value. attack tool.

3.2. Security comparison. To analyze the security For algorithms that have sufficient protection
of the algorithms, attacks on sets of passwords were against existing CS or that have failed to be attacked
performed. The attacks used a full sweep method, a using the Hashcat tool. The analysis was carried out
dictionary attack was also performed for sets with using research materials of independent organizations.

87

Advanced Information Systems. 2024. Vol. 8, No. 4

ISSN 2522-9052

As mentioned above, the MD5 [ssion....
algorithm is currently not considered suitable [t

Hash.Target

for hashing passwords, primarily due to the
presence of collisions.

Dictionary attacks performed. For the
worst 500 passwords, it was possible to get

Guess. Mashk.

Guess. Queue

497 passwords or 99.60% in 2 seconds. For | speed.ai...
the most common 10,000 passwords, it Was | :oecs ar
possible to get 9,471 passwords or 94.71% in | fecoveree
31 seconds. Rejected.

Restore. P

The worst 500 passwords brute force
attack (Fig. 8):
358 passwords or 71.74% were
received in 1 second,;

Restore. Sub

Time.started
Time,Estimated...:
Kernel.Feature...:

Guess.Charset

Restore, Sub.

Candidate Engine. :
Candidates.#l
Candidates. 42
Hardware.Mon, #1. ., ;
Hardware.Mon.®2. . :

D:\DiplematHashComparisonHashes\HDS\ 508-worst, txt
..... © Tue Now 22 13:49:16 2822 (8 mins, 3 secs)
Tue Now 22 13:57:19 2822 (8 secs)

Pure Kernel
ceeee.t TATIFRI2TRYRTITR [E]
cveat =1 ThrdTu, -2 TlRd, -3 Tlvdelse_,
...... : BEf15 (53.33%)

T892, 6 MH s (11.68ms5) @ Accel;32 Loops; 512 Thr;2%6 vec:l
606.3 MHSs (9.98ms) @ Accel:16 Loops:1824 Thr:6d wec:l
TEO8 .9 MHS=
.1 499/u99 (168.88%) Digests (totall), u99/us9 (188.86%) Digests (new)
.t 3EUSS995B0160/55333804698112 (465, BE%)
¢ B/36U5599580160 (6.66%)
L...! USISS008/EEBEURSS (65.86%)
Bl...: Salt:® Amplifier:2BuE-2568 Iteration:@-512
W20 Salt:e amplifier:52224-532u8 Iteration:@-1824
Device Generator
lzabeish —-= ferésved
weo.t Bb3EGBEF =» Fxhbjbek

Temp: 7%c Util: 99% Core;1888MHz Hem:GLlOG8MHZ Bus:8

8% util: 8% Core: 533MMz Mem:2UB8MHZ Bus:l6

-i Undefined

Temp: @C Fan:

454 passwords or 90.98% were
received in 21 seconds;

498 passwords or 99.80% were
received in 3 minutes and 16 seconds;

it took 8 minutes and 3 seconds to
get all the passwords.

The most common 10,000 passwords
attack by the method of exhaustive search:
1078 passwords or 10.78% were
received in 4 seconds;

5495 passwords or 54.95%
received in 10 seconds;

7451 passwords or 74.51%
received in 27 seconds;

8977 passwords or 89.77%
received in 2 minutes 36 seconds;
9198 passwords or 91.98%
obtained in 4 minutes and 19 seconds;
9326 passwords were obtained in 9
minutes 34 seconds or 93.26% maximum

Fig

were

were

were

were

Fig. 9. Ti

Number of
Characters

. 8. The worst 500 passwords method of exhaustive search

Upper and
Lowercase
Letters

Numbers, Upper Numbers, Upper
and Lowercase and Lowercase
Letters Letters, Symbols

Lowercase

Numbers Only Letters

Instantly
Instantly
Instantly
Instantly
Instantly
Instantly

Instantly
Instantly
Instantly
Instantly
5.secs
2 mins
58 mins
U
3 weeks
1year
" 51years
| kyears
3akyears [NZBAVEREEN 370 yeors
[EOORYESEE 100bnyears 2tnyears
ZEEsEl 61tmyears | 100tnyears

me to get an MD5-protected password using the RTX 2080 [25]

Instantly
Instantly
Instantly
25 secs
22 mins.
19 hours
1 month

. Syears

Instantly
Instantly
1sec
1 min

Instantly
Instantly
5 secs
6 mins
8 hours
3 days 3 weeks
7 months 5 years
L. 4lyears || 4Q0years
| 2RyearsV] 34k years

1 hour

Instantly
2 secs
25 secs
4 mins
41 mins
6 hours
2 days
4 weeks
9 months

15bn years
1tn years

93tn years
7qd years

speed of 7892 mega hashes per second, then
the sorting of passwords with a length of 9
characters began, which is unproductive for
equipment of this level;

in 2 hours, 9931 passwords or
99.31% were obtained, the predicted time for

Sesslan

Hash . Target.
Time . Started

Guess, Base

Status...........:

Time Estimated...:
Hernel . Feature,

Guess, Gueue.

