
ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4

49

Information systems research

UDC 004.7 doi: https://doi.org/10.20998/2522-9052.2024.4.07

Nina Kuchuk1, Svitlana Kashkevich2, Viacheslav Radchenko3, Yuliia Andrusenko3, Heorhii Kuchuk1

1 National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
2 National Aviation University, Kyiv, Ukraine
3 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

APPLYING EDGE COMPUTING

IN THE EXECUTION IoT OPERATIVE TRANSACTIONS

Abstract . Topicality. IoT information processing is usually performed in a cloud environment. However, this creates

problems associated with delays in data transfer to the cloud. It is especially important to reduce these delays when processing

operational IoT transactions. This can be achieved by transferring part of the calculations to IoT peripheral devices. However, it

is necessary to take into account the specific features of embedded IoT systems. The subject of study in the article is methods

for transferring the load to IoT peripheral devices. The purpose of the article is to reduce the execution time of operational IoT

transactions by increasing the efficiency of the system infrastructure by transferring part of the computing load to IoT peripheral

devices. The following results were obtained. A conclusion has been made about the possibility of constructing a distributed

information system based on Internet of Things devices. A model of a computing node has been formed, which made it possible

to specify a separate computing node, taking into account its location and functioning features. A method for distributing tasks

among the nodes of a distributed information system has been developed. The method allows taking into account the features of

each computing node and the state of communication channels between them. The developed algorithm for implementing the

method is based on the analysis of a stationary or non-stationary environment and changing the greedy strategy of the agent.

Conclusion. Studies of the effectiveness of the proposed method have been conducted. The simulation results have shown that

the proposed method can significantly reduce the processing time of operational transactions.

Key words: Internet of Things; Computer System; Fog Layer; edge computing; operative transactions.

Introduction

Today, embedded systems are widely developed

and widespread [1]. In particular, Internet of Things (IoT)

systems are gaining popularity [2]. The main idea of IoT

is to embed computing modules into objects of the

surrounding world [3]. Such systems allow collecting

information about the state and functioning of a large

number of objects. This information is then transmitted

over a communication network for further processing and

analysis. The Internet of Things has become widespread

in various fields [4–6]. IoT information processing is

usually performed in a cloud environment.

However, this creates problems associated with

delays in data transfer to the cloud. It is especially

important to reduce these delays when processing

operational IoT transactions. This can be achieved by

transferring some of the calculations to IoT peripheral

devices [7, 8].

IoT information processing is usually performed in

a cloud environment. However, this creates problems

associated with delays in data transfer to the cloud. It is

especially important to reduce these delays when

processing operational IoT transactions. This can be

achieved by transferring some of the calculations to IoT

peripheral devices [7, 8].

Information from IoT sensors is received by

peripheral layer devices. Since these devices are

computing nodes, it is possible to build a distributed

system with computing nodes based on IoT devices (PC

IoT). In addition to the problems inherent in classical

distributed computing systems, such a system adds

features of embedded systems [9–11]:

– independent power supplies,

– low data rates,

– use of low-power processors,

– high interference levels in communication

channels,

– constant movement of devices,

– heterogeneity of computing nodes.

Therefore, the use of task distribution methods used

in classical distributed systems is impractical [12]. The

solution to this problem can be achieved by using

methods that can take into account the features of IoT

devices [13].

Literature review. Let's consider some scientific

works on this topic.

In the article [14], only homogeneous media are

considered.

In articles [15, 16], task distribution occurs only in

the cloud.

The method proposed in article [17] is focused only

on simple topologies IoT.

The algorithm proposed in the article [18] does not

take into account the heterogeneity of the environment.

Similar problems arise when applying the algorithm

given in the article [19].

The algorithm given in the article [20] is not

oriented to the real-time mode. The methods proposed in

articles [21, 22] do not take into account the limited

resources of the edge computing.

Articles [23, 24] do not take into account the costs

associated with data transmission.
Algorithms for IoT flows are proposed in articles

[25, 26]. But it is used only in a homogeneous

environment. The algorithms proposed in articles [27,

© Kuchuk N., Kashkevich S., Radchenko V., Andrusenko Y., Kuchuk H., 2024

Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052

50

28] are focused only on structures similar to the

structures of the cloud environment. The algorithm based

on deep learning proposed in article [29] is effective only

for a homogeneous environment, as is the algorithm used

in article [30]. A strategy based on deep learning with the

pooling of resource capabilities is proposed in the article

[31]. But it can’t be implemented on a edge layer with

limited device capabilities.

Consequently, the considered scientific works when

implementing the load redistribution process don’t

sufficiently take into account the features edge

computing. Therefore, it is advisable to develop an

appropriate method.

The purpose of the study is to reduce the time

required for performing operational IoT transactions by

increasing the efficiency of the system infrastructure by

transferring part of the computing load to the IoT

peripherals.

1. Modeling the process of assigning

operational transactions to IoT nodes

1.1. Setting the task of assigning transactions to

IoT nodes. The assignment task is a procedure that allows

operational transactions to be performed on the peripheral

ІоТ infrastructure. Computing nodes, represented by IoT

devices, act as calculators. They receive tasks and must

execute them. The central distribution node sends tasks to

computing nodes and collects completed tasks. It also

monitors the state of communication channels and the state

of computing nodes.

A distributed information system built on the basis

of the IoT infrastructure is a parallel distributed system

[32]. But unlike classical parallel systems, computing

nodes are heterogeneous and the switching network

changes the characteristics of delay and throughput

during operation.

Let us give a formal definition of the task

assignment problem to IoT computing nodes. It is based

on the problem of optimal mapping of the algorithm onto

the architecture of a parallel computing system using a

graph model [33]. Let the computing algorithm be

represented as an acyclic graph

 , ,A
AG A C= (1)

where ()1 2 (), , , card AA a a a= – graph nodes

corresponding to the components of the algorithm or

tasks; (), , , 1, ,A A
i jC c i j A i j=   – graph edges

corresponding to information links between tasks; ,
A
i jc –

amount of information transmitted from the task ia to the

task ja .

A task can be a fairly large fragment of the source

code of a program intended for execution on a parallel

system: a subroutine, function, procedure, module, etc.

Let the distributed computing system be

represented as a graph

 , ,Q
QG Q C= (2)

where ()1 2 (), , , card QQ q q q= – graph vertices

corresponding to computing nodes; QC =

()(), , , 1, ,
Q
i jc i j card Q i j=   – graph edges

corresponding to communication channels between

nodes; ,
Q
i jc – bandwidth of the communication line

between computing nodes iq and jq without taking into

account delays.

A task assignment can be defined as a graph mapping

AG to the graph QG . Considering the Cartesian product of

sets A Q we introduce the mapping binary matrix:

 () ()(), , 1, , 1, .i jZ z i card A j card Q=   (3)

where, if the task is ia assigned to node jq , then , 1i jz =

, otherwise , 0i jz = .

The solution to the problem of assignment to

computing nodes will be determined by the optimality

criterion. Such a criterion is a reflection μ over the matrix Z,

and the solution to the problem is the matrix
*Z , such that

 () ()*min .
zZ D

Z Z


=  (4)

where ZD is a set of admissible mapping matrices.

This problem is NP complete, i.e. its solution can be

obtained based on a complete enumeration. But it should be

taken into account that the characteristics of the computing

nodes of a distributed information system based on IoT are

constantly changing. As a result, it is necessary to solve

problem (4) often. This will lead to the fact that the

distributed computing system will be in a constant solution

to the optimization problem. Therefore, in the future, we

will look for a fast method that will offer a solution to the

distribution problem close to the optimal one.

1.2. Public structure of the agent model. The

system for supporting peripheral computing IoT is rigidly

decentralized. Therefore, the most acceptable is the

agent-based model approach to model development [34].

