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APPLYING EDGE COMPUTING 

IN THE EXECUTION IoT OPERATIVE TRANSACTIONS 
 

Abstract .  Topicality. IoT information processing is usually performed in a cloud environment. However, this creates 

problems associated with delays in data transfer to the cloud. It is especially important to reduce these delays when processing 

operational IoT transactions. This can be achieved by transferring part of the calculations to IoT peripheral devices. However, it 

is necessary to take into account the specific features of embedded IoT systems. The subject of study in the article is methods 

for transferring the load to IoT peripheral devices. The purpose of the article is to reduce the execution time of operational IoT 

transactions by increasing the efficiency of the system infrastructure by transferring part of the computing load to IoT peripheral 

devices. The following results were obtained. A conclusion has been made about the possibility of constructing a distributed 

information system based on Internet of Things devices. A model of a computing node has been formed, which made it possible 

to specify a separate computing node, taking into account its location and functioning features. A method for distributing tasks 

among the nodes of a distributed information system has been developed. The method allows taking into account the features of 

each computing node and the state of communication channels between them. The developed algorithm for implementing the 

method is based on the analysis of a stationary or non-stationary environment and changing the greedy strategy of the agent. 

Conclusion. Studies of the effectiveness of the proposed method have been conducted. The simulation results have shown that 

the proposed method can significantly reduce the processing time of operational transactions. 

Key words:  Internet of Things; Computer System; Fog Layer; edge computing; operative transactions. 
 

Introduction 

Today, embedded systems are widely developed 

and widespread [1]. In particular, Internet of Things (IoT) 

systems are gaining popularity [2]. The main idea of IoT 

is to embed computing modules into objects of the 

surrounding world [3]. Such systems allow collecting 

information about the state and functioning of a large 

number of objects. This information is then transmitted 

over a communication network for further processing and 

analysis. The Internet of Things has become widespread 

in various fields [4–6]. IoT information processing is 

usually performed in a cloud environment.  

However, this creates problems associated with 

delays in data transfer to the cloud. It is especially 

important to reduce these delays when processing 

operational IoT transactions. This can be achieved by 

transferring some of the calculations to IoT peripheral 

devices [7, 8]. 

IoT information processing is usually performed in 

a cloud environment. However, this creates problems 

associated with delays in data transfer to the cloud. It is 

especially important to reduce these delays when 

processing operational IoT transactions. This can be 

achieved by transferring some of the calculations to IoT 

peripheral devices [7, 8]. 

Information from IoT sensors is received by 

peripheral layer devices. Since these devices are 

computing nodes, it is possible to build a distributed 

system with computing nodes based on IoT devices (PC 

IoT). In addition to the problems inherent in classical 

distributed computing systems, such a system adds 

features of embedded systems [9–11]: 

– independent power supplies, 

– low data rates, 

– use of low-power processors, 

– high interference levels in communication 

channels, 

– constant movement of devices, 

– heterogeneity of computing nodes. 

Therefore, the use of task distribution methods used 

in classical distributed systems is impractical [12]. The 

solution to this problem can be achieved by using 

methods that can take into account the features of IoT 

devices [13]. 

Literature review. Let's consider some scientific 

works on this topic. 

In the article [14], only homogeneous media are 

considered.  

In articles [15, 16], task distribution occurs only in 

the cloud.  

The method proposed in article [17] is focused only 

on simple topologies IoT.  

The algorithm proposed in the article [18] does not 

take into account the heterogeneity of the environment. 

Similar problems arise when applying the algorithm 

given in the article [19].  

The algorithm given in the article [20] is not 

oriented to the real-time mode. The methods proposed in 

articles [21, 22] do not take into account the limited 

resources of the edge computing.  

Articles [23, 24] do not take into account the costs 

associated with data transmission. 
Algorithms for IoT flows are proposed in articles 

[25, 26]. But it is used only in a homogeneous 

environment. The algorithms proposed in articles [27, 
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28] are focused only on structures similar to the 

structures of the cloud environment. The algorithm based 

on deep learning proposed in article [29] is effective only 

for a homogeneous environment, as is the algorithm used 

in article [30]. A strategy based on deep learning with the 

pooling of resource capabilities is proposed in the article 

[31]. But it can’t be implemented on a edge layer with 

limited device capabilities. 

Consequently, the considered scientific works when 

implementing the load redistribution process don’t 

sufficiently take into account the features edge 

computing. Therefore, it is advisable to develop an 

appropriate method. 

The purpose of the study is to reduce the time 

required for performing operational IoT transactions by 

increasing the efficiency of the system infrastructure by 

transferring part of the computing load to the IoT 

peripherals. 

1. Modeling the process of assigning 

operational transactions to IoT nodes 

1.1. Setting the task of assigning transactions to 

IoT nodes. The assignment task is a procedure that allows 

operational transactions to be performed on the peripheral 

ІоТ infrastructure. Computing nodes, represented by IoT 

devices, act as calculators. They receive tasks and must 

execute them. The central distribution node sends tasks to 

computing nodes and collects completed tasks. It also 

monitors the state of communication channels and the state 

of computing nodes. 

