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CONSTRUCTION OF A SPATIAL DISTRIBUTION MODEL
OF WIND ENERGY CHARACTERISTICS

Abstract. The aim of this article is to develop a model for the spatial distribution of wind energy characteristics across
the territory of Ukraine. The subject of the study includes datasets of wind speed values, as well as methods of data
correlation, validation, and interpolation. Research results. Based on NASA reanalysis datasets and measurement results
from 70 meteorological stations in Ukraine, a dataset of paired wind speed data corresponding to the same location but
obtained through different methods was created. Through a comparative analysis of regression task results, evaluated using
machine learning models trained on the dataset, the Random Forest model was selected as the most accurate (based on RMSE,
R2, and Pearson correlation coefficient) for predicting wind speedc deviations in NASA reanalysis data to bring them closer
to actual values. The Pearson correlation coefficient improved by 0.07 in the worst case and by 0.66 in the best case. Using
the Random Forest model’s predictions, corrections were made to all wind speed values in the NASA reanalysis data. The
accuracy of the corrected data was also confirmed by the study of trend dynamics over the course of a year using three
different data sources: meteorological station measurements, NASA reanalysis data, and corrected NASA reanalysis data.
Using the universal kriging method, the corrected wind speed values were interpolated at grid nodes across the entire territory
of Ukraine. The accuracy of the interpolation results was validated using the cross-validation method. Conclusion. Based on
these results, a GIS-based tool was created, enabling the determination of reliable wind energy characteristics at any given
point across Ukraine. The proposed GIS can primarily be used for the design of wind power plants and for selecting optimal

locations for their deployment.
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Introduction

Renewable energy is currently a priority area for
energy development in most developed countries. As of
2023, wind power plants (WPP) account for 26.3%
(1,017.4 GW) of the total installed capacity in the global
renewable energy market [1]. Between 2000 and 2022,
global wind energy production increased from 31.2 TWh
to 2,098.5 TWh, representing a 67-fold increase [2].
Despite a significant reduction in the cost of WPP
installation, their construction still requires substantial
investments [3], which highlights the importance of
accurate forecasting of the potential annual energy
production of a wind farm. Therefore, a reliable
assessment of wind resources at the future WPP site is a
crucial stage in the design process.

The most reliable source of information on wind
speed and direction at a potential WPP site comes from
measurements taken directly at the location. However,
since wind farms have lifespans of several decades, the
World Meteorological Organization recommends the use
of wind speed time series of at least 10 years to account
for long-term trends. Such measurements are costly and
time-consuming.

A source of long-term wind speed and direction
data is the network of meteorological stations (MS),
where wind parameters are measured every 3 hours at a
height of 10 meters. However, the distribution of MS
across Ukraine is highly uneven, and their data do not
provide insights into wind speeds at significant altitudes,
whereas the hub height of modern wind turbines exceeds
100 meters. In global practice, databases from reanalysis

models [4, 5], which are the result of complex modeling
of satellite data and remote sensing data [6], are used to
provide information on wind at heights of 10, 50, 100,
and 300 meters for wind energy calculations.

However, reanalysis data do not always align with
real observation data. The verification and adaptation of
reanalysis data for wind energy applications in specific
regions are conducted by researchers worldwide.
Developing models that can improve energy production
forecasts based on reanalysis data and bring them closer
to the more accurate predictions derived from ground
meteorological station data would significantly enhance
the precision of energy production forecasts for planned
WPPs. Therefore, spatial modeling of wind speed in a
specific area is a relevant and practically significant task.

Analysis of recent research and publications

The first international validation of wind speed data
for the MERRA and MERRA-2 reanalysis datasets with
observational results was conducted for 23 European
countries [7]. Both reanalysis datasets were determined
to have a significant spatial error, significantly
overestimating wind speed in some regions and
underestimating it in others. National correction factors
were proposed, making obtaining data with acceptable
accuracy possible.

In the study [8] NasaPower reanalysis products
were evaluated for daily mean temperature, solar
radiation, relative humidity, and wind speed parameters
compared to data from 14 weather stations in southern
Portugal with a Mediterranean climate. The research
results have shown that NASA POWER data can be
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useful for creating weather datasets when data from
ground-based weather stations are missing or
unavailable. The study showed good agreement for all
parameters except wind speed. Even after correcting the
data for bias, the data for this indicator show poor
correlation, are inconsistent with most of the
observations, and still need improvement.

The paper [9] presents a study of the influence of
distance and altitude of the regions above sea level on the
deviation of the average daily values of temperature,
relative humidity, and wind speed of the NASA POWER
reanalysis database from the observation data of 3
meteorological stations in the Mediterranean and
Continental regions of Turkey. The research results also
showed a high correlation between both datasets for all
parameters except wind speed.