Key elements of such a model:

– agent which is contained in the object, for carrying

out a strategy and forming a strategy for the average;

– the environment which is used to describe all

those whose agent is used;

– actions they stipulate the agent with each other

with environment;

– states which straightens on whirlwind of camp in

environment; Skog of the agent to transfer the

environment in some cases;

- – rewards which will give a environment medium

to the agent reaction; can booty with negative or positive

numerical values.

The agent interacts with the environment and

receives reactions from it continuously. The agent

generally has no information about the environment and

is not told what action to take at each step.

The IoT may change under the influence of the

Environment agent.

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4

51

Therefore, each time an agent for the same activity

may receive different reward values. If the environment

does not change, then the same agent action will always

give the same reward.

According to Fig. 1 agent sends its own action at

each discrete time t N to Environment in ta . In

response, Environment transitions to the 1ts + and

generates a new reward 1tr + , that is new to the agent.

Fig. 1. The model agent – environment

Each state of the environment at each time t is

denoted by, where ts S , where S – is the set of all

possible states. The agent at a particular step t selects an

action ta from a plurality of all actions of the currently

possible actions. ()tA s . After that, the environment is in

a new state, and the agent receives new environmental

data. Thus, the agent learns and accumulates experience.

Experience allows the agent to make further decisions

regarding the environment - to choose further actions.

This means forming a strategy for the behavior of the

agent, depending on the current experience.

The agent strategy is described as:

 () ()t t ta s P a a s s= = = . (5)

Agents' strategies are aimed at maximizing the total

reward over a long period of time.

According to the model, the agent should have:

– a goal related to the state of the environment;

- the possibility of performing some actions that

may affect the state of the environment;

- the ability to perceive the state of the environment.

Scheme Fig. 1 is not significantly different from the

"agent-environment" scheme for the architecture of

neural networks. The main difference is the presence of

evaluated feedback. The agent uses information that only

evaluates his actions, but does not indicate in any way

whether this action is correct or not, since it is impossible

to obtain a set of behavior samples that would be correct

and cover all possible situations in which the agent may

find himself.

The learning process of an agent can be imagined as

a set of discrete states between which transitions are

made. Taking into account the fact that the agent receives

responses from the environment only at discrete

moments of time, the environment from the agent's point

of view can be considered a discrete system that has

states and transitions between them. But we clarify that

the environment is not controlled by the agent and may

have other influences (besides the agent).

As a result of interaction with the environment, the

agent can build its model of this environment. Based on

such a model, a prediction algorithm can work for more

effective agent work.

In IoT, computing nodes play the role of the

environment, the change in characteristics of which, in

general, does not have any regularity. Computing nodes

are independent of each other, so execution of tasks on

one node does not affect other nodes. Also, after

completing one task, a computing node enters the pool of

free nodes. The completed task does not affect the further

functioning of this node. Therefore, taking into account

the specified conditions, the best model is a model with

an ε-greedy strategy. At the same time, it should be noted

that the agent applies only those actions that he knows

about and that give the maximum reward. But he also has

to consider new actions that may not yield much reward,

but might make a better choice for a higher reward in the

future.

1.3. Agent's goal and reward. The main goal of an

agent in IoT is to maximize the total reward received as

a response from the environment and determined by

some number.

The reward signal must indicate what the agent

needs to achieve. At the same time, the reward signal

does not give the agent a priori information about how to

achieve the desired result. For example, if the agent

searches for the maximum of some function, it receives

only the value of this function from the environment

(described by the specified function). He has no

information about the direction of her growth that he can

apply to take the next steps. Otherwise, it will be a reward

for achieving intermediate goals. In the example of

finding the maximum of a function, the agent can find a

local maximum and stop there, never finding a global

maximum.

The complete independence of the environment

from the agent is also a prerequisite. An agent must not

have a goal that it can control (even partially). Otherwise,

the agent will be able to independently set the received

value of the reward signal.

A sequence of interactions with the environment

performed by an agent constitutes a task. Depending on

whether or not it is possible to break the task into repeated

sequences, the following are distinguished:

– tasks consisting of episodes;

– continuous tasks.

Consider tasks consisting of episodes. Denote

through 1tr + , 2tr + , 3tr + , … sequence of reward

signal values received after some time step t. It is

necessary to determine which elements of this sequence

must be maximized. Since the agent's goal is to maximize

the total value of all rewards, it is necessary to find the

maximum expected benefit for the general case
*R :

 () ()*

1

max max ,
T

i
i t

R R t r t

= +

= = 
 

 (6)

where T the final time step,  is a set of possible options.

Formula (6) will be relevant in situations where it is

possible to determine the final time step. In this case, the

agent's interaction with the environment can be

represented as a finite sequence. Such a sequence is

called an episode, and each episode ends with a terminal

state. After reaching the terminal state, the "agent -

environment" system returns to its initial state. The

Action at

Environment Agent

State st+1

Reward signal rt+1

Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052

52

sequence of episodes constitutes tasks. In such tasks, it is

necessary to distinguish the set of all states S from the

terminal state S+.

Now let's move on to continuous tasks. In such

tasks, the agent's interaction with the environment cannot

be represented as a sequence of episodes. Therefore, it is

impossible to fix the final moment of time, that is, there

is no terminal state.

Since for continuous tasks, the final time step

T = ∞, then the concept of discounting is introduced. In

this case, the present reward is of greater value to the

agent than the future reward. For this purpose, the drive

factor is introduced (discount rate) γ  [0; 1], which

determines the present value of future rewards. Usually,

the value of the future reward after k time steps decreases

(from the current one) by
1k− .

Thus, instead of maximizing the sum of all rewards

(6) of continuous tasks, the agent maximizes the sum of

the given rewards it will receive in the future:

() ()  *

1

max max , 0;1 .i t
i

i t

R R t r t


−

= +

= = 
 

  (7)

When γ = 1 from (7) formula (6) with the sum of an

infinite series is obtained. When γ = 0 formula (7) is

simplified only to the nearest reward:

 ()*
1max ,tR r t+=


 (8)

that is, the agent is only interested in maximizing the nearest

reward. In this case, the goal of the agent is to choose an

action ta in such a way as to maximize ()1tr t+ .

By seeking to maximize only immediate rewards,

the agent limits its influence on future rewards. This leads

to a decrease in the overall benefit. As the guidance

coefficient γ increases (approaching 1), the agent

becomes more far-sighted and the importance of future

rewards increases.

1.4. Determining the value of an action. The value

of a particular action is defined as the sum total of all

rewards that the agent can receive in the future starting

from that action. Let's determine the actual value of

action a as ()W a . The expected value of this action at

the time step t is denoted as ()tW a . In the case of

choosing action a until the moment t is equal ak times,

we will receive a sequence of rewards 1r , 2r , ..., kr .

Then the value of action a can be estimated as follows:

()

()
1

0, 0;

1
, 0.

a

t a

k

t i a
a i

W a if k

W a r if k
k

=

 = =



= 



 (9)

When ak → () ()*tW a W a→ .

For each type of tasks, it is possible to determine the

benefit value separately.

But if, after the last state in the final episode, we add

an infinite number of states that will give zero reward,

then we can enter an absorbing state, from which the

transition will be possible only into itself (Fig. 2).

Fig. 2. Absorbing state

The absorbing state allows you to get the same

benefit as when summing an infinite sequence. Thus, in

the general case, the benefit is described by the equation

 () 1

0

,
T

k
t k

k

R t r + +

=

=   (10)

where can be either T = ∞, або γ = 1 (but not at the same

time).

1.4.1. ІоТ stationary environment. In a stationary

environment, the reaction of the environment to the

actions of the agent does not change over time [35].

Therefore, the assessment of the reward of each action

does not change over time.

When the number of time steps increases, the

memory requirements of the computer system also

increase, because it is necessary to accumulate all the

reward values for the entire time of operation. Let's

determine for action a the average value of its k rewards

as kW . Then:

1

1 1
1 1

1 1
.