..... T hashoat
Exhausted
1488 [SHAZ-25&)
ceeo.: Br\DdplosabHashComparisoniHashes' SHAZSE 18 -popular . kxt
coeoot Tue Nov IT 28041:13 2832 (38 secs)
Tue Kov 1T 28:41:@3 2832 (8 secs)
i Pure Hernel
i File (C:%Weershirlusus'\Downloads\rechysu, tek])

i 141 (100, 80w]

Speed 81, , 2306 hMfe (10, %3m8) B &ccel 1039 Lesps:d Thridd wec:l
sorting other 9-character combinations was 6 [fir il L] g et aeselann esmet e veet
hOUI‘S 14 minutes the attaCk was Stopped Regavered,, .. FETLSI0080 (96, 71%) Digests (torall, S=71/10008 (9%.71%) Digeits (nem)
! * Remaining.: 520 (5, 3%) Digests
From the above data' |t can be seen that Recavered /Time. c:_m:n.-’a.n.-’n.m:-’i A‘.‘f.:hfﬁ.hf{-.ﬂfl (min, weus, Bayl
R . Pregress._.! NSNS SAG 103G 588 (106, 00%)
the MD5 algorithm is vulnerable to overrun — |mejectea.........0 sj1ussuses (o sin)

attacks with a general-purpose CS,
increasing the length of the password
increases the time to obtain it, but for more
powerful systems, this is not a problem.
HiveSystems research results were used
to confirm the results for long passwords

Hardmare . Hon
Hardware . Hon

Started: Tue
Stepped: Tue

Restors Poiat
Restore. Sub.sl._.:
Restore. Sub.s2. .
Cardidate . Engine. :
Cardidates. sl
Candidates.#2

coo.! BUATSIOSFIN3GAS3AG (08 _AT0%]
Salt:d Amplifier:d-1 Iteratiom:8-1
Salt:d Amplifier:d-1 Iteratiom:8-1
Device Generator
oot SHEX[30343A335a6FE5T79] - SHEN[BUZABIITCIalS6E1606FTI2EET]
ce-.: BHEAQEZEE -> BUATRaka
(Bl .: Temp: 45c Util:
JBI_.: Temp: B< Fan:

1&% Core:1611MHT Fen:STETFHE Bus:8
&% Util: &% Core: UBGMHZ Men:IYparHz Bus:lé

How 22 20:01:8%
How 23 204102

L
2013

[25].

The MD5 algorithm research results
from HiveSystems are shown below (Fig. 9).

The number of hash values that the RTX 2080
calculates in 1 second is 37085000000, for the current
most powerful GPU RTX 3090, this value is
69379700000. MD5 also lacks protection against
attacks using rainbow tables. For this reason, this
algorithm is not recommended for password protection.

SHA256 is still considered suitable for protecting
passwords, but it lacks protection against dictionary
attacks and rainbow tables.

Fig. 10. The most common 10,000 password attack by dictionary

Let's perform dictionary attacks. For the worst 500
passwords, it was possible to get 497 passwords or
99.60% in 3 seconds.

For the most common 10,000 passwords, it was
possible to get 9,471 passwords or 94.71% in 30
seconds (Fig. 10).

The worst 500 passwords brute force attack
(Fig. 11):
358 passwords or 71.74% were received in
2 seconds, these are passwords up to 6 characters long;

88

ISSN 2522-9052

CyuacHi in¢opmariitai cuctemu. 2024. T. 8, Ne 4

- 454 passwords or 90.98% were [session......
i i i Status,
received in 1 minute, these are passwords up | 2
to 7 characters long; Wash, Target. .

Time Started,

it took 26 minutes and 28 seconds to
get all the passwords.
The most common 10,000 passwords

Hernel Featur
Guess - Mask, ..
Guess Charset

attack by the method of exhaustive search | smeca.si.....

(Fig. 12): oped a1
- 5852 passwords or 58.52% were ::g;::'f::::”_.:

received in 11 seconds, these are passwords | ejected.........:

up to 6 characters long;

7904 passwords or 79.04% were
received in 1 minute 2 seconds, these are
passwords up to 7 characters long;

9834 passwords or 98.34% were
received in 40 minutes 34 seconds, these are

HAardmare . Mon.
_ Hardmare. Mon.
Started! Tue
Stepped: Tue

Time Estimated, .. |

Guess Quewe. ..

Restore. Point. ...
Restore. Sub.#®l...:
Restore Sub.®2. ..
Candidate Engine. .
Candidates #1. ...
Candidates 83, .

voeo i hashoat
voeot Crached
coeod BuBE (SHAZ-2SE)
¢ bAbiplesabHashCorparisont Hashe s \SHAZSE\SHE-worst . txt
cooot Tue Wow 23 28:49:51 3822 (26 ming, 28 secs)
Tue Wow 22 21:16:19 2822 (8 s¢cs)
... Pure Hernel
La-.t PLTZ2P27272727273 [8]
] ?l?d?ur -2 ?I.'.“Ifl -3 ?‘l?dt!SQ_, -4 Undefined
Ef15 ([53.33%)
1718.6 MHfs [11.89ms) @ Accel:16 Loops:256 Thr:256 Wec:l
6G6.49 MHSs (4.95ms) @ Accel:32 Lpops:Sk2 Thro32 vec:l
2364.9 HH/Ss
: B99/u99 ([188.80%) Digests (totall, 499/499 (180.88%) Digests (new)
I6506106TYRRA/ 55110698112 (66, BO%)
B/IG5UB1UEBTUREDS [B. B6%)
BHYGS1ZR/GERG6E2SE (65, 95%])
Salt:a Amplifier-2380-2568 Iteration:B-256
Salt:8 Amplifier: ¥035%2-3pH60 Iteration:@-51%
Device Generatsr
¢ der@sdTe =»x ferkdcod
eefthekl == Bjlojuar
Temp: THe ULil: 96% Core:1911MHE Men:GlOEHHE Bud:S
Temp: B¢ Fan: &% util: &% Core: YBHHZ Mee:Zuf@MHz Bus:ld