In Ukraine, studies have been conducted on the
correlation of wind speed values based on the results of
measurements at 70 MS and the MERRA-2 data set [10].
It was found that for the territory of Ukraine, the average
correlation coefficient for average daily pairs of values is
0.8 (minimum 0.45 for a mountainous MS, maximum
0.95 for an MS located on the open territory of the
airport).

Thus, the reanalysis data needs to be corrected
based on real-world observation datasets. For this
purpose, it is necessary to determine the wind speed
correction function from the NasaPower reanalysis
database in relation to the corresponding observational
data. This regression problem can be solved by
comparing the wind speed measurements at the MS with
the MERRA-2 reanalysis data, which are given for grid
nodes reasonably close to the MS coordinates. The
regression problem is a classic machine-learning task.
Usually, applied problems, reduced to classical ones, are
solved by choosing the best-trained machine learning
model in terms of accuracy [11-14].

The next data preparation stage is to adjust the wind
speed for all MERRA-2 grid nodes in Ukraine based on
the forecasts of the selected trained artificial intelligence
model.

The next task, after creating the relevant dataset, is
to interpolate wind speed values for the entire territory of
Ukraine using the available sample of values in the
coordinates of deterministic points.

The paper [15] presents models of the spatial
distribution of the mean wind speed and wind energy
density developed on the basis of the spatial interpolation
method based on the results of historical measurements
at 22 observation stations in Latvia. The results are
presented in the form of color contour maps. To make it
possible to determine the desired characteristic at any
point, it is advisable to present models of the spatial
distribution of wind energy characteristics in the form of
GIS [16].

The study [17] demonstrates the impracticality of
using deterministic interpolation methods, such as the
Inverse Distance Weighting (IDW) method, in cases
where observation points are unevenly distributed. In the
research [18], a comparative analysis is conducted
between the classical IDW method, the Modified Inverse
Distance Weighting (MIDW) method, and the Gradient

Inverse Distance Weighting (GIDW) method. Based on
the analysis results, it is concluded that the classical IDW
method cannot be applied without modifying the
calculation of the weighting coefficients for the points.

Another approach to interpolation is the
geostatistical one, which is based on the spatial
autocorrelation of data [19, 20]. One of the most common
geostatistical interpolation methods is kriging, which is
divided into ordinary kriging, typically used in most
cases, and universal kriging, which assumes the presence
of dominant trends in the data. The study [21] compares
the results of wind speed forecasting using the methods
of ordinary and universal kriging, assessing the
appropriateness of these methods for short-term wind
speed forecasting. Universal kriging is used in cases
where the data are known to contain scientifically
established trends. Wind speed distribution properties
tend to exhibit dominant trends, such as prevailing winds
and topographical features like mountain ranges and
coastal areas [22]. The study [23] examines global trends
in wind flow distribution, particularly wind speed, which
significantly affects data forecasting. Thus, given the
specific nature of the subject area, it is appropriate to apply
the universal kriging method to solve the problem of wind
speed interpolation across the territory of Ukraine.

Problem statement. To design wind power plants
and select optimal locations, it is necessary to create a
software resource that will allow determining reliable
values of wind energy characteristics at any given point
in Ukraine. The purpose of the article is to create a model
of the spatial distribution of wind energy characteristics
in Ukraine. To achieve this goal, the following tasks need
to be accomplished:

1. To form a dataset of pairs of relevant data that
refer to the same location and belong to different existing
data sets.

2. To create a machine learning model to predict
the shift in the wind speed value in the NasaPower
reanalysis data to approximate the real value.

3. To correct the wind speed values in the
NASAPower reanalysis data.

4. To interpolate the obtained values for the entire
territory of Ukraine.

Formation of a dataset of correlation
of measured and calculated wind speed

Two sufficiently large and representative arrays of
data were obtained for the same territory:

- NASAPower - by the reanalysis method.

- WeatherStation - by ground meteorological
observation.

The NASAPower dataset is derived from NASA's
open reanalysis database [24], which provides daily data
on surface air temperature, relative humidity,
precipitation, solar radiation, wind speed, and wind
direction in a coordinate grid (0.5 latitude by 0.5
longitude resolution). Wind speed data are provided for
heights of 10 m and 50 m above the ground. The
NASAPower dataset uses 4939200 wind speed records at
10 m height at 533 grid nodes with specified geographic
coordinates for the period from January 1, 2001 to
January 1, 2024 at 12 noon.
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The WeatherStation dataset contains daily
meteorological data from 70 ground-based weather
stations in Ukraine obtained from the Institute of
Renewable Energy of the National Academy of Sciences
of Ukraine [25] and open sources. The dataset consists of
264543 wind speed measurements at 12 noon for the
period from January 1, 2011 to December 31, 2020. The
data of the WeatherStation dataset, unlike the
NASAPower dataset, contains gaps in measurements for
different time periods at different MSs. The geographical

coordinates of the corresponding weather station were
determined and added to each record.