1 1

k k

k i k i
i i

W r r r
k k

+

+ +
= =

 
= = + 

 + +  
  (11)

But

1 1

1
.

k k

k i i k
i i

W r r k W
k

= =

=  =   (12)

Put (12) in (11):

()

()()

()() ()

1 1

1

1 1

1

1

1 1

1 1

1
1 .

1

k k k

k k k k

k k k k k k

W r k W
k

r k W W W
k k

r W k W W r W
k

+ +

+

+ +

= +  =
+

= +  + − = 
+ +

 + + − = + −
+

We will make a replacement:

 ()1
1 1

1 1
k

a

a a a
k k

+= = =
+ +

. (13)

Then

 ()1 1k k k kW W a r W+ += + − , (14)

where а is step length value.

This recursive formula can be written in the form of

a rule:

New rating ← Previous rating +
+ Step length × Error,

where

Error ← [Target – Old assessment].

The error decreases with each step closer to the

target, and the “Step Length” parameter changes with

each time step.

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4

53

1.4.2. ІоТ non-stationary environment. In tasks

performed in a non-stationary IoT environment, feedback

received from the environment at some point in time

better reflects the current situation than feedback

received at some earlier time period.

From formula (13), we can see that the value of step

a depends on the number of times when some action was

selected.

If we set a constant value of step a, then it becomes

possible to take into account the non-stationarity of the

environment. As a result, we will get a weighted average

value kW :

()

() ()

()() ()

() ()

() ()

() ()

1 1 1 1

1

2 1 2 1

2
2 1

1
1 0

0

1

1 1

1

1 1

1 1

1 1 .

k k k k k k k

k k k

k k k k k

k k k

k k

k
k k i

i
i

W W a r W W a r a W

a r а W a r а

W a r W a r а а r

а W a r а а r

а a r а W

а W a а r

− − − −

−

− − − −

− −

−

−

=

= + − = +  −  =

=  + − =  + − 

 + − =  + −   +

+ − = =  + −   +

+ + −  + − =

= − +  − 

(15)

The value obtained in (15) is a weighted average,

because the following equality holds for the sum of

weights:

 () ()
1

1 1 1.
k

k k i

i

а a а
−

=

− +  − = (16)

Then, the weight value ()1
k i

a а
−

 − for reward ir

depends on the size k − i, that is, from how many steps

ago this reward was received. Since the size (1 − а) < 1,

then the weight of the reward ir decreases exponentially

with the increase in the number of rewards received.

To ensure sequence convergence, the following

conditions must be met:

 ()
1

;
k

k
i

a а

=

 =  (17)

 ()()
2

1

.
k

k
i

a а

=

  (18)

Condition (17) guarantees that the steps have a

sufficiently large value so that the learning process is not

affected by random fluctuations. Condition (18)

guarantees that the steps are small enough to ensure

convergence.

Non-stationary tasks also have a significant

difference from stationary ones. In them, the initial

evaluation of the value of the action does not influence

the work results.

1.5. A strategy for choosing the agent's next action.

The agent chooses the next action based on the evaluation

of the value of the action, using the following behavioral

strategies:

– greedy strategy;

– ε - greedy strategy;

– random selection.

The greedy strategy is the simplest variant of the

agent's behavior: the agent each time chooses the action

that has the greatest impact value assessment.

Therefore, at some time step t, such an action should

be chosen *a , when

 () ()* max .t t
a

W a W a= (19)

In this strategy, the agent never tries to explore the

environment in order to discover some action that would

yield a higher reward. In a stationary environment, when

all reward values are known, this behavior is the most

correct, but for a non-stationary environment, this

behavior will not always give the best result.

The opposite of a greedy strategy is a strategy based

on random selection, where the agent chooses a random

value at each step. In this case, regardless of the obtained

result, the agent always explores the environment. But

the agent never uses the received information to plan its

future behavior. Random behavior can result in a non-

stationary environment, when the parameters of the

environment change randomly. For a non-stationary

environment, the most acceptable option is ε - a greedy

strategy, where a variable coefficient ε is introduced,

specifying the possibility of choosing an action. With

such a strategy, the agent alternately chooses either a

greedy action or a non-greedy one. This mode does not

allow you to get the maximum reward when performing

the current action, but it can lead to an increase in the

total reward over a long time, that is, lead to the

maximization of the amount of rewards.

The ε - greedy strategy can be implemented using

the Multi-armed bandit algorithm, where the

environment is represented as a slot machine that has not

one but many levers with different rewards. In the

algorithm, the agent performs some specific action. A

reward is obtained from the set A of all actions available

to the agent r ∈ R.

To find a suboptimal solution in the algorithm, it is

necessary to ensure a balance between the research

process and the exploitation process. The MAB

algorithm uses greedy and ε -greedy strategies.

With a greedy strategy, the algorithm selects only

the action with the largest known reward. This gives the

maximum reward at this point in time, but does not take

into account that the possible rewards for other actions

may increase over time. With an ε-greedy strategy, the

coefficient ε is in the range ε ∈ [0; 1] and regulates the

strategy of the agent's behavior - to act completely

"greedy" or to periodically randomly choose other

actions with probability ε. At ε = 0 strategy becomes

greedy; at ε = 1 the algorithm becomes random.

Taking into account the above, the greedy algorithm

can be used to assign tasks to IoT computing nodes,

where the distributing node acts as the agent, and the

computing nodes that perform the received tasks and

return the result to the agent act as the environment.

2. The computing node model

IoT devices are represented by a variety of

technologies and components and their constituents.

However, a general description can be made for IoT

Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052

54

devices, which will provide an abstraction from the

implementation features and remove possible restrictions

on interaction in an IoT distributed system (IoT DS). The

general description is based on the identification of

general characteristics of IoT devices, namely:

– data on the state of IoT devices: computing power,

RAM size, processor frequency, response time, service

time, amount of energy consumed, etc.;

– data on the data transmission network of the

environment where the IoT device operates: channel

capacity, loss indicators, data transfer rate, etc.;

– data on the location of the IoT device and its

movement: positioning in space, distance to other IoT

computing nodes, etc. Based on these characteristics, it is

possible to determine the ability of a computing node to

assign a task to it in the IoT DS, taking into account the

reinforcement machine learning model in the form:

 Reward = (State, Location, Network), (20)

where State is the state data, Network is the network,

Location is the position and movement.

The computing nodes of the IOT DS act as the

environment. It should form a reaction by means of a

reward signal - Reward.

Accordingly, each computing node in the IoT DS

forms the Reward parameter. This parameter absorbs all

the characteristics, dependent and independent of the

computing node, and is calculated by the computing node

as their final integral characteristic. Thus, the parameter

reflects the ability and readiness to assign a task to the

computing node of the IoT DS.

However, since the types of tasks can change, the

type of task solved by the computing node should also be

taken into account. Then the model of the computing

node is defined as:

 D = (ID, Label, Reward), (21)

where D – IoT device, ID – node identifier (unique

number); Label – type of solved task; Reward – the value

of the reward signal.

This model of the IoT DS computing node describes

the readiness of a specific computing node to accept the

next task.

Let's consider how to define the reward function.

Consider a separate computing node as an element of the

environment. Then it can be argued that the value of the

reward is determined by the ability of the node to

successfully perform the task received. The success of

the task depends on a number of parameters of both the

node itself and the parameters of other IoT DS elements.

Parameters dependent on the computing node are as

follows [36]:

– frequency and operating modes of the processor;

– amount and speed of RAM;

– PZP speed (if used);

– architectural solutions of IoT devices;

– IoT device software (operating system, presence or

absence of additional software, etc.);

– number of sensors, methods and sequence of their

survey;

– availability of additional peripheral equipment and

its parameters.

The parameters that do not depend on the compute

node are as follows:

– the width of the communication channel;

– bandwidth of the communication channel;

– the presence of obstacles in the communication

channel;

– used network protocols;

– parameters of the distribution node;

– remoteness of IoT devices from IoT DS elements;

– the presence of the IoT device in a static or dynamic

state.