Bl
L

Wow 22 Q00UB:23 2023
Wow 22 21:16:21 02T

passwords with a length of 8 characters;
9326 passwords or 93.26% were

Fig. 11. The worst 500 passwords brute force attack

obtained in 9 minutes 34 seconds, then the
search for passwords with a length of 9
characters began, which is unproductive for
equipment of this level;

estimated time to go through other
combinations of 9 symbols 29 hours, the

Session

Time. Started. .

Guess . Charset
Guess. Queue

attack was stopped. speec, 81
SHA256 remains a reliable CHF, but | et v

lacks protection against dictionary attacks | geciiiae

and rainbow tables require self-salting. | fecoverecrmine -

Using SHA256 is possible, but not [rejectea......

recommended because there are algorithms
based on this HF, which require salt and

Restore.Sub. o1
Restore. Sub. 82
Candidate. Engi

numb_er of iterations to slow down the [gnoiiae==2
algorithm. karduare. Koo
Hardware. Hen.m

Status._...:
Hash . Mode.:
Hash.Targek......:

Time. Estimated,, .:
Hernel, Feature,, . :
Guesd Hashk. ...,

Restere.Peint. .. .:

...t hasheat
Quit
1488 {SHAZ-256)
D:%0iplomatHashConparison\Hashes) SHA256% 1ak-popular. txk
.oo7 Tue Now 22 J2:B5:16 2822 (13 mins, 8 secs)
Thu Mow 2u 84:13:53 2822 (1 day, 5 hours)
Pure Hermel
FLTIIITRTITITIVITY (8]
-1 7led?u, -2 717d, -3 TLrderff_,
9715 (69.86%)
1695.7 MH/s (6.81ms) @ Accel:lS Loops:l28 Thri2se Vec:l
39,7 M5 (T.21ms) @ Accel:l28 Leops:l2E Thr:3a veg:l
2098, U AHSs
Lot BRAZS1I0000 (98, 62%) Digests [tetall, 9862/10000 (98.42%) Digests (new)
138 {1.38%) Digests
CUA:Z Hf& WP AVG:Z.15, NSA,NSA (Min Hour,Day)
1656365TTEE96/226868688622592 (8. T3%)
L0071 BALSSEIGSTTERVE (8. B6%)
JOUEHBIGS 2RI IAIULDE (0. TIN)
Salt:d Amplifier:30T20-30848 Iteration:0-1I&
Salt:8 amplifier: ATuS0-4T500 Iveration:@-128
Device Generator
: Tuetkuife -» zTsbigife
SCTYEQE3d -» coTnpuife
Temp: B8 Util: 97% Core:l986HHz Mem S1BAMHZ Bus:B
Temp: 0c Fan: 0% Util: 0% Core: UDOMMr Mes:2d00HMz Bus:16

=4 undefined

ne.:

1
[AP

The PBKDF2 algorithm is a key
generation function, it requires a salt and the
number of iterations, it basically uses the HF
of the SHA family.

Applications that use SHA256-based
PBKDF2 include password storage solutions
LastPass, 1Password, and Bitwarden. The
Hashcat tool supports PBKDF2 hashes in a
specific format, so open source data was
used for analysis. Below are the results of a
full sweep attack using the RTX 3090 GPU
from HiveSystems (Fig. 13) [25].

It can be seen that passwords with a
significant length and high entropy are quite
secure, the disadvantage of PBKDF2 is only
the possibility of increasing the security by
increasing the iterations.

Bcerypt is one of the slowest algorithms,
which should make brute force attacks more
difficult (Fig. 14).

Even when running a dictionary attack
in 6 minutes, only 146 passwords or 29.26%
were obtained. Which shows the impossibility of attacks
by the method of complete search on this CS.

ScatteredSecrets research was studied to
investigate protection against more powerful CS and
FPGA [24]. Below for Bcrypt are hash calculations per
second for AMD EPYC 7401P CPU and Nvidia RTX-
2080Ti GPU (Table 2).

Fig.

Fig. 12. The most common 10,000 passwords attack
by the method of exhaustive search

13. Time to get a PBKDF2 SHA256 protected password
using an RTX 3090 [25]

The slow calculation speed on the GPU is due to
the fact that Berypt requires more than 4 kilobytes of
memory for maximum speed, while the RTX-2080Ti
only has 1 kilobyte. So, the current protection thanks to
the memory from graphics processors is enough, but
this parameter is unchanged and over time there may be
devices for which this will not be an obstacle.