A distributed information system built on the basis 

of the IoT infrastructure is a parallel distributed system 

[32]. But unlike classical parallel systems, computing 

nodes are heterogeneous and the switching network 

changes the characteristics of delay and throughput 

during operation. 

Let us give a formal definition of the task 

assignment problem to IoT computing nodes. It is based 

on the problem of optimal mapping of the algorithm onto 

the architecture of a parallel computing system using a 

graph model [33]. Let the computing algorithm be 

represented as an acyclic graph 

 , ,A
AG A C=  (1) 

where ( )1 2 ( ), , , card AA a a a=  – graph nodes 

corresponding to the components of the algorithm or 

tasks; ( ), , , 1, ,A A
i jC c i j A i j=    – graph edges 

corresponding to information links between tasks; ,
A
i jc  – 

amount of information transmitted from the task ia  to the 

task ja . 

A task can be a fairly large fragment of the source 

code of a program intended for execution on a parallel 

system: a subroutine, function, procedure, module, etc.  

Let the distributed computing system be 

represented as a graph 

 , ,Q
QG Q C=  (2) 

where ( )1 2 ( ), , , card QQ q q q=  – graph vertices 

corresponding to computing nodes; QC =

( )( ), , , 1, ,
Q
i jc i j card Q i j=    – graph edges 

corresponding to communication channels between 

nodes; ,
Q
i jc  – bandwidth of the communication line 

between computing nodes iq  and jq  without taking into 

account delays. 

A task assignment can be defined as a graph mapping 

AG  to the graph QG . Considering the Cartesian product of 

sets A Q  we introduce the mapping binary matrix: 

 ( ) ( )( ), , 1, , 1, .i jZ z i card A j card Q=    (3) 

where, if the task is ia  assigned to node jq , then , 1i jz =

, otherwise , 0i jz = . 

The solution to the problem of assignment to 

computing nodes will be determined by the optimality 

criterion. Such a criterion is a reflection μ over the matrix Z, 

and the solution to the problem is the matrix 
*Z , such that 

 ( ) ( )*min .
zZ D

Z Z


=   (4) 

where ZD  is a set of admissible mapping matrices. 

This problem is NP complete, i.e. its solution can be 

obtained based on a complete enumeration. But it should be 

taken into account that the characteristics of the computing 

nodes of a distributed information system based on IoT are 

constantly changing. As a result, it is necessary to solve 

problem (4) often. This will lead to the fact that the 

distributed computing system will be in a constant solution 

to the optimization problem. Therefore, in the future, we 

will look for a fast method that will offer a solution to the 

distribution problem close to the optimal one. 

1.2. Public structure of the agent model. The 

system for supporting peripheral computing IoT is rigidly 

decentralized. Therefore, the most acceptable is the 

agent-based model approach to model development [34]. 

Key elements of such a model: 

– agent which is contained in the object, for carrying 

out a strategy and forming a strategy for the average; 

– the environment which is used to describe all 

those whose agent is used; 

– actions they stipulate the agent with each other 

with environment; 

– states which straightens on whirlwind of camp in 

environment; Skog of the agent to transfer the 

environment in some cases; 

- – rewards which will give a environment medium 

to the agent reaction; can booty with negative or positive 

numerical values. 

The agent interacts with the environment and 

receives reactions from it continuously. The agent 

generally has no information about the environment and 

is not told what action to take at each step. 

The IoT may change under the influence of the 

Environment agent.  
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Therefore, each time an agent for the same activity 

may receive different reward values. If the environment 

does not change, then the same agent action will always 

give the same reward. 

According to Fig. 1  agent sends its own action at 

each discrete time t N  to Environment in ta . In 

response, Environment transitions to the 1ts +  and 

generates a new reward 1tr + , that is new to the agent. 

 

 

Fig. 1. The model agent – environment 

 

Each state of the environment at each time t is 

denoted by, where ts S , where S – is the set of all 

possible states. The agent at a particular step t selects an 

action ta  from a plurality of all actions of the currently 

possible actions. ( )tA s . After that, the environment is in 

a new state, and the agent receives new environmental 

data. Thus, the agent learns and accumulates experience. 

Experience allows the agent to make further decisions 

regarding the environment - to choose further actions. 

This means forming a strategy for the behavior of the 

agent, depending on the current experience. 

The agent strategy is described as: 

 ( ) ( )t t ta s P a a s s= = = . (5) 

Agents' strategies are aimed at maximizing the total 

reward over a long period of time. 

According to the model, the agent should have: 

– a goal related to the state of the environment; 

- the possibility of performing some actions that 

may affect the state of the environment; 

- the ability to perceive the state of the environment. 