The above lists of parameters are quite complete,

but not exhaustive. Thus, the reward is an integral

characteristic of the node, which must take into account

all of the above, as well as, if necessary, other

parameters).

In general, these characteristics are summarized in

the Reward parameter as follows:

1

,
n

i i
i

Reward p

=

=   (22)

where ip – value of the i-th parameter; i – weighting

factor; n – the number of parameters affecting the value

of the reward signal.

It is often impossible to determine the number of

parameters and the degree of their influence on the

overall value of the reward.

It is also necessary to take into account that the

parameters change at every moment of time. In such

cases, the reward function is proposed to be used as a

function of the task's cycle time (RTTt). That is, it is

possible to define the task cycle time as the time spent

sending the task to the computing node, the time to

execute the task on the computing node, and the time to

receive the response from the computing node. Thus, the

circulation time can be calculated using the formula:

 ,RTT answer sendingt t t= − (23)

where answert – the time of receiving a response from the

computing node; sendingt – the time of sending the task

by the distributing node.

Then the reward will be defined as a function:

 () ,RTTReward Reward t= (24)

which allows you to take into account all the parameters

of the DS IoT that can affect the success of the task. At

the same time, the computing node can also send its

reward value, which can be used by the distributing node

to calculate the total reward value, taking into account the

circulation time.

3. Algorithm for distribution

of tasks by computing nodes

3.1. The main algorithm. Based on the agent's

work with the environment, we will develop an algorithm

for implementing the distribution of tasks by computing

nodes.

Consider a multi-agent system, where DS IoT

elements can be represented as a set of interacting agents.

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4

55

But DS IoT is implemented on devices with limited

computing capabilities and with communication

channels of low bandwidth. Therefore, it is proposed to

implement the task distribution algorithm on the

distribution node.

In addition, during the exploitation phase, the

distributing node receives a response from the computing

node, which also contains the value of the current reward

along with the result.

This approach allows to reduce the amount of data

transmitted by the network due to the elimination of

additional polling of computing nodes.

Let's consider the task assignment algorithm step by

step.

Initialization stage.

Step 0. The task sequence is initialized by the

distributing node in IoT DS.

Research stage.

Step 1. All computing nodes receive a request from

the distributing node to receive the integral

characteristics of Reward from them. Each value is the

value of the current reward signal for each computing

node and is constructed based on its characteristics.

Step 2. The integrated characteristics of Reward

obtained by the distributing node are transformed into

probability values. These probability values are used

when selecting a computing node for task assignment.

Operation stage.

Step 3. The distribution node sends the task to the

computing nodes. At the same time, it tries to get the

maximum value of the reward signal and maximize the

total reward over a long period of time.

Step 4. Upon receiving the completed tasks, the

distributing node recalculates the value of the reward

signals (since the completed tasks also transmit

information about the current state of the IoT DS and

computing nodes).

Step 5. If there are no outstanding tasks in the

sequence of tasks, then the algorithm stops, otherwise it

goes to step 3 (for the steady state) or to step 1 (for the

non-stationary state).

The general scheme of interaction, according to the

above algorithm, looks as shown in Fig. 3.

Fig. 3. General scheme of interaction of IoT DS components

in the task assignment algorithm

3.2. Modification of the algorithm. Usually, in IoT

systems, the distribution node is located in the cloud.

Computing nodes that make up a distributed system for

performing simple operational tasks are chosen from

devices of fog and boundary layers. These devices sit

next to IoT sensors. But sometimes a significant

percentage of the time from the request for task

processing to receiving the result is spent exchanging

with the cloud, which is unacceptable when performing

operational tasks. Based on this, a modification of the

main algorithm is proposed. The meaning of the

modification is to reduce the number of requests to the

cloud.

Therefore, it is necessary to organize a check of the

ability of computing nodes to assign tasks with minimal

participation of the distribution node. For this purpose, it

is proposed to define clusters of devices with similar

characteristics.

Clustering methods can be divided into two main

types: hard and soft. The first type of methods, unlike the

second, has clear boundaries, which is unacceptable for

dynamic computing nodes. The principle of soft

clustering assumes that a computer node can belong to

one or several clusters at the same time. The application

of this principle to the computing nodes of IoT DS W is

justified, since the characteristics of IoT devices usually

change.

Therefore, one device can fall into several clusters

simultaneously based on its variable characteristics.

Among the existing algorithms for performing

clustering, the Fuzzy C-Means (FCM) clustering

algorithm stands out, which is based on data on the

similarity of sets and is a soft clustering algorithm.

Clustering of computing nodes was performed using this

algorithm under the following conditions:

– the number of clusters is finite and constant;

– the centroid of each cluster is calculated according

to the following formulas:

()
()2/ 1

1

1
,jk n m

jk ik
i

p

d d
−

=

=



 (25)

1 1

,
n n

m m
k jk j jk

j j

q p w p

= =

=  (26)

де i, j – device numbers ІоТ, , 1,i j n ; jw – coordinate

of the j-th device ІоТ; k – cluster number; jkd – the

distance from the IoT device to the centroid according to

the Euclidean metric; m – the fuzziness index, which is a

parameter of the fuzziness region, usually m = 2; jkp –

the calculated probability of the j-th IoT device belonging

to the k-th cluster; kq – the current coordinate of the

centroid of the k-th cluster.

The algorithm allows you to determine the degree

of belonging of each IoT device to each cluster.

In this case, the computer node that has the

sending task acts as an agent. With the help of the

developed algorithm, it searches for the optimal node for

Agent

D
is

tr
ib

u
ti

n
g

 n
o

d
e

(C
lo

u
d

)

Environment

IoT

device

IoT

device

IoT

device

IoT

device

IoT

device

Io
T

 s
en

so
rs

Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052

56

assigning the task and becomes the distributing node

itself. All other computing nodes relative to it are the

external environment.

The modified version of the developed algorithm

consists of a sequence of the following steps:

Initialization stage.

Step 0. Initialization of the sequence of tasks and

initial values in DS IoT.

Research stage.

Step 1. The distributing node polls all computing

nodes in DS IoT and receives from each the Reward

value generated by the computing node according to the

computing node model. The resulting Reward values are

normalized and transformed by the distributing node.

Step 2. Based on the value of Reward, each

computing node is mapped to a distributing node of a

cluster or several clusters using the Fuzzy C-Means

algorithm. The distribution node stores the distribution of

all computing nodes by cluster. In case of changes, the

cluster sets on the distribution node are updated.

However, all computing nodes located within each

cluster are notified of the presence of other nodes in this

cluster.

Step 3. To obtain data about the result of clustering,

each computing node sends a request to the distributing

node. In return, it receives a record of its cluster(s) and

the nodes in it (or in them). If one of the characteristics

of the node changes, the transition to Step 2 is carried out.

The stage of exploitation.

Step 4. If there is a computing task to be assigned,

the computing node assumes the role of the distributing

node and chooses another computing node within the

cluster. In the case of a node with a task belonging to

several clusters at the same time, priority is given to the

nodes of the cluster that have the highest degree of

belonging to this cluster. Thus, the computing node for

some time becomes the distributing node that assigns

tasks. The further sequence of steps is performed

according to the main task assignment algorithm.

Step 5. Sending reward values by computing nodes

to the distribution node within the cluster.

Step 6. Calculation of the optimal node for task

assignment. If there is no possibility to assign a task, the

transition to Step 2 takes place.

Step 7. Assignment of the task to the node.

The cluster selection architecture is shown in Fig. 4.

4. Discussion of results

The features of the main task assignment algorithm

remain the same as before the modifications made, since

these modifications do not affect the target task

assignment model. The changes only allow redefining the

participants in the task assignment process. Thanks to

this, the possibilities for applicants for the role of a

distribution node in DS IoT are expanding. Thus, the

state of DS IoT computing nodes can be either static or

dynamic. So, the advantage of the task allocation

algorithm is its versatility, because the same algorithm

can work with both static and dynamic environments.