89

Advanced Information Systems. 2024. Vol. 8, No. 4

ISSN 2522-9052

Sezzion
STATiE .
Haih . Rsde

hashoat
! EarA kg

Rexfore, fub d@l
Festore, fak, w)
Candloate Engline . | Oewids UERECATIr

candidates. oL, ... alysia -= kelly

Candidaten. 871 H la%g =& neweaber
Harduare ®gn, @l |
Hardwarce.man. w3, Tesg

e Fan

...... 1188 [beeypt $2+%, Blewfidh [Ualx))

Hath, Target i B=hWoiplonsHaphloapar i penh Hazhen s BOrypt i S -woret txk
Time, Skarted owed Moy 2% pRCRTISA 2REE L6 mine, I secs)

Time Estimated...: ®en Par 06 Phodd:od 2ok} (192 days, I3 hours)

Wernel Feature. .. Pare Hesnel

Guens, Bawe ; File {C:h\Uperiytriuzun’ Doanloadeb rociyou, txt]}

GUESS TRttt R Y

Speed . wl 42g His (8. 75830 § ACcel:l Loops: 6 The: s wWec:l
Gpeed Wy ... 195 Hfe (R0 25m4) @ A<cel:d Lossd: 18 The:ld wee:!l
Speed . e . 369 Wi

Recovered i RSO (39, 1Y) Dipeste [totall, 1@6 /099 (2§, 16%) rigeste [newd, l8bfasd {29, 7% Salts
FTOgress TTEARATIETESTALE (8. BEk)

W jected. BF125008 (0. Sy

Reitore.Peint. ... 6710300180 [80%)

; 5al®; 106 kepl iffer;f=1 Tteration;Sid-376
o Salt I Aeplifier:B-1 Ieration;1RpE-)idd

@ G67c Util: 98% Core- I93THHT Hem: 5999HHT Bes &
8% Uril: 9% Core:ITSMHE Hen:Is8aRHz Bus:id

Fig. 14. The worst 500 passwords dictionary attack

Table 2 — Calculating Berypt hash values

Work FPGAs: hashes per GPU: hashes per
factor second second

05 25,200 28,000

07 6,300 7,000

08 3,150 3,500

10 788 875

11 394 438

12 197 219

14 98 109

John The Ripper password security auditing and
password recovery tool supports FPGA boards. They
are efficient enough to run 124 optimized Bcrypt cores
on an FPGA. This results in Bcrypt's high hash rate,
higher than the hash rate of the latest generation of high-
end GPUs (Table 3).

Table 3 — Calculation of hash values of Bcrypt using FPGA

require up to 1,085 NVIDIA Tesla P100 GPUs, costing
about $120 million [24].

4. Result Analysis

Below are the threats against which each of the
algorithms provides protection.

It can be seen from Table 4 that Argon2 and
Scrypt provide protection against the most threats, but
Scrypt does not have an implementation that can be
recommended as secure. Bcrypt does not have the
ability to configure the required memory, but the
amount used is enough to protect against GPU-based
attacks.

PBKDF2 provides protection against attacks using
the method of full traversal and the use of rainbow
tables, which is the minimum protection required. MD5
and SHA256 do not provide protection against modern
threats.

Table 4 — Defense analysis

FPGAs: hashes GPU: hashes
Work factor
per second per second
05 120k 28k

So, Berypt is a protected algorithm against modern
threats, but not the ability to configure protection due to
memory creates risks when using ASIC and FPGA.

Scrypt is an extension of the ideas of Bcrypt and
adds the ability to configure the amount of memory
required. But on SP.NET there are no popular
implementations that can be recommended for use in
real applications. According to research, the cost of
calculating a password using Scrypt is several times
more expensive than Bcrypt and several times more
expensive than PBKDF2 [23].

Argon2 is the winning algorithm for the 2015
Password Hashing Contest, the goal of the contest is to
select one or more password hashing functions that can
be recognized as a recommended standard.

According to research by RedHat, cracking the
eight-character passphrase used to unlock an encrypted
volume in about two seconds on a Raspberry PI could

Rainbow .
e Overrun cpU | EPcAY Imple
able attack o- | Asic menta-
Metrics attack Gslow | P tion
tec- | protec-
(presence | func- | o | Tigp | sect-
of salt) tion) rity
MD5 No No No No Yes
SHA256 | No No No No Yes
PBKDF2 | Yes Yes No No Yes
Berypt Yes Yes Yes | No Yes
Scrypt Yes Yes Yes | Yes No
Argon2 Yes Yes Yes | Yes Yes

Conclusion and Future Work

Password protection on SP .NET, which is
widespread in enterprise and web applications, is an
important issue. Hashing algorithms built into SP are
characterized by high speed and sufficient protection
against threats that existed at the time of their creation.
But the increasing power of CSs and the proliferation of
GPUs, ASICs, and FPGAs make CS that use these
algorithms vulnerable. More modern alternative
algorithms have been created to protect against these
threats.

90

ISSN 2522-9052

CyuacHi in¢opmariitai cuctemu. 2024. T. 8, Ne 4

As a result of the performed analysis, Argon2 is
the best algorithm for use on SP .NET. This algorithm
provides the most reliable protection at optimal speed,
the possibility of memory configuration provides
protection from ASIC and GPU. To support legacy
applications, you can use Bcrypt, the main threat of
which is ASIC. PBKDF2 with a sufficiently large

number of iterations is able to provide fairly reliable
protection, it should be used for applications.

Due to the lack of popular implementations, the
Scrypt algorithm is not recommended.

Further work in this direction may include the
creation of CS and software for full local analysis of all
algorithms.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.
22.
23.
24.

25.