Identifying data for correcting the wind speed value
from the NASAPower dataset for the corresponding
WeatherStation observations first requires extracting
data from both datasets, which are defined by the same
location.

Fig. 1 shows a map of Ukraine with a grid of dot
nodes containing reanalysis data and triangles indicating
the locations of weather stations.
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Fig. 1. Locations of available wind speed data
Based on the pairs of relevant data The following models were selected from the
calculated/measured at the same location, the sklearn library [27]: Linear Regression, Ridge

MEASURVSMODEL dataset of 264543 records was
created. A record represents:

a pair of time series of wind speeds measured at
weather stations and calculated by a reanalysis model at
the nearest NASA grid node,

the height of the location point above sea level,
the serial number of the day of the year on which
the measurement was performed.

The last two features are added to the initial datasets
because altitude and season significantly affect wind
speed. The height above sea level was determined by the
location coordinates from the Shuttle Radar Topography
Mission [26].

A machine learning model
for wind speed shifting prediction

The regression problem was solved based on the
obtained dataset MEASURvSMODEL. The adjusted value

of wind speed was determined for each pair of time series
of wind speeds.

Regression, Lasso Regression, Decision Tree, Random
Forest, KNeighbors Regressor, Perceptron, Gradient
Boosting Regressor, and Historical Gradient Boosting
Regressor.

The root mean square error (MSE) was chosen as
the optimization metric.

To evaluate the performance of the models, five-
fold cross-validation was applied, which ensures the
distribution of data into five subsets, where each model
is trained on four folds and tested on the fifth.

The results for each model were averaged over all
folds, which made it possible to obtain a generalized
assessment of the quality of the models. Table 1 shows
the average values of the root mean square error (RMSE),
the coefficient of determination R2, and the increase in
the Pearson correlation coefficient of each of the models.
These metrics allow us to quantify how well the model
corrects the data.

The best performance was obtained by the Random
Forest ensemble method, which uses the prediction from
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a large number of decision trees. Since each tree is trained
on a random subset of data and features, the model
becomes robust to noise and anomalies, which is
important for meteorological data where there may be
random fluctuations in wind speed.

Table 1 — Results of testing machine learning models
on the regression task

Pearson

Method RMSE R2 Coefficient
Delta

Linear Regression 1.8185 0.3913 0.0027
Ridge Regression 1.8185 0.3913 0.0027
Lasso Regression 1.8193 0.3907 0.0027
Decision Tree 2.1980 0.1107 0.2855
Random Forest 1.6770 0.4823 0.2944
K-Neighbors Regressor | 1.7895 0.4106 0.1331
Perceptron 6.3224 -6.381 -0.5047
Gradient Boosting 1.7033 0.4660 0.0627

The average value of the R2 metric improved by
0.73 points. The smallest increase was observed in
Nyzhni Sirohozy, where the indicator increased from
0.613t0 0.8.

The largest increase was recorded in Zolochiv,
where R2 increased from -2.06 to 0.64. The RMSE
metric improved by 1 on average. The smallest increase
was observed in Nyzhni Sirohozy, where the indicator
decreased from 1.418943 to 1.019769.

The largest increase in model quality by this metric
was observed in Zvenyhorodka, where the RMSE
decreased from 2.132813 to 0.329809. The value of the
Pearson correlation coefficient improved by 0.294 on
average. The smallest increase was observed in

Strelkove, where the coefficient increased from 0.782145
to 0.853491.

The largest increase was in Velykyi Burluk, where
the coefficient increased from 0.17 to 0.826, indicating a
significant increase in correlation accuracy.

Correction of wind speed
in NASApower real-time data

Based on the predictions of the selected Random
Forest regression model, wind speed values were
corrected for all grid nodes with NASAPower reanalysis
data in Ukraine.

To verify the authenticity of the corrected
NASAPower data in relation to the corresponding wind
speed measurements of meteorological stations, the
annual dynamics of changes in trend values were
investigated using the Prophet library [28]. The graphs
below show annual wind speed trends for three different
data sources: WeatherStation (weather station data),
NASAPower (reanalysis data) and CorrectedNASAPower
(corrected data). All three data series have been
normalized to reflect the annual cycle of wind speed,
which allows to reveal the main patterns of fluctuations
throughout the year. The graphs (Fig. 2) show seasonal
fluctuations.

The NASAPower data show similar seasonal
changes but with larger deviations in amplitude,
especially in the summer and fall periods.