Using the coefficient ε, you can change the behavior of

the algorithm and better adjust it to the computing

environment with which the distribution node works.

Fig. 4. The general diagram

of the interaction of the DS IoT components

in the modified task assignment algorithm

If the state of the computing nodes does not change,

then it makes no sense to conduct additional checks for

the variability of the environment. Then the value of the

parameter ε should approach 0, but not reach it. Since the

probability of choosing each computing node is not equal

to zero, the situation will not arise that the algorithm

allocates tasks only to the nodes that have the highest

value of the reward signal.

In the case of significant variability of the

computing environment, it makes sense to make the

value of the parameter ε as close as possible to 1. This

allows you to constantly explore new computing nodes,

since their parameters could improve in a short time.

Setting the parameter ε close to 1 in the case of a static

environment does not significantly affect the task

allocation process. Setting the parameter ε close to 0 for

a dynamic environment can have catastrophic

consequences for the computational process, even to the

point of its complete impossibility.

A situation is possible when the state of the data

transmission network and computing nodes is unknown.

Then you can select the ε parameter during DS IoT

operation.

It is necessary to assume from the beginning that the

system is dynamic with significant changes in

parameters, that is, ε will be close to unity. Then, in the

process of executing the work, the distributing node can

accumulate statistics about the changes in the reward

signal of each computing node.

Accordingly, it is necessary to reduce the value of

the parameter ε until the performance of the system

reaches its maximum value.

Next, we will investigate the behavior of the

algorithm in different states. In this study, we will

assume:

– one distribution node in DS IoT;

– only computing nodes in DS IoT are available to

the distributing node in DS IoT, additional actions are not

entered in DS IoT;

– during the operation of the algorithm on all

iterations, the distributing node does not change;

– the number of computing nodes in DS IoT is

constant and does not change over time;

Agent

D
is

tr
ib

u
ti

n
g

 n
o

d
e

(C
lo

u
d

)

Environment

 Cluster N

IoT

device

IoT

device

IoT

device

IoT

device

IoT

device

Io
T

 s
en

so
rs

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4

57

– the reward signal of computing nodes in DS IoT

may change;

The following options were considered:

V0 – static;

Vj – d = 0.1 + 0.2  j, where d – the probability of

changing the characteristics of the computing node,

j  {0, 1, 2. 3, 4}.

The simulation results are shown in table. 1, where

the average execution time of a batch of consecutive

operational transactions is given in seconds.

Table 1 – Execution time of a batch operational

transactions

 V

ε
V0 V1 V2 V3 V4 V5

0.01 48 50 47 52 94 183

0.1 49 49 46 54 77 92

0.2 54 45 51 47 72 85

0.3 57 48 42 41 61 82

0.4 56 46 46 42 44 62

0.5 62 52 51 39 46 44

0.6 63 50 53 41 39 48

0.7 71 56 50 44 34 33

0.8 66 59 46 40 36 30

0.9 72 65 51 41 35 31

0.99 75 66 48 45 41 28

As we can see, the simulation results confirmed the

conclusions made on the modified algorithm for

distributing tasks across computing nodes.

Conclusions

Based on the analysis of the IoT objects and

distributed computing systems, a conclusion was made

about the possibility of constructing a distributed

information system based on the IoT devices.

Formalization of the task distribution process allows us

to approach the consideration of a computational

problem in the form of a graph.

This graph is transformed into a sequence of tasks

sent to the computing nodes of the IoT distributed

information system.

A model of a computing node was formed, which

made it possible to specify a separate computing node,

taking into account its location and functioning

features.

Particular attention was paid to the value of the

reward signal that the computing nodes will send to the

distributing node to implement the task distribution

algorithm.

The reward signal is an integral characteristic of the

computing node and can depend on many parameters of

the DS IoT.

 It is proposed to use the time from sending the task

by the distributing node to receiving the results from the

computing node to calculate the reward.

A method for distributing tasks among the nodes of

a distributed information system was developed. The

method allows taking into account the features of each

computing node and the state of communication channels

between them.

Based on the analysis of a stationary or non-

stationary environment and changing the greedy strategy

of one agent and a set of actions, it became possible to

build an algorithm for distributing tasks.

Acknowledgements

The study was funded by the National Research

Foundation of Ukraine in the framework of the research

project 2022.01/0017 on the topic “Development of

methodological and instrumental support for Agile

transformation of the reconstruction processes of medical

institutions of Ukraine to overcome public health

disorders in the war and post-war periods”.

REFERENCES

1. Fabre, W., Haroun, K., Lorrain, V., Lepecq, M. and Sicard, G. (2024), “From Near-Sensor to In-Sensor: A State-of-the-Art

Review of Embedded AI Vision Systems”, Sensors, vol. 24(16), 5446, doi: https://doi.org/10.3390/s24165446

2. Schulz, A.S. (2023), “User Interactions with Internet of Things (IoT) Devices in Shared Domestic Spaces”, ACM International

Conference Proceeding Series, pp. 577–579. doi: https://doi.org/10.1145/3626705.3632615

3. Sharma, A. and Singh, N. (2022), “Sensors, Embedded Systems, and IoT Components”, Mathematical Modeling for Intelligent

Systems: Theory, Methods, and Simulation, pp. 1–15, doi: 10.1201/9781003291916-1

4. Pardo, C., Wei, R. and Ivens, B.S. (2022), “Integrating the business networks and internet of things perspectives: A system of

systems (SoS) approach for industrial markets”, Industrial Marketing Management, vol. 104, pp. 258–275, doi:

https://doi.org/10.1016/j.indmarman.2022.04.012

5. Dotsenko, N., Chumachenko, I., Galkin, A., Kuchuk, H. and Chumachenko, D. (2023), “Modeling the Transformation of

Configuration Management Processes in a Multi-Project Environment”, Sustainability (Switzerland), Vol. 15(19), 14308, doi:

https://doi.org/10.3390/su151914308

6. Krishnan, S. and Ilmudeen, A. (2023), “Internet of Medical Things in Smart Healthcare: Post-COVID-19 Pandemic Scenario”,

Imprint Apple Academic Press, New York, doi: http://dx.doi.org/10.1201/9781003369035

7. Zhang, Z. (2023), “A computing allocation strategy for Internet of things’ resources based on edge computing”, International

Journal of Distributed Sensor Networks, vol. 17(12), doi: https://doi.org/10.1177/15501477211064800

8. Chalapathi, G.S.S., Chamola, V., Vaish, A. and Buyya, R. (2022), “Industrial internet of things (Iiot) applications of edge and

fog computing: A review and future directions”, Advances in Information Security, vol. 83, pp. 293–325, doi:

https://doi.org/10.1007/978-3-030-57328-7_12

https://www.scopus.com/sourceid/130124?origin=resultslist
https://doi.org/10.3390/s24165446
https://doi.org/10.1145/3626705.3632615
https://www.scopus.com/authid/detail.uri?authorId=16231294500
https://www.scopus.com/authid/detail.uri?authorId=57208421532
https://www.scopus.com/authid/detail.uri?authorId=12793010000
https://www.scopus.com/sourceid/22792?origin=resultslist
https://doi.org/10.1016/j.indmarman.2022.04.012
https://www.scopus.com/authid/detail.uri?authorId=57204939770
https://www.scopus.com/authid/detail.uri?authorId=57194419994
https://www.scopus.com/authid/detail.uri?authorId=57194199918
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=58194260300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85174185888&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85174185888&origin=resultslist
https://www.scopus.com/sourceid/21100240100?origin=resultslist
https://doi.org/10.3390/su151914308
https://www.scopus.com/authid/detail.uri?authorId=56973307200
http://dx.doi.org/10.1201/9781003369035
https://www.scopus.com/authid/detail.uri?authorId=57385934500
https://www.scopus.com/sourceid/5800173381?origin=resultslist
https://www.scopus.com/sourceid/5800173381?origin=resultslist
https://doi.org/10.1177/15501477211064800
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57193650827&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55427784900&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57219686998&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57225683636&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85101007059&origin=resultslist&sort=plf-f&src=s&st1=fog+computing+IIoT&st2=&sid=d690f9d1ed71016328c6bfb22f1888db&sot=b&sdt=b&sl=25&s=TITLE%28fog+computing+IIoT%29&relpos=2&citeCnt=14&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85101007059&origin=resultslist&sort=plf-f&src=s&st1=fog+computing+IIoT&st2=&sid=d690f9d1ed71016328c6bfb22f1888db&sot=b&sdt=b&sl=25&s=TITLE%28fog+computing+IIoT%29&relpos=2&citeCnt=14&searchTerm=
https://www.scopus.com/sourceid/21100254279?origin=resultslist
https://doi.org/10.1007/978-3-030-57328-7_12