REFERENCES

Dotsenko, N., Chumachenko, 1., Galkin, A., Kuchuk, H. and Chumachenko, D. (2023), “Modeling the Transformation of
Configuration Management Processes in a Multi-Project Environment”, Sustainability (Switzerland), Vol. 15(19), 14308, doi:
https://doi.org/10.3390/su151914308

Yaloveha, V., Orlova, T., Podorozhniak, A., Kuchuk, H. and Gorbulik, V. (2023), “Modern Applications of High-Resolution
Multispectral EuroPlanet Dataset”, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPl Week 2023 - Conference
Proceedings, doi: https://doi.org/10.1109/KhPI1Week61412.2023.10312851

Pittalia, Prashant P. (2019), “A comparative study of hash algorithms in cryptography”, International Journal of Computer
Science and Mobile Computing, vol. 8, is. 6, pp. 147-152, available at: https://ijcsmc.com/docs/papers/June2019/V/816201928.pdf
Datsenko, S., and Kuchuk, H. (2023), “Biometric authentication utilizing convolutional neural networks”, Advanced Information
Systems, vol. 7, no. 2, pp. 67—73, doi: https://doi.org/10.20998/2522-9052.2023.2.12

Bowne, S. (2018), Hands-On Cryptography with Python: Leverage the power of Python to encrypt and decrypt data, Packt
Publishing Ltd, 100 p., available at: https:/github.com/PacktPublishing/Hands-On-Cryptography-with-Python

Rezanov, B. And Kuchuk, H. (2022), Fast Two-Factor Authentication Method in Systems With a Centralized User's
Database, 2022 IEEE 4th KhPI Week on Advanced Technology, KhPI Week 2022 - Conference Proceedings, 03-07 October
2022, Code 183771, doi: https://doi.org/10.1109/KhPIWeek57572.2022.9916491

Singh, A., Jain, M. and Goyal, S. (2022), “A 3-Lock based Password Hashing Algorithm”, 2022 IEEE Conference on
Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022, doi:
https://doi.org/10.1109/IATMSI56455.2022.10119411

Pise, A.A., Singh, S., Hemachandran, K., Pise, G.S. and Imuede, J. (2024), “Utilizing Asymmetric Cryptography and
Advanced Hashing Algorithms for Securing Communication Channels in 10T Networks Against Cyber Espionage”, Journal
of Cybersecurity and Information Management, vol. 13(1), pp. 46-59, doi: https://doi.org/10.54216/JCIM.130105

Kuchuk, N., Mozhaiev, O., Semenov, S., Haichenko, A., Kuchuk, H., Tiulieniev, S., Mozhaiev, M., Davydov, V., Brusakova,
O. and Gnusov, Y. (2023), “Devising a method for balancing the load on a territorially distributed foggy environment”,
Eastern-European Journal of Enterprise Technologies, vol. 1(4 (121), pp. 48-55, doi: https://doi.org/10.15587/1729-
4061.2023.274177

Menezes, AJ., van Oorschot, P.C. and Vanstone, S.A. (1997), Handbook of Applied Cryptography, 1st ed., CRC Press, doi:
https://doi.org/10.1201/9780429466335

Semenov, S., Zhang, M., Mozhaiev, O., Onishchenko, Y. and Kuchuk, H. (2023), “Construction of a model of
steganographic embedding of the UAV identifier into ADS-B data”, Eastern-European Journal of Enterprise Technologies,
vol. 5(4(125)), pp. 6-16, doi: https://doi.org/10.15587/1729-4061.2023.288178

Catalin, C. (2019), “A quarter of major CMSs use outdated MD?5 as the default password hashing scheme”, ZDNet, available
at: https://www.zdnet.com/article/a-quarter-of-major-cmss-use-outdated-md5-as-the-default-password-hashing-scheme
(1995), FIPS Publication 180-1: Secure Hash Standard, National Institute of Standards and Technology (NIST), available at:
https://csrc.nist.gov/pubs/fips/180-1/final

Bai, E., Jiang, X.-Q. and Wu, Y. (2022), “Memory-Saving and High-Speed Privacy Amplification Algorithm Using LFSR-Based
Hash Function for Key Generation”, Electronics (Switzerland), vol. 11(3), 377, doi: https://doi.org/10.3390/electronics11030377
(2002), FIPS Publication 180-2: Secure Hash Standard, National Institute of Standards and Technology (NIST), available at:
https://csrc.nist.gov/files/pubs/fips/180-2/final/docs/fips180-2.pdf

Haunts, S. (2019), “Safely Storing Passwords”, Applied Cryptography in .NET and Azure Key Vault, Apress Berkeley, CA,
Berkeley, doi: https://doi.org/10.1007/978-1-4842-4375-6 5

Tyagi, K., Yadav, S. K. and Singh, M. (2021), “Novel cryptographic approach to enhance cloud data security”, Journal of
Physics: Conference Series, vol. 1998, no. 1: 3rd International Conference on Smart and Intelligent Learning for Information
Optimization, 9-10 July 2021, Hyderabad, India, IOP Publi, doi: https://doi.org/10.1088/1742-6596/1998/1/012022

Alwen, J., Chen, B., Pietrzak, K., Reyzin, L. and Tessaro, S. (2017), “Scrypt Is Maximally Memory-Hard”, Advances in
Cryptology — EUROCRYPT 2017, vol 10212, Springer, Cham, doi: https://doi.org/10.1007/978-3-319-56617-7 2