Scheme Fig. 1 is not significantly different from the 

"agent-environment" scheme for the architecture of 

neural networks. The main difference is the presence of 

evaluated feedback. The agent uses information that only 

evaluates his actions, but does not indicate in any way 

whether this action is correct or not, since it is impossible 

to obtain a set of behavior samples that would be correct 

and cover all possible situations in which the agent may 

find himself. 

The learning process of an agent can be imagined as 

a set of discrete states between which transitions are 

made. Taking into account the fact that the agent receives 

responses from the environment only at discrete 

moments of time, the environment from the agent's point 

of view can be considered a discrete system that has 

states and transitions between them. But we clarify that 

the environment is not controlled by the agent and may 

have other influences (besides the agent). 

As a result of interaction with the environment, the 

agent can build its model of this environment. Based on 

such a model, a prediction algorithm can work for more 

effective agent work. 

In IoT, computing nodes play the role of the 

environment, the change in characteristics of which, in 

general, does not have any regularity. Computing nodes 

are independent of each other, so execution of tasks on 

one node does not affect other nodes. Also, after 

completing one task, a computing node enters the pool of 

free nodes. The completed task does not affect the further 

functioning of this node. Therefore, taking into account 

the specified conditions, the best model is a model with 

an ε-greedy strategy. At the same time, it should be noted 

that the agent applies only those actions that he knows 

about and that give the maximum reward. But he also has 

to consider new actions that may not yield much reward, 

but might make a better choice for a higher reward in the 

future. 

1.3. Agent's goal and reward. The main goal of an 

agent in IoT is to maximize the total reward received as 

a response from the environment and determined by 

some number. 

The reward signal must indicate what the agent 

needs to achieve. At the same time, the reward signal 

does not give the agent a priori information about how to 

achieve the desired result. For example, if the agent 

searches for the maximum of some function, it receives 

only the value of this function from the environment 

(described by the specified function). He has no 

information about the direction of her growth that he can 

apply to take the next steps. Otherwise, it will be a reward 

for achieving intermediate goals. In the example of 

finding the maximum of a function, the agent can find a 

local maximum and stop there, never finding a global 

maximum. 

The complete independence of the environment 

from the agent is also a prerequisite. An agent must not 

have a goal that it can control (even partially). Otherwise, 

the agent will be able to independently set the received 

value of the reward signal. 

A sequence of interactions with the environment 

performed by an agent constitutes a task. Depending on 

whether or not it is possible to break the task into repeated 

sequences, the following are distinguished: 

– tasks consisting of episodes; 

– continuous tasks. 

Consider tasks consisting of episodes. Denote 

through 1tr + , 2tr + , 3tr + , … sequence of reward 

signal values received after some time step t. It is 

necessary to determine which elements of this sequence 

must be maximized. Since the agent's goal is to maximize 

the total value of all rewards, it is necessary to find the 

maximum expected benefit for the general case 
*R : 

 ( ) ( )*

1

max max ,
T

i
i t

R R t r t

= +

= = 
 

 (6) 

where T the final time step,  is a set of possible options. 

Formula (6) will be relevant in situations where it is 

possible to determine the final time step. In this case, the 

agent's interaction with the environment can be 

represented as a finite sequence. Such a sequence is 

called an episode, and each episode ends with a terminal 

state. After reaching the terminal state, the "agent - 

environment" system returns to its initial state. The 

Action at 

Environment Agent 

State st+1 

Reward signal rt+1 
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sequence of episodes constitutes tasks. In such tasks, it is 

necessary to distinguish the set of all states S from the 

terminal state S+. 

Now let's move on to continuous tasks. In such 

tasks, the agent's interaction with the environment cannot 

be represented as a sequence of episodes. Therefore, it is 

impossible to fix the final moment of time, that is, there 

is no terminal state. 

Since for continuous tasks, the final time step 

T = ∞, then the concept of discounting is introduced. In 

this case, the present reward is of greater value to the 

agent than the future reward. For this purpose, the drive 

factor is introduced (discount rate) γ  [0; 1], which 

determines the present value of future rewards. Usually, 

the value of the future reward after k time steps decreases 

(from the current one) by 
1k− . 

Thus, instead of maximizing the sum of all rewards 

(6) of continuous tasks, the agent maximizes the sum of 

the given rewards it will receive in the future: 

( ) ( )  *

1

max max , 0;1 .i t
i

i t

R R t r t


−

= +

= = 
 

    (7) 

When γ = 1 from (7) formula (6) with the sum of an 

infinite series is obtained. When γ = 0 formula (7) is 

simplified only to the nearest reward: 

 ( )*
1max ,tR r t+=


 (8) 

that is, the agent is only interested in maximizing the nearest 

reward. In this case, the goal of the agent is to choose an 

action ta  in such a way as to maximize ( )1tr t+ . 

By seeking to maximize only immediate rewards, 

the agent limits its influence on future rewards. This leads 

to a decrease in the overall benefit. As the guidance 

coefficient γ increases (approaching 1), the agent 

becomes more far-sighted and the importance of future 

rewards increases. 