Advanced Information Systems. 2024. Vol. 8, No. 4 ISSN 2522-9052

58

9. Fatlawi, A., Al Dujaili, M.J. (2023), Integrating the Internet of Things (IoT) and Cloud Computing Challenges and Solutions:

A Review. AIP Conference Proceedings, 2977(1), 020067. doi: http://dx.doi.org/10.1063/5.0181842

10. Qayyum, T., Trabelsi, Z., Waqar Malik, A. and Hayawi, K. (2022), “Mobility-aware hierarchical fog computing framework

for Industrial Internet of Things”, Journal of Cloud Computing, vol. 11(1), doi: https://doi.org/10.1186/s13677-022-00345-y

11. Kuchuk, H. and Malokhvii, E. (2024), “Integration of IOT with Cloud, Fog, and Edge Computing: A Review”, Advanced

Information Systems, vol. 8(2), pp. 65–78, doi: https://doi.org/10.20998/2522-9052.2024.2.08

12. Kuchuk, N., Mozhaiev, O., Semenov, S., Haichenko, A., Kuchuk, H., Tiulieniev, S., Mozhaiev, M., Davydov, V., Brusakova,

O. and Gnusov, Y. (2023). Devising a method for balancing the load on a territorially distributed foggy environment. Eastern-

European Journal of Enterprise Technologies, vol. 1(4 (121), pp. 48–55, doi: https://doi.org/10.15587/1729-4061.2023.274177

13. Hunko, M., Tkachov, V., Kuchuk, H. and Kovalenko, A. (2023), Advantages of Fog Computing: A Comparative Analysis with

Cloud Computing for Enhanced Edge Computing Capabilities, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPI

Week 2023 – Conf. Proc, 02-06 October 2023, Code 194480, doi: https://doi.org/10.1109/KhPIWeek61412.2023.10312948

14. Lu, S., Wu, J., Wang, N., Duan, Y., Liu, H., Zhang, J. and Fang, J. (2023), “Resource provisioning in collaborative fog

computing for multiple delay-sensitive users”, Software – Practice and Experience, vol. 53, is. 2, pp. 243–262, doi:

https://doi.org/10.1002/spe.3000

15. Kuchuk, G., Nechausov, S. and Kharchenko, V. (2015), “Two-stage optimization of resource allocation for hybrid cloud data

store”, Int. Conf. on Information and Digital Techn, Zilina, pp. 266–271, doi: http://dx.doi.org/10.1109/DT.2015.7222982

16. Petrovska, I. and Kuchuk, H. (2023), “Adaptive resource allocation method for data processing and security in cloud

environment”, Advanced Information Systems, vol. 7, no. 3, pp. 67–73, doi: https://doi.org/10.20998/2522-9052.2023.3.10

17. Li, G., Liu, Y., Wu, J., Lin, D. and Zhao, Sh. (2019), “Methods of Resource Scheduling Based on Optimized Fuzzy Clustering

in Fog Computing”, Sensors, MDPI, vol. 19(9), doi: https://doi.org/10.3390/s19092122

18. Jamil, B. Shojafar, M., Ahmed, I., Ullah, A., Munir, K. and Ijaz, H. (2020), “A job scheduling algorithm for delay and

performance optimization in fog computing”, Concurrency and Computation: Practice and Experience, vol. 32(7), doi:

https://doi.org/10.1002/cpe.5581

19. Gomathi, B., Saravana Balaji, B., Krishna Kumar, V., Abouhawwash, M., Aljahdali, S., Masud, M. and Kuchuk, N. (2022),

“Multi-Objective Optimization of Energy Aware Virtual Machine Placement in Cloud Data Center”, Intelligent Automation

and Soft Computing, Vol. 33(3), pp. 1771–1785, doi: http://dx.doi.org/10.32604/iasc.2022.024052

20. Proietti Mattia, G. and Beraldi, R. (2023), “P2PFaaS: A framework for FaaS peer-to-peer scheduling and load balancing in Fog

and Edge computing”, SoftwareX, vol. 21, doi: https://doi.org/10.1016/j.softx.2022.101290

21. Kuchuk, N., Kovalenko, A., Ruban, I., Shyshatskyi, A., Zakovorotnyi, O. and Sheviakov, I. (2023), “Traffic Modeling for the

Industrial Internet of NanoThings”, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPI Week 2023 - Conference

Proceedings, 2023, doi: 194480. http://dx.doi.org/10.1109/KhPIWeek61412.2023.10312856

22. Kuchuk, H., Kalinin Ye., Dotsenko N., Chumachenko I. and Pakhomov Yu. (2024), “Decomposition of integrated high-density

IoT Data Flow”, Advanced Information Systems, vol. 8, no. 3, pp. 77–84, doi: https://doi.org/10.20998/2522-9052.2024.3.09

23. Attar, H., Khosravi, M.R., Igorovich, S.S., Georgievan, K.N. and Alhihi, M. (2020), “Review and performance evaluation of

FIFO, PQ, CQ, FQ, and WFQ algorithms in multimedia wireless sensor networks”, International Journal of Distributed Sensor

Networks, vol. 16(6), doi: https://doi.org/10.1177/1550147720913233

24. Sharma, Sh. Saini H. (2019), “A novel four-tier architecture for delay aware scheduling and load balancing in fog environment”,

Sustainable Computing: Informatics and Systems, vol. 24, doi: https://doi.org/10.1016/j.suscom.2019.100355

25. Liu, L., Chen, H., Xu, Z. (2022). SPMOO: A Multi-Objective Offloading Algorithm for Dependent Tasks in IoT Cloud-Edge-

End Collaboration. Information, 13, 75. doi: https://doi.org/10.3390/info13020075

26. Malik, U.M., Javed, M.A., Frnda, J., Rozhon, J. and Khan, W.U. (2022), “Efficient Matching-Based Parallel Task Offloading

in IoT Networks”, Sensors, vol. 22, doi: https://doi.org/10.3390/s22186906

27. Kuchuk, G.A., Akimova, Yu.A. and Klimenko, L.A. (2000), “Method of optimal allocation of relational tables”, Engineering

Simulation, 2000, vol. 17(5), pp. 681–689, available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-

0034512103&origin=resultslist&sort=plf-f#metrics

28. Ghenai, A., Kabouche, Y. and Dahmani, W. (2018), “Multi-user dynamic scheduling-based resource management for Internet

of Things applications”, 2018 International Conference on Internet of Things, Embedded Systems and Communications

(IINTEC), doi: https://doi.org/10.1109/IINTEC.2018.8695308

29. Wei, J.-Y. and Wu, J.-J. (2023), “Resource Allocation Algorithm in Industrial Internet of Things Based on Edge Computing”,

Journal of Northeastern University, vol. 44(8). doi: https://doi.org/10.12068/j.issn.1005-3026.2023.08.002