Prasol, I. and Yeroshenko, O. (2023), “Modeling and estimating the model adequacy in muscle tissue electrical stimulator
designing”, Radioelectronic and Computer Systems, vol. 2(106), pp. 18-26,doi: https://doi.org/10.32620/reks.2023.2.02
Fedorchenko, V., Prasol, I. and Yeroshenko, O. (2021), “Information Technology For Identification Of Electric Stimulating
Effects Parameters”, CEUR Workshop Proceedings, pp. 189-195, available at: https://ceur-ws.org/\ol-3200/paper26.pdf
Petrovska, I. and Kuchuk, H. (2023), “Adaptive resource allocation method for data processing and security in cloud
environment”, Advanced Information Systems, vol. 7(3), pp. 6773, doi: https://doi.org/10.20998/2522-9052.2023.3.10
Kuchuk, H. and Malokhvii, E. (2024), “Integration of 10T with Cloud, Fog, and Edge Computing: A Review”, Advanced
Information Systems, vol. 8(2), pp. 65-78, doi: https://doi.org/10.20998/2522-9052.2024.2.08

(2023), Are Your Passwords in the Green?, available at: https://www.hivesystems.io/blog/are-your-passwords-in-the-green
(2023), Bcrypt password cracking extremely slow? Not if you are using hundreds of FPGAs!, available at:
https://scatteredsecrets.medium.com/berypt-password-cracking-extremely-slow-not-if-you-are-using-hundreds-of-fpgas-
7ae42e3272f6

(2023), What Is a Hash Function in Cryptography?, A Beginner’s Guide,. available at: https://www.thesslstore.com/blog/what-
is-a-hash-function-in-cryptography-a-beginners-guide/

91

https://www.scopus.com/authid/detail.uri?authorId=57204939770
https://www.scopus.com/authid/detail.uri?authorId=57194419994
https://www.scopus.com/authid/detail.uri?authorId=57194199918
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=58194260300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85174185888&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85174185888&origin=resultslist
https://www.scopus.com/sourceid/21100240100?origin=resultslist
https://doi.org/10.3390/su151914308
https://www.scopus.com/authid/detail.uri?authorId=57211756298
https://www.scopus.com/authid/detail.uri?authorId=57958079300
https://www.scopus.com/authid/detail.uri?authorId=57202229410
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=57829918200
https://www.scopus.com/record/display.uri?eid=2-s2.0-85179508848&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85179508848&origin=resultslist
https://doi.org/10.1109/KhPIWeek61412.2023.10312851
https://ijcsmc.com/docs/papers/June2019/V8I6201928.pdf
https://www.scopus.com/authid/detail.uri?authorId=57218596147
https://doi.org/10.20998/2522-9052.2023.2.12
https://github.com/PacktPublishing/Hands-On-Cryptography-with-Python
https://www.scopus.com/authid/detail.uri?authorId=57957409700
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85141448702&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85141448702&origin=resultslist
https://doi.org/10.1109/KhPIWeek57572.2022.9916491
https://doi.org/10.1109/IATMSI56455.2022.10119411
https://doi.org/10.54216/JCIM.130105
https://doi.org/10.15587/1729-4061.2023.274177
https://doi.org/10.15587/1729-4061.2023.274177
https://doi.org/10.1201/9780429466335
https://www.scopus.com/authid/detail.uri?authorId=57202908821
https://www.scopus.com/authid/detail.uri?authorId=58730711400
https://www.scopus.com/authid/detail.uri?authorId=57201729490
https://www.scopus.com/authid/detail.uri?authorId=57195524203
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85178215631&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85178215631&origin=resultslist
https://doi.org/10.15587/1729-4061.2023.288178
https://www.zdnet.com/article/a-quarter-of-major-cmss-use-outdated-md5-as-the-default-password-hashing-scheme
https://csrc.nist.gov/pubs/fips/180-1/final
https://doi.org/10.3390/electronics11030377
https://csrc.nist.gov/files/pubs/fips/180-2/final/docs/fips180-2.pdf
https://doi.org/10.1007/978-1-4842-4375-6_5
https://doi.org/10.1088/1742-6596/1998/1/012022
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Jo_l-Alwen
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Binyi-Chen
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Krzysztof-Pietrzak
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Leonid-Reyzin
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2#auth-Stefano-Tessaro
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.32620/reks.2023.2.02
https://ceur-ws.org/Vol-3200/paper26.pdf
https://doi.org/10.20998/2522-9052.2023.3.10
https://doi.org/10.20998/2522-9052.2024.2.08
https://www.hivesystems.io/blog/are-your-passwords-in-the-green
https://scatteredsecrets.medium.com/bcrypt-password-cracking-extremely-slow-not-if-you-are-using-hundreds-of-fpgas-7ae42e3272f6
https://scatteredsecrets.medium.com/bcrypt-password-cracking-extremely-slow-not-if-you-are-using-hundreds-of-fpgas-7ae42e3272f6
https://www.thesslstore.com/blog/what-is-a-hash-function-in-cryptography-a-beginners-guide/
https://www.thesslstore.com/blog/what-is-a-hash-function-in-cryptography-a-beginners-guide/

Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052

Received (Haniiinua) 13.07.2024
Accepted for publication (ITpuiinsrta go apyky) 16.10.2024