1.4. Determining the value of an action. The value 

of a particular action is defined as the sum total of all 

rewards that the agent can receive in the future starting 

from that action. Let's determine the actual value of 

action a as ( )W a . The expected value of this action at 

the time step t is denoted as ( )tW a . In the case of 

choosing action a until the moment t is equal ak  times, 

we will receive a sequence of rewards 1r , 2r , ..., kr . 

Then the value of action a can be estimated as follows: 

 

( )

( )
1

0, 0;

1
, 0.

a

t a

k

t i a
a i

W a if k

W a r if k
k

=

 = =



= 



 (9) 

When ak →  ( ) ( )*tW a W a→ . 

For each type of tasks, it is possible to determine the 

benefit value separately.  

But if, after the last state in the final episode, we add 

an infinite number of states that will give zero reward, 

then we can enter an absorbing state, from which the 

transition will be possible only into itself (Fig. 2). 

 

 

Fig. 2. Absorbing state 

 

The absorbing state allows you to get the same 

benefit as when summing an infinite sequence. Thus, in 

the general case, the benefit is described by the equation 

 ( ) 1

0

,
T

k
t k

k

R t r + +

=

=    (10) 

where can be either T = ∞, або γ = 1 (but not at the same 

time). 

1.4.1. ІоТ stationary environment. In a stationary 

environment, the reaction of the environment to the 

actions of the agent does not change over time [35]. 

Therefore, the assessment of the reward of each action 

does not change over time. 

When the number of time steps increases, the 

memory requirements of the computer system also 

increase, because it is necessary to accumulate all the 

reward values for the entire time of operation. Let's 

determine for action a the average value of its k rewards 

as kW . Then: 

 
1

1 1
1 1

1 1
.

1 1

k k

k i k i
i i

W r r r
k k

+

+ +
= =

 
= = + 

 + +  
   (11) 

But 

1 1

1
.

k k

k i i k
i i

W r r k W
k

= =

=  =    (12) 

Put (12) in (11): 

 

( )

( )( )

( )( ) ( )

1 1

1

1 1

1

1

1 1

1 1

1
1 .

1

k k k

k k k k

k k k k k k

W r k W
k

r k W W W
k k

r W k W W r W
k

+ +

+

+ +

= +  =
+

= +  + − = 
+ +

 + + − = + −
+

  

We will make a replacement: 

 ( )1
1 1

1 1
k

a

a a a
k k

+= = =
+ +

. (13) 

Then 

 ( )1 1k k k kW W a r W+ += + − , (14) 

where а is step length value. 

This recursive formula can be written in the form of 

a rule: 

New rating ← Previous rating + 
+ Step length × Error, 

where 

Error ← [Target – Old assessment]. 

The error decreases with each step closer to the 

target, and the “Step Length” parameter changes with 

each time step. 
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1.4.2. ІоТ non-stationary environment. In tasks 

performed in a non-stationary IoT environment, feedback 

received from the environment at some point in time 

better reflects the current situation than feedback 

received at some earlier time period. 

From formula (13), we can see that the value of step 

a depends on the number of times when some action was 

selected.  

If we set a constant value of step a, then it becomes 

possible to take into account the non-stationarity of the 

environment. As a result, we will get a weighted average 

value kW : 

( )

( ) ( )

( )( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1

2 1 2 1

2
2 1

1
1 0

0

1

1 1

1

1 1

1 1

1 1 .

k k k k k k k

k k k

k k k k k

k k k

k k

k
k k i

i
i

W W a r W W a r a W

a r а W a r а

W a r W a r а а r

а W a r а а r

а a r а W

а W a а r

− − − −

−

− − − −

− −

−

−

=

= + − = +  −  =

=  + − =  + − 

 + − =  + −   +

+ − = =  + −   +

+ + −  + − =

= − +  − 

(15) 

The value obtained in (15) is a weighted average, 

because the following equality holds for the sum of 

weights: 

 ( ) ( )
1

1 1 1.
k

k k i

i

а a а
−

=

− +  − =   (16) 

Then, the weight value ( )1
k i

a а
−

 −  for reward ir  

depends on the size k − i, that is, from how many steps 

ago this reward was received. Since the size (1 − а) < 1, 

then the weight of the reward ir  decreases exponentially 

with the increase in the number of rewards received. 

To ensure sequence convergence, the following 

conditions must be met: 

 ( )
1

;
k

k
i

a а

=

 =    (17) 

 ( )( )
2

1

.
k

k
i

a а

=

    (18) 

Condition (17) guarantees that the steps have a 

sufficiently large value so that the learning process is not 

affected by random fluctuations. Condition (18) 

guarantees that the steps are small enough to ensure 

convergence. 

Non-stationary tasks also have a significant 

difference from stationary ones. In them, the initial 

evaluation of the value of the action does not influence 

the work results. 