30. Yaloveha, V., Podorozhniak, A. and Kuchuk, H. (2022), “Convolutional neural network hyperparameter optimization applied

to land cover classification”, Radioelectronic and Computer Systems, vol. 1(2022), pp. 115–128, doi:

https://doi.org/10.32620/reks.2022.1.09

31. Zhang, Z. (2023), “A computing allocation strategy for Internet of things’ resources based on edge computing”, International

Journal of Distributed Sensor Networks, vol. 17(12), doi: https://doi.org/10.1177/15501477211064800

32. Petrovska, I., Kuchuk, H., Kuchuk, N., Mozhaiev, O., Pochebut, M. and Onishchenko, Yu. (2023), “Sequential Series-Based

Prediction Model in Adaptive Cloud Resource Allocation for Data Processing and Security”, 2023 13th International

Conference on Dependable Systems, Services and Technologies, DESSERT 2023, 13–15 October, Athens, Greece, code

197136, doi: https://doi.org/10.1109/DESSERT61349.2023.10416496

33. Kalinin, Y., Kozhushko, A., Rebrov, O. and Zakovorotniy, A. (2022), “Characteristics of Rational Classifications in Game-

Theoretic Algorithms of Pattern Recognition for Unmanned Vehicles”, 2022 IEEE 3rd KhPI Week on Advanced Technology

(KhPIWeek), Kharkiv, Ukraine, pp. 1-5, doi: https://doi.org/10.1109/KhPIWeek57572.2022.9916454

https://www.scopus.com/authid/detail.uri?authorId=57205503041
https://www.scopus.com/authid/detail.uri?authorId=57214882041
https://www.scopus.com/sourceid/26916?origin=resultslist
https://doi.org/10.1186/s13677-022-00345-y
https://doi.org/10.20998/2522-9052.2024.2.08
https://doi.org/10.15587/1729-4061.2023.274177
https://www.scopus.com/authid/detail.uri?authorId=57215835902
https://www.scopus.com/authid/detail.uri?authorId=56485859400
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=56423229200
https://www.scopus.com/record/display.uri?eid=2-s2.0-85179513594&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85179513594&origin=resultslist
https://doi.org/10.1109/KhPIWeek61412.2023.10312948
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56236856800&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55837752300&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56565829500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55582044700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=35219922800&zone=
https://www.scopus.com/sourceid/20007
https://doi.org/10.1002/spe.3000
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57057781300&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=56974534500&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=22034616000&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84954320080&origin=resultslist&sort=plf-f&src=s&sid=2e8aa855390d321478daae4a0c606142&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857057781300%29&relpos=5&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84954320080&origin=resultslist&sort=plf-f&src=s&sid=2e8aa855390d321478daae4a0c606142&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857057781300%29&relpos=5&citeCnt=1&searchTerm=
http://dx.doi.org/10.1109/DT.2015.7222982
https://doi.org/10.20998/2522-9052.2023.3.10
https://sciprofiles.com/profile/669680
https://sciprofiles.com/profile/author/Y1p1bkFzRUREREEzbmVxVGEzZ2d5SnZWMWVRc285RTFnUUdzUUtYMkZpST0=
https://sciprofiles.com/profile/669705
https://sciprofiles.com/profile/author/NkhHZ1FFTE0wMnRsdHEzVklYK3U4V2VUR0QyRUR0ZFZFM3hIdXNreWtRYz0=
https://sciprofiles.com/profile/author/SVFhcFE5SG1Wd1dHb3E0VHVBbDNDYTJ0RmF5UFk4OXUxamNCT0dPM3BuUT0=
https://doi.org/10.3390/s19092122
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Jamil%2C+Bushra
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Shojafar%2C+Mohammad
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Ahmed%2C+Israr
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Ullah%2C+Atta
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Munir%2C+Kashif
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Ijaz%2C+Humaira
https://doi.org/10.1002/cpe.5581
https://www.scopus.com/authid/detail.uri?authorId=57411055700
https://www.scopus.com/authid/detail.uri?authorId=57218115919
https://www.scopus.com/authid/detail.uri?authorId=57194092527
https://www.scopus.com/authid/detail.uri?authorId=17338820600
https://www.scopus.com/authid/detail.uri?authorId=57196006131
https://www.scopus.com/record/display.uri?eid=2-s2.0-85127800852&origin=resultslist
https://www.scopus.com/sourceid/25476?origin=resultslist
https://www.scopus.com/sourceid/25476?origin=resultslist
http://dx.doi.org/10.32604/iasc.2022.024052
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57214231538&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701602185&zone=
https://www.scopus.com/sourceid/21100422153
https://doi.org/10.1016/j.softx.2022.101290
https://www.scopus.com/authid/detail.uri?authorId=57196006131
https://www.scopus.com/authid/detail.uri?authorId=56423229200
https://www.scopus.com/authid/detail.uri?authorId=7004018101
https://www.scopus.com/authid/detail.uri?authorId=57201613700
https://www.scopus.com/authid/detail.uri?authorId=58759376800
https://www.scopus.com/record/display.uri?eid=2-s2.0-85179514693&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85179514693&origin=resultslist
http://dx.doi.org/10.1109/KhPIWeek61412.2023.10312856
https://doi.org/10.20998/2522-9052.2024.3.09
https://doi.org/10.1177/1550147720913233
https://www.sciencedirect.com/journal/sustainable-computing-informatics-and-systems
https://www.sciencedirect.com/journal/sustainable-computing-informatics-and-systems/vol/24/suppl/C
https://doi.org/10.1016/j.suscom.2019.100355
https://doi.org/10.3390/info13020075
https://doi.org/10.3390/s22186906
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=6602477018
https://www.scopus.com/authid/detail.uri?authorId=7006351687
https://www.scopus.com/record/display.uri?eid=2-s2.0-0034512103&origin=resultslist
https://www.scopus.com/sourceid/73589?origin=resultslist
https://www.scopus.com/sourceid/73589?origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-0034512103&origin=resultslist&sort=plf-f#metrics
https://www.scopus.com/record/display.uri?eid=2-s2.0-0034512103&origin=resultslist&sort=plf-f#metrics
https://www.researchgate.net/profile/Afifa-Ghenai?_sg%5B0%5D=jAguh72GQAxwh-Gq9nlLiHNnx7OK3tWPob_qnKmqMmIOkpqeiqy8nbc7paM_Js_wDbtNdBg.uHrtIpoO_ncF-N1lXmM4c3M_X8-OyXuLlhdoysaOkqlKLEkHyrXE25iHtnpPya1cevZ7UlWPk_PR4mfrnx0RBQ&_sg%5B1%5D=ggFyAOMxEisYjurHUIP131r2FZcKblQ6iPmnYp0X2A_hUup8MS0STRIxupgXwD-It5oEC3s.Q6LpcWcxNYRnjvq4_AvLvhAAT0UNrPgMmlgZ7n3RK0bGZDgR73oSbrWxcj1Fght72KEoCXOgNxTRYNRf5tVD1g
https://www.researchgate.net/scientific-contributions/Youcef-Kabouche-2156479143?_sg%5B0%5D=jAguh72GQAxwh-Gq9nlLiHNnx7OK3tWPob_qnKmqMmIOkpqeiqy8nbc7paM_Js_wDbtNdBg.uHrtIpoO_ncF-N1lXmM4c3M_X8-OyXuLlhdoysaOkqlKLEkHyrXE25iHtnpPya1cevZ7UlWPk_PR4mfrnx0RBQ&_sg%5B1%5D=ggFyAOMxEisYjurHUIP131r2FZcKblQ6iPmnYp0X2A_hUup8MS0STRIxupgXwD-It5oEC3s.Q6LpcWcxNYRnjvq4_AvLvhAAT0UNrPgMmlgZ7n3RK0bGZDgR73oSbrWxcj1Fght72KEoCXOgNxTRYNRf5tVD1g
https://www.researchgate.net/scientific-contributions/Walid-Dahmani-2156526883?_sg%5B0%5D=jAguh72GQAxwh-Gq9nlLiHNnx7OK3tWPob_qnKmqMmIOkpqeiqy8nbc7paM_Js_wDbtNdBg.uHrtIpoO_ncF-N1lXmM4c3M_X8-OyXuLlhdoysaOkqlKLEkHyrXE25iHtnpPya1cevZ7UlWPk_PR4mfrnx0RBQ&_sg%5B1%5D=ggFyAOMxEisYjurHUIP131r2FZcKblQ6iPmnYp0X2A_hUup8MS0STRIxupgXwD-It5oEC3s.Q6LpcWcxNYRnjvq4_AvLvhAAT0UNrPgMmlgZ7n3RK0bGZDgR73oSbrWxcj1Fght72KEoCXOgNxTRYNRf5tVD1g
https://doi.org/10.1109/IINTEC.2018.8695308
https://www.scopus.com/authid/detail.uri?authorId=58618807700
https://www.scopus.com/authid/detail.uri?authorId=35771905500
Journal%20of%20Northeastern%20University
https://doi.org/10.12068/j.issn.1005-3026.2023.08.002
https://www.scopus.com/authid/detail.uri?authorId=57211756298
https://www.scopus.com/authid/detail.uri?authorId=57202229410
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85129764831&origin=resultslist&sort=plf-f
https://www.scopus.com/record/display.uri?eid=2-s2.0-85129764831&origin=resultslist&sort=plf-f
https://www.scopus.com/sourceid/21101038702?origin=resultslist
https://doi.org/10.32620/reks.2022.1.09
https://www.scopus.com/authid/detail.uri?authorId=57385934500
https://www.scopus.com/sourceid/5800173381?origin=resultslist
https://www.scopus.com/sourceid/5800173381?origin=resultslist
https://doi.org/10.1177/15501477211064800
https://doi.org/10.1109/DESSERT61349.2023.10416496
https://doi.org/10.1109/KhPIWeek57572.2022.9916454