BIIOMOCTI [TPO ABTOPIB/ ABOUT THE AUTHORS

Denopuenko Bosogumup MukoaaiioBuy — KaHIUIAT TEXHIYHUX HAYK, JOLEHT, JOIECHT KaQeapH eNeKTPOHHUX 00UHCIIOBAIbHIX
MaIluH, XapKiBChbKHH HalllOHAIBHUM yHIBEPCUTET palioeNeKTPOHIKH, XapKiB, YKpaiHa,
Volodymyr Fedorchenko — PhD in Engineering, Associate Professor, Associate Professor of the Department of Electronic
Computers, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine;
e-mail: volodymyr.fedorchenko@nure.ua; ORCID Author ID: https://orcid.org/0000-0001-7359-1460;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=57716883800.

€pomrenko Oubra ApTypiBHA — acHCTEHT KadeIpH eNeKTPOHHHX OOYHMCIIOBAJBHUX MallWH, XapKiBCHKHUH HaIllOHATEHUN
YHIBEPCHUTET PaliOeNeKTPOHIKH, XapKiB, YKpaiHa;
Olha Yeroshenko — Assistant of the Department of Electronic Computers, Kharkiv National University of Radio
Electronics, Kharkiv, Ukraine;
e-mail: olha.yeroshenko@nure.ua; ORCID Author ID: https://orcid.org/0000-0001-6221-7158;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=57808290700.

MImaTtko Ouexcanap BiramdilioBu4 — KaHIWAAT TEXHIYHUX HAyK, JOICHT, JOIEHT Kadeapu MporpamHoOi iHKeHepil Ta
IHTEeJIeKTyalbHUX TEXHOJIOTiH ynpaBninas, HanionansHuid TexHiuaui yHiBepeuret “XI11”, Xapkis, Ykpaina;
Oleksandr Shmatko — PhD in Engineering, Associate Professor, Associate Professor of the Department of Software
Engineering and Intelligent Management Technologies, National Technical University “KhP1”, Kharkiv, Ukraine;
e-mail: oleksandr.shmatko@khpi.edu.ua; ORCID Author ID: https://orcid.org/0000-0002-2426-900X;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=6602623478.

KousomiiineB OJiekciii BosiotuMupoBUY —TOKTOp TEXHIYHUX HayK, podecop, npodecop kadeapu KoM r0TepHOT iHxKeHepil Ta
mporpaMyBaHHs HallioHaIbHOTO TEXHIYHOTO YHIBEPCHTETY «XapKiBCHbKHI MOMITEXHIYHUH 1IHCTUTYT», XapKiB, YKpaiHa;
Oleksii Kolomiitsev — Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming
Department, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine;
e-mail: alexus k@ukr.net; ORCID ID: https://orcid.org/0000-0001-8228-8404;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=57211278112.

OmapoB Mypanx AHBep OIVIM — JOKTOp TEXHIYHHX HaykK, mpodecop, mpodecop Kadeapu KOMI IOTEPHO-IHTEIPOBAHHX
TEXHOJIOT1H, aBTOMaTH3amii Ta PpOOOTOTEXHIKH, IPOPEKTOP 3 MIXKHAPOAHOTO CHIBPOOITHUITBA, XapKIBCHKUI HAIllOHAIEHUN
YHIBEpCHUTET paioeneKTpoHiku, XapkiB, YkpaiHa,

Murad Omarov — Doctor of Technical Sciences, Professor, Professor of the Department of Computer-Integrated
Technologies, Automation and Robotics, Vice-Rector on International Cooperation, Kharkiv National University of Radio
Electronics, Kharkiv, Ukraine;

e-mail: murad.omarov@nure.ua; ORCID Author ID: http://orcid.org/0000-0003-4842-4972;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=55659255500.

MeTonu Ta aATOPUTMH XeUTyBaHHS napoJiB Ha miaatdopmi .NET
B. M. ®enopuenko, O. A. €pomrenko, O. B. IlImatko, O. B. Konowmiitues, M. A. Omapos