1.5. A strategy for choosing the agent's next action. 

The agent chooses the next action based on the evaluation 

of the value of the action, using the following behavioral 

strategies: 

– greedy strategy; 

– ε - greedy strategy; 

– random selection. 

The greedy strategy is the simplest variant of the 

agent's behavior: the agent each time chooses the action 

that has the greatest impact value assessment.  

Therefore, at some time step t, such an action should 

be chosen *a , when 

 ( ) ( )* max .t t
a

W a W a=  (19) 

In this strategy, the agent never tries to explore the 

environment in order to discover some action that would 

yield a higher reward. In a stationary environment, when 

all reward values are known, this behavior is the most 

correct, but for a non-stationary environment, this 

behavior will not always give the best result. 

The opposite of a greedy strategy is a strategy based 

on random selection, where the agent chooses a random 

value at each step. In this case, regardless of the obtained 

result, the agent always explores the environment. But 

the agent never uses the received information to plan its 

future behavior. Random behavior can result in a non-

stationary environment, when the parameters of the 

environment change randomly. For a non-stationary 

environment, the most acceptable option is ε - a greedy 

strategy, where a variable coefficient ε is introduced, 

specifying the possibility of choosing an action. With 

such a strategy, the agent alternately chooses either a 

greedy action or a non-greedy one. This mode does not 

allow you to get the maximum reward when performing 

the current action, but it can lead to an increase in the 

total reward over a long time, that is, lead to the 

maximization of the amount of rewards. 

The ε - greedy strategy can be implemented using 

the Multi-armed bandit algorithm, where the 

environment is represented as a slot machine that has not 

one but many levers with different rewards. In the 

algorithm, the agent performs some specific action. A 

reward is obtained from the set A of all actions available 

to the agent r ∈ R.  

To find a suboptimal solution in the algorithm, it is 

necessary to ensure a balance between the research 

process and the exploitation process. The MAB 

algorithm uses greedy and ε -greedy strategies. 

With a greedy strategy, the algorithm selects only 

the action with the largest known reward. This gives the 

maximum reward at this point in time, but does not take 

into account that the possible rewards for other actions 

may increase over time. With an ε-greedy strategy, the 

coefficient ε is in the range ε ∈ [0; 1] and regulates the 

strategy of the agent's behavior - to act completely 

"greedy" or to periodically randomly choose other 

actions with probability ε. At ε = 0 strategy becomes 

greedy; at ε = 1 the algorithm becomes random. 

Taking into account the above, the greedy algorithm 

can be used to assign tasks to IoT computing nodes, 

where the distributing node acts as the agent, and the 

computing nodes that perform the received tasks and 

return the result to the agent act as the environment. 

2. The computing node model 

IoT devices are represented by a variety of 

technologies and components and their constituents. 

However, a general description can be made for IoT 
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devices, which will provide an abstraction from the 

implementation features and remove possible restrictions 

on interaction in an IoT distributed system (IoT DS). The 

general description is based on the identification of 

general characteristics of IoT devices, namely: 

– data on the state of IoT devices: computing power, 

RAM size, processor frequency, response time, service 

time, amount of energy consumed, etc.; 

– data on the data transmission network of the 

environment where the IoT device operates: channel 

capacity, loss indicators, data transfer rate, etc.; 

– data on the location of the IoT device and its 

movement: positioning in space, distance to other IoT 

computing nodes, etc. Based on these characteristics, it is 

possible to determine the ability of a computing node to 

assign a task to it in the IoT DS, taking into account the 

reinforcement machine learning model in the form: 

 Reward = (State, Location, Network),  (20) 

where State is the state data, Network is the network, 

Location is the position and movement. 

The computing nodes of the IOT DS act as the 

environment. It should form a reaction by means of a 

reward signal - Reward.  

Accordingly, each computing node in the IoT DS 

forms the Reward parameter. This parameter absorbs all 

the characteristics, dependent and independent of the 

computing node, and is calculated by the computing node 

as their final integral characteristic. Thus, the parameter 

reflects the ability and readiness to assign a task to the 

computing node of the IoT DS. 

However, since the types of tasks can change, the 

type of task solved by the computing node should also be 

taken into account. Then the model of the computing 

node is defined as: 

 D = (ID, Label, Reward),  (21) 

where D – IoT device, ID – node identifier (unique 

number); Label – type of solved task; Reward – the value 

of the reward signal. 

This model of the IoT DS computing node describes 

the readiness of a specific computing node to accept the 

next task. 

Let's consider how to define the reward function. 

Consider a separate computing node as an element of the 

environment. Then it can be argued that the value of the 

reward is determined by the ability of the node to 

successfully perform the task received. The success of 

the task depends on a number of parameters of both the 

node itself and the parameters of other IoT DS elements. 

Parameters dependent on the computing node are as 

follows [36]: 

– frequency and operating modes of the processor; 

– amount and speed of RAM; 

– PZP speed (if used); 

– architectural solutions of IoT devices; 

– IoT device software (operating system, presence or 

absence of additional software, etc.); 

– number of sensors, methods and sequence of their 

survey; 

– availability of additional peripheral equipment and 

its parameters. 