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 4

59

34. Shakya, J., Chopin, M. and Merghem-Boulahia, L. (2024), “D,ynamic Coalition Formation among IoT Service Providers: A

Systematic Exploration of IoT Dynamics Using an Agent-Based Model”, Sensors, vol. 24(11), no. 3471, doi:

https://doi.org/10.3390/s24113471

35. Aburukba, R.O., Landolsi, T. and Omer, D. (2021), “A heuristic scheduling approach for fog-cloud computing environment

with stationary IoT devices”, Journal of Network and Computer Applications, vol. 180, no. 102994, doi:

https://doi.org/10.1016/j.jnca.2021.102994

36. Li, W., Zhao, B., Zhu, L., Yixuan W., Zhong, Q. and Yu, S. (2024), “TCEC: Integrity Protection for Containers by Trusted

Chip on IoT Edge Computing Nodes”, IEEE Sensors Journal, doi: https://doi.org/10.1109/JSEN.2024.3445576

Received (Надійшла) 26.07.2024

Accepted for publication (Прийнята до друку) 16.10.2024

ВІДОМОСТІ ПРО АВТОРІВ/ ABOUT THE AUTHORS

Кучук Ніна Георгіївна – доктор технічних наук, професор, професорка кафедри обчислювальної техніки та

програмування, Національний технічний університет “Харківський політехнічний інститут”, Харків, Україна;

Nina Kuchuk – Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming Department,

National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: nina_kuchuk@ukr.net; ORCID Author ID: http://orcid.org/0000-0002-0784-1465;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57196006131.

Кашкевич Світлана Олександрівна – старший викладач кафедри Інтелектуальних кібернетичних систем, Національний

авіаційний університет, Київ, Україна;

Svitlana Kashkevich – Senior Lecturer of the Department of Intelligent Cybernetic Systems, National Aviation University,

Kyiv, Ukraine;

e-mail: svitlana.kashkevych@npp.nau.edu.ua; ORCID Author ID: https://orcid.org/0000-0002-4448-3839;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=58244269900.

Радченко В'ячеслав Олексійович – старший викладач кафедри Електронних обчислювальних машин, Харківський

національний університет радіоелектроніки, Харків, Україна;

Viacheslav Radchenko – Senior Lecturer of Department of Electronic Computers, Kharkiv National University of Radio

Electronics, Kharkiv, Ukraine;

e-mail: viacheslav.radchenko@nure.ua; ORCID Author ID: https://orcid.org/0000-0001-5782-1932;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57189376280.

Андрусенко Юлія Олександрівна – асистент кафедри Електронних обчислювальних машин, Харківський національний

університет радіоелектроніки, Харків, Україна;

Yuliia Andrusenko – Assistant Professor of Department of Electronic Computers, Kharkiv National University of Radio

Electronics, Kharkiv, Ukraine;

e-mail: yuliia.andrusenko@nure.ua; ORCID Author ID: https://orcid.org/0000-0001-7844-2042.

Кучук Георгій Анатолійович – доктор технічних наук, професор, професор кафедри комп’ютерної інженерії та

програмування, Національний технічний університет “Харківський політехнічний інститут”, Харків, Україна;

Heorhii Kuchuk – Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming

Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: kuchuk56@ukr.net; ORCID Author ID: http://orcid.org/0000-0002-2862-438X;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57057781300.

Застосування периферійних обчислень

при виконанні оперативних транзакцій IoT

Н. Г. Кучук, С. О., Кашкевич, В. О. Радченко, Ю. О. Андрусенко, Г. А. Кучук

Анотація . Актуальність. Обробка інформації ІоТ зазвичай виконується у хмарному середовищі. Але при цьому

виникають проблеми, пов’язані з затримками при передачі даних до хмари. Особливо важливо зменшити ці затримки при

обробці оперативних транзакцій ІоТ. Це можливо здійснити за рахунок перенесення частини обчислень на периферійні

пристрої ІоТ. Але при цьому треба враховувати специфічні особливості вбудованих систем ІоТ. Предметом вивчення в

статті є методи перенесення навантаження на периферійні пристрої ІоТ. Метою статті є зменшення часу виконання

оперативних транзакцій ІоТ за рахунок підвищення ефективності інфраструктури системи шляхом перенесення частини

обчислювального навантаження на периферійні пристрої ІоТ. Отримано такі результати. Зроблено висновок про

можливість побудови розподіленої інформаційної системи на основі пристроїв Інтернету речей. Сформована модель

обчислювального вузла, яка дозволила задавати окремий обчислювальний вузол, враховуючи його особливості

розташування та функціонування. Розроблений метод розподілу завдань по вузлам розподіленої інформаційної системи.

Метод дозволяє враховувати особливості кожного обчислювального вузла і стан каналів зв'язку між ними. Розроблений

алгоритм реалізації методу базується на аналізі стаціонарного або нестаціонарного середовища та зміни -жадібної

стратегії агента. Висновок. Проведено дослідження ефективності запропонованого. Результати моделювання показали,

що запропонований метод дозволяє суттєво зменшити час обробки оперативних транзакцій.

Ключові слова : Інтернет речей; комп’ютерна система; хмарний шар; периферійні обчислення; оперативна

транзакція.

https://doi.org/10.3390/s24113471
https://doi.org/10.1016/j.jnca.2021.102994
https://doi.org/10.1109/JSEN.2024.3445576
http://orcid.org/0000-0002-0784-1465
https://www.scopus.com/authid/detail.uri?authorId=57196006131
https://orcid.org/0000-0002-4448-3839
https://www.scopus.com/authid/detail.uri?authorId=58244269900
https://orcid.org/0000-0001-5782-1932
https://www.scopus.com/authid/detail.uri?authorId=57189376280
https://orcid.org/0000-0001-7844-2042
http://orcid.org/0000-0002-2862-438X
https://www.scopus.com/authid/detail.uri?authorId=57057781300