AHoTanisi. Be0d-nonaTkuy, siKi MIUPOKO BUKOPHCTOBYIOTHCS JUIS HaJaHHS MOCIYT Ta 300py iHdopMmarii, cTaiu 0oCHOBHOIO
MIIICHHIO JUTS 3JI0BMHCHHUKIB, OCOOJIMBO 3 MOSBOIO JIEPKABHUX CEPBICIB, 10 00poOIstoTh KOHGIAeHIINHHI naHi. [Iporpamua
wiarpopma NET, nomynspHa s po3poOku BeO-monatkiB, BKmodae BOynoBaHi amroputmu xeuryBanHs (HA) Ta dyskuii
renepauii kmouiB (KDF) mis 3axucty naposniB. OgHak BoHM OyiM po3poOJieHi OHa | ABa AECSTUIITTS TOMY IUIS Pi3HUX DiBHIB
3arpo3. binbm cydacHi aneTepHaTHBH, Taki sk Berypt, Scrypt Ta Argon2, mpornoHyrOTh TOKpAIIEHHH 3aXUCT BiJ] Cy4aCHUX aTak 3
BukopuctanasiM GPU, ASIC ta FPGA, ane notpeGyioTh CTOPOHHBOTO BIIPOBAKEHHS. BpaxoByI0UrM KpUTHUHY POJIb 3aXHUCTY
MapoJiiB y 3axWcTi iHpOpMarii KOpHCTyBaya, [JOCHIIPKCHHS BHBYA€ €(EKTHBHICTh PI3HHX MEXaHi3MIB XEIIyBaHHS Ha
mwiatpopmi .NET, mo € HarampHOIO TOTpeboro y 3abe3neueHHi Oe3neKkn cydyacHnX BeO-noaatkiB. [IpenMeToM BUBYCHHS B CTATTI
€ 0COOJIMBOCTI aNrOpUTMIB XellyBaHHs, BOYJIOBaHHX Ta JOCTYMHHX B Oi0miorekax mporpamHoi miatdopmu .NET st 3axucrty
HapoJIiB, IK OCHOBHOTO acleKTy ayTeHTH(ikalii KopucTyBadiB. MeTor poOOTH € MOPIBHSHHS Ta aHaJi3 AITOPUTMIB XEIIyBaHHS,
BOyIOBaHMX Ta JOCTymHHX B Oibmiorekax mnporpamuoi miaardopmu NET s 3axucty maposiB, SK OCHOBHOTO acIeKTy
ayTeHTH(iKalii KOPUCTYBadiB. IPOBEICHO aHAN3 Ta MOPIBHSIHHS aIrOPUTMIB XEIIyBaHHs], IOCTYNHHX Ha MPOrpaMHil
wiatopmi .NET. 3aBaannsi: po3riastHyTH BOyHoBaHi anroputmy, Taki sk MDS, SHA ta PBKDF2, a Takox cTopoHHI peaitizarii
cyJacHHX (YHKIiH BHBEJESHHS KIIOUIB, TakuxX sK Berypt, Scrypt Ta Argon2 Ta ZOCTIAWTH iX MIBUIKOIIIO Ta KPUNTOCTIHKICTB.
BukopucraHni MeTOAM: BKIIOYAINM BUMIPIOBAHHS IIBHIKOCTI XCUIyBaHHS Ul PI3HUX HAOOpIB MApOIiB Ta aHAJi3 CTIHKOCTI IO
aTak 3a JOIOMOTOIO TaKWX IHCTPYMEHTIB, sk Hashcat, Ta maHuMX He3aJeXHHUX JIOCIHiKEHb 3 Oe3meku. Pe3yabTaTH mMokasyioTs,
1110 X04a BOyIOBaHI aqroputMu, Taki sk MDS ta SHA256, € miBHAKAMH, BOHU He 3a0€3MMeUyr0Th 3aXKCTY BiJl CYYacHHX 3arpos,
TaKHX K aTaKd 3 BUKOPUCTAHHAM paiilyKHUX TaOnuub Ta cipobu noBHoro nepedopy 3 npuckoperusm Ha GPU. PBKDF2, sikuit
e craumaptiuM B ASP.NET Core Identity, 3abGe3meuye kpamyy Oe3meky, aje Bpa3iMBHH J0 arak 3 BHKOPHCTAHHSIM
cremianizoBaHoro obmagHanns. Cepel CydacHHX aurOpuTMiB Argon2 NpoJeMOHCTPYBaB HaiKpaiuuii OamaHc Oe3neku Ta
MIPOIYKTHBHOCTI, 3a0e3neuyioun 3axuct Big arak Ha ocHoBi GPU, ASIC ta FPGA. BucHoBku. JlociikeHHs AiHIIUIO BUCHOBKY,
mo Argon2 € pPEeKOMEHIOBAaHMM aJTOPUTMOM IS XellyBaHHS mnapomiB Ha miardpopmi .NET, a Berypt e mimxopmsmioro
aNbTepHATUBOK Ui 3actapinux jgonartkiB. PBKDF2 3 BHCOKOIO KUTBKICTIO iTepaiiid Bce IIe MOXKE 3a0€3MeYnTH HaTiHHUA
3axuct. IlepcnieKTHBHIM HANPSIMKOM ITOJAJBIIAX JIOCIIDKEHb MOXe OYTH BU3HAYEHHS MOXIIMBOCTI BUKOPHCTAHHS CYyYacHUX
(yHKIiH BUBECHHS KITIOYiB 3 IHTCHCHBHIM BHKOPHCTAHHSAM ITaM'sATi U1 ITiABUIEHHS Oe3neku mapodiiB y pogarkax .NET.

Kaw4oBi ciaoBa: xem-(yHKIis; aNropuT™ XellyBaHHs; (yHKIis FreHeparil KIFo4iB; KOMI'TOTEpHI CHCTEMH.

92

mailto:volodymyr.fedorchenko@nure.ua
https://www.scopus.com/authid/detail.uri?authorId=57716883800
mailto:volodymyr.fedorchenko@nure.ua
https://orcid.org/0000-0001-6221-7158
https://www.scopus.com/authid/detail.uri?authorId=57808290700
mailto:oleksandr.shmatko@khpi.edu.ua
https://www.scopus.com/authid/detail.uri?authorId=6602623478
mailto:аlexus_k@ukr.net
https://orcid.org/0000-0001-8228-8404
https://www.scopus.com/authid/detail.uri?authorId=57211278112
http://orcid.org/0000-0003-4842-4972
https://www.scopus.com/authid/detail.uri?authorId=55659255500