The parameters that do not depend on the compute 

node are as follows: 

– the width of the communication channel; 

– bandwidth of the communication channel; 

– the presence of obstacles in the communication 

channel; 

– used network protocols; 

– parameters of the distribution node; 

– remoteness of IoT devices from IoT DS elements; 

– the presence of the IoT device in a static or dynamic 

state. 

The above lists of parameters are quite complete, 

but not exhaustive. Thus, the reward is an integral 

characteristic of the node, which must take into account 

all of the above, as well as, if necessary, other 

parameters).  

In general, these characteristics are summarized in 

the Reward parameter as follows: 

 

1

,
n

i i
i

Reward p

=

=    (22) 

where ip – value of the i-th parameter; i – weighting 

factor; n – the number of parameters affecting the value 

of the reward signal. 

It is often impossible to determine the number of 

parameters and the degree of their influence on the 

overall value of the reward.  

It is also necessary to take into account that the 

parameters change at every moment of time. In such 

cases, the reward function is proposed to be used as a 

function of the task's cycle time ( RTTt ). That is, it is 

possible to define the task cycle time as the time spent 

sending the task to the computing node, the time to 

execute the task on the computing node, and the time to 

receive the response from the computing node. Thus, the 

circulation time can be calculated using the formula: 

 ,RTT answer sendingt t t= −  (23) 

where answert  – the time of receiving a response from the 

computing node; sendingt  – the time of sending the task 

by the distributing node. 

Then the reward will be defined as a function: 

 ( ) ,RTTReward Reward t=  (24) 

which allows you to take into account all the parameters 

of the DS IoT that can affect the success of the task. At 

the same time, the computing node can also send its 

reward value, which can be used by the distributing node 

to calculate the total reward value, taking into account the 

circulation time.  

3. Algorithm for distribution  

of tasks by computing nodes 

3.1. The main algorithm. Based on the agent's 

work with the environment, we will develop an algorithm 

for implementing the distribution of tasks by computing 

nodes. 

Consider a multi-agent system, where DS IoT 

elements can be represented as a set of interacting agents. 
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But DS IoT is implemented on devices with limited 

computing capabilities and with communication 

channels of low bandwidth. Therefore, it is proposed to 

implement the task distribution algorithm on the 

distribution node. 

In addition, during the exploitation phase, the 

distributing node receives a response from the computing 

node, which also contains the value of the current reward 

along with the result.  

This approach allows to reduce the amount of data 

transmitted by the network due to the elimination of 

additional polling of computing nodes. 

Let's consider the task assignment algorithm step by 

step. 

Initialization stage. 

Step 0. The task sequence is initialized by the 

distributing node in IoT DS. 

Research stage. 

Step 1. All computing nodes receive a request from 

the distributing node to receive the integral 

characteristics of Reward from them. Each value is the 

value of the current reward signal for each computing 

node and is constructed based on its characteristics. 

Step 2. The integrated characteristics of Reward 

obtained by the distributing node are transformed into 

probability values. These probability values are used 

when selecting a computing node for task assignment. 

Operation stage. 

Step 3. The distribution node sends the task to the 

computing nodes. At the same time, it tries to get the 

maximum value of the reward signal and maximize the 

total reward over a long period of time. 

Step 4. Upon receiving the completed tasks, the 

distributing node recalculates the value of the reward 

signals (since the completed tasks also transmit 

information about the current state of the IoT DS and 

computing nodes). 

Step 5. If there are no outstanding tasks in the 

sequence of tasks, then the algorithm stops, otherwise it 

goes to step 3 (for the steady state) or to step 1 (for the 

non-stationary state). 

The general scheme of interaction, according to the 

above algorithm, looks as shown in Fig. 3. 

 

 

Fig. 3. General scheme of interaction of IoT DS components 

in the task assignment algorithm 

3.2. Modification of the algorithm. Usually, in IoT 

systems, the distribution node is located in the cloud. 

Computing nodes that make up a distributed system for 

performing simple operational tasks are chosen from 

devices of fog and boundary layers. These devices sit 

next to IoT sensors. But sometimes a significant 

percentage of the time from the request for task 

processing to receiving the result is spent exchanging 

with the cloud, which is unacceptable when performing 

operational tasks. Based on this, a modification of the 

main algorithm is proposed. The meaning of the 

modification is to reduce the number of requests to the 

cloud.  

Therefore, it is necessary to organize a check of the 

ability of computing nodes to assign tasks with minimal 

participation of the distribution node. For this purpose, it 

is proposed to define clusters of devices with similar 

characteristics. 

Clustering methods can be divided into two main 

types: hard and soft. The first type of methods, unlike the 

second, has clear boundaries, which is unacceptable for 

dynamic computing nodes. The principle of soft 

clustering assumes that a computer node can belong to 

one or several clusters at the same time. The application 

of this principle to the computing nodes of IoT DS W is 

justified, since the characteristics of IoT devices usually 

change.  

Therefore, one device can fall into several clusters 

simultaneously based on its variable characteristics. 

Among the existing algorithms for performing 

clustering, the Fuzzy C-Means (FCM) clustering 

algorithm stands out, which is based on data on the 

similarity of sets and is a soft clustering algorithm. 

Clustering of computing nodes was performed using this 

algorithm under the following conditions: 

– the number of clusters is finite and constant; 

– the centroid of each cluster is calculated according 

to the following formulas: 
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де i, j – device numbers ІоТ, , 1,i j n ; jw  – coordinate 

of the j-th device ІоТ; k – cluster number; jkd  – the 

distance from the IoT device to the centroid according to 

the Euclidean metric; m – the fuzziness index, which is a 

parameter of the fuzziness region, usually m = 2; jkp  – 

the calculated probability of the j-th IoT device belonging 

to the k-th cluster; kq  – the current coordinate of the 

centroid of the k-th cluster.  

The algorithm allows you to determine the degree 

of belonging of each IoT device to each cluster. 

In this case, the computer node that has the 

sending task acts as an agent. With the help of the 

developed algorithm, it searches for the optimal node for 
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assigning the task and becomes the distributing node 

itself. All other computing nodes relative to it are the 

external environment. 

The modified version of the developed algorithm 

consists of a sequence of the following steps: 

Initialization stage. 

Step 0. Initialization of the sequence of tasks and 

initial values in DS IoT. 

Research stage. 

Step 1. The distributing node polls all computing 

nodes in DS IoT and receives from each the Reward 

value generated by the computing node according to the 

computing node model. The resulting Reward values are 

normalized and transformed by the distributing node. 

Step 2. Based on the value of Reward, each 

computing node is mapped to a distributing node of a 

cluster or several clusters using the Fuzzy C-Means 

algorithm. The distribution node stores the distribution of 

all computing nodes by cluster. In case of changes, the 

cluster sets on the distribution node are updated. 

However, all computing nodes located within each 

cluster are notified of the presence of other nodes in this 

cluster. 

Step 3. To obtain data about the result of clustering, 

each computing node sends a request to the distributing 

node. In return, it receives a record of its cluster(s) and 

the nodes in it (or in them). If one of the characteristics 

of the node changes, the transition to Step 2 is carried out. 

The stage of exploitation. 

Step 4. If there is a computing task to be assigned, 

the computing node assumes the role of the distributing 

node and chooses another computing node within the 

cluster. In the case of a node with a task belonging to 

several clusters at the same time, priority is given to the 

nodes of the cluster that have the highest degree of 

belonging to this cluster. Thus, the computing node for 

some time becomes the distributing node that assigns 

tasks. The further sequence of steps is performed 

according to the main task assignment algorithm. 

Step 5. Sending reward values by computing nodes 

to the distribution node within the cluster. 

Step 6. Calculation of the optimal node for task 

assignment. If there is no possibility to assign a task, the 

transition to Step 2 takes place. 

Step 7. Assignment of the task to the node. 

The cluster selection architecture is shown in Fig. 4. 

4. Discussion of results 

The features of the main task assignment algorithm 

remain the same as before the modifications made, since 

these modifications do not affect the target task 

assignment model. The changes only allow redefining the 

participants in the task assignment process. Thanks to 

this, the possibilities for applicants for the role of a 

distribution node in DS IoT are expanding. Thus, the 

state of DS IoT computing nodes can be either static or 

dynamic. So, the advantage of the task allocation 

algorithm is its versatility, because the same algorithm 

can work with both static and dynamic environments. 

Using the coefficient ε, you can change the behavior of 

the algorithm and better adjust it to the computing 

environment with which the distribution node works. 

 
Fig. 4. The general diagram  

of the interaction of the DS IoT components 

in the modified task assignment algorithm 
 

If the state of the computing nodes does not change, 

then it makes no sense to conduct additional checks for 

the variability of the environment. Then the value of the 

parameter ε should approach 0, but not reach it. Since the 

probability of choosing each computing node is not equal 

to zero, the situation will not arise that the algorithm 

allocates tasks only to the nodes that have the highest 

value of the reward signal. 

In the case of significant variability of the 

computing environment, it makes sense to make the 

value of the parameter ε as close as possible to 1. This 

allows you to constantly explore new computing nodes, 

since their parameters could improve in a short time. 

Setting the parameter ε close to 1 in the case of a static 

environment does not significantly affect the task 

allocation process. Setting the parameter ε close to 0 for 

a dynamic environment can have catastrophic 

consequences for the computational process, even to the 

point of its complete impossibility. 

A situation is possible when the state of the data 

transmission network and computing nodes is unknown. 

Then you can select the ε parameter during DS IoT 

operation. 

It is necessary to assume from the beginning that the 

system is dynamic with significant changes in 

parameters, that is, ε will be close to unity. Then, in the 

process of executing the work, the distributing node can 

accumulate statistics about the changes in the reward 

signal of each computing node.  

Accordingly, it is necessary to reduce the value of 

the parameter ε until the performance of the system 

reaches its maximum value. 

Next, we will investigate the behavior of the 

algorithm in different states. In this study, we will 

assume: 

– one distribution node in DS IoT; 

– only computing nodes in DS IoT are available to 

the distributing node in DS IoT, additional actions are not 

entered in DS IoT; 

– during the operation of the algorithm on all 

iterations, the distributing node does not change; 

– the number of computing nodes in DS IoT is 

constant and does not change over time; 
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– the reward signal of computing nodes in DS IoT 

may change; 

The following options were considered: 

V0 – static; 

Vj – d = 0.1 + 0.2  j, where d – the probability of 

changing the characteristics of the computing node, 

j  {0, 1, 2. 3, 4}. 

The simulation results are shown in table. 1, where 

the average execution time of a batch of consecutive 

operational transactions is given in seconds. 

 
Table 1 – Execution time of a batch operational 

transactions 

     V 

ε 
V0 V1 V2 V3 V4 V5 

0.01 48 50 47 52 94 183 

0.1 49 49 46 54 77 92 

0.2 54 45 51 47 72 85 

0.3 57 48 42 41 61 82 

0.4 56 46 46 42 44 62 

0.5 62 52 51 39 46 44 

0.6 63 50 53 41 39 48 

0.7 71 56 50 44 34 33 

0.8 66 59 46 40 36 30 

0.9 72 65 51 41 35 31 

0.99 75 66 48 45 41 28 

 

As we can see, the simulation results confirmed the 

conclusions made on the modified algorithm for 

distributing tasks across computing nodes. 

Conclusions 

Based on the analysis of the IoT objects and 

distributed computing systems, a conclusion was made 

about the possibility of constructing a distributed 

information system based on the IoT devices. 

Formalization of the task distribution process allows us 

to approach the consideration of a computational 

problem in the form of a graph.  

This graph is transformed into a sequence of tasks 

sent to the computing nodes of the IoT distributed 

information system. 

A model of a computing node was formed, which 

made it possible to specify a separate computing node, 

taking into account its location and functioning 

features.  

Particular attention was paid to the value of the 

reward signal that the computing nodes will send to the 

distributing node to implement the task distribution 

algorithm.  

The reward signal is an integral characteristic of the 

computing node and can depend on many parameters of 

the DS IoT. 

 It is proposed to use the time from sending the task 

by the distributing node to receiving the results from the 

computing node to calculate the reward. 

A method for distributing tasks among the nodes of 

a distributed information system was developed. The 

method allows taking into account the features of each 

computing node and the state of communication channels 

between them.  

Based on the analysis of a stationary or non-

stationary environment and changing the greedy strategy 

of one agent and a set of actions, it became possible to 

build an algorithm for distributing tasks. 
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Застосування периферійних обчислень 

при виконанні оперативних транзакцій IoT 

Н. Г. Кучук, С. О., Кашкевич, В. О. Радченко, Ю. О. Андрусенко, Г. А. Кучук 

Анотація .  Актуальність. Обробка інформації ІоТ зазвичай виконується у хмарному середовищі. Але при цьому 

виникають проблеми, пов’язані з затримками при передачі даних до хмари. Особливо важливо зменшити ці затримки при 

обробці оперативних транзакцій ІоТ. Це можливо здійснити за рахунок перенесення частини обчислень на периферійні 

пристрої ІоТ. Але при цьому треба враховувати специфічні особливості вбудованих систем ІоТ. Предметом вивчення в 

статті є методи перенесення навантаження на периферійні пристрої ІоТ. Метою статті є зменшення часу виконання 

оперативних транзакцій ІоТ за рахунок підвищення ефективності інфраструктури системи шляхом перенесення частини 

обчислювального навантаження на периферійні  пристрої ІоТ. Отримано такі результати. Зроблено висновок про 

можливість побудови розподіленої інформаційної системи на основі пристроїв Інтернету речей. Сформована модель 

обчислювального вузла, яка дозволила задавати окремий обчислювальний вузол, враховуючи його особливості 

розташування та функціонування. Розроблений метод розподілу завдань по вузлам розподіленої інформаційної системи. 

Метод дозволяє враховувати особливості кожного обчислювального вузла і стан каналів зв'язку між ними. Розроблений 

алгоритм реалізації методу базується на аналізі стаціонарного або нестаціонарного середовища та зміни -жадібної 

стратегії агента. Висновок. Проведено дослідження ефективності запропонованого. Результати моделювання показали, 

що запропонований метод дозволяє суттєво зменшити час обробки оперативних транзакцій. 

Ключові  слова :  Інтернет речей; комп’ютерна система; хмарний шар; периферійні обчислення; оперативна 

транзакція. 
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