The adjusted data provide a smoother trend that is
less prone to the large seasonal variations characteristic
of NASAPower. Example 2, a shows a correct correlation
and corresponds to most of the corrected data in the
nodes. Example 2, b is an example of a not-so-good
correlation, which is explained by the location on the sea
coast.

Saving all 3 trends confirms the authenticity of the
NASAPower data correction

1.25 = WeatherStation
NASAPower
— CorrectedNASAPower

January 1 March 1 May 1 July 1 November 1

Day of year

a

September 1 January 1

— WeatherStation
NASAPower
—— CorrectedNASAPower

05

00 ¢/

May 1 July 1 September1  November 1

Day of year

b

January 1 March 1 January 1

Fig. 2. Locations of available wind speed data: a — Cherkasy, b — Strilkove

Wind speed distribution construction
on the territory of Ukraine
To determine the wind speed value at any point of

the territory, it is necessary to interpolate the wind speed
specified in the coordinate grid nodes. The input to the

interpolation is an array of point coordinates, each of
which contains a wind speed value generated on the basis
of the CorrectedNASAPower dataset.

The result is an output raster - a GIS layer, each
pixel of which corresponds to the predicted wind speed
value using the appropriate interpolation method. The
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accuracy of the method is evaluated by comparing the
predicted value with the wind speed value at the
coordinates of each point of the input sample.
Geostatistical interpolation using the universal
kriging method was performed using the Geostatistical
Analyst module in ArcGIS Pro application [29]. The

result of the kriging interpolation is an output raster,
where the predicted value of wind speed is determined
for each pixel (Fig. 3). GIS technology enables the
determination of wind speed at any specific location. For
instance, as illustrated in Fig. 4, the forecast near the city
of Novoselytsia indicates a wind speed of 4 m/s.
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Fig. 4. Input data for wind speed forecasting

The accuracy of the obtained results was evaluated
using the cross-validation method. The resulting graph of
predicted values (Figure 5) demonstrates that these
values are sufficiently close to both the reference line and
the regression line, which almost coincides with the
reference line.

This confirms the correctness of the interpolation.

Conclusions

1. Based on NASA reanalysis datasets and
measurement results from meteorological stations in
Ukraine, a dataset of wind speed data pairs was created,

Fig. 3. Distribution of wind speed on the territory of Ukraine as of 20.08.2020, 12:00, at an altitude of 10m
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Fig. 5. Graph of predicted value

corresponding to the same location but obtained through
different methods.

2. Through a comparative analysis of regression
task results, evaluated using machine learning models
trained on the dataset, the Random Forest model was
selected as the most accurate (based on RMSE, R?, and
Pearson correlation coefficient) for predicting wind
speed deviations in NASA reanalysis data, bringing them
closer to the actual values.

3. Using the forecasts of the Random Forest
model, corrections were made to wind speed values in the
NASA reanalysis data. The accuracy of the corrected

17



Advanced Information Systems. 2024. Vol. 8, No. 4

ISSN 2522-9052

data was confirmed by the results of the study on the
dynamics of trend changes throughout the year from
three different data sources: meteorological station
measurements, NASA reanalysis data, and corrected
NASA reanalysis data. The Pearson correlation
coefficient improved by 0.07 in the worst case and by
0.66 in the best case.

4. Using the universal kriging method, the
corrected wind speed values were interpolated at grid
nodes across the entire territory of Ukraine. The accuracy
of the interpolation results was verified using the cross-
validation method. Based on the obtained results, a
spatial distribution model of wind energy characteristics
across Ukraine was created in GIS format.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

REFERENCES

International Renewable Energy Agency (2024), Renewable energy statistics 2024, 298 p., available at: https://www.irena.org/-
/media/Files/IRENA/Agency/Publication/2024/Jul/IRENA_Renewable Energy_Statistics_2024.pdf

Amber and Energy Institute (2023), Wind power generation, available at: https://ourworldindata.org/grapher/wind-generation
International Renewable Energy Agency (2022), Renewable power generation costs in 2022, 208 p., available at: www.irena.org/-
/media/Files/IRENA/Agency/Publication/2023/Aug/IRENA_Renewable _power_generation_costs_in_2022.pdf

Samal, R.K. (2021), “Assessment of wind energy potential using reanalysis data: A comparison with mast measurements”,
Journal of Cleaner Production, vol. 313, doi: https://doi.org/10.1016/].jclepro.2021.127933

Gonzalez-Arceo, A., de Musitu, M.Z.-M., Ulazia, F., del Rio, M. and Garcia, O. (2020), “Calibration of Reanalysis Data against
Wind Measurements for Energy Production Estimation of Building Integrated Savonius-Type Wind Turbine”, Applied
Sciences, vol. 10 (24), doi: https://doi.org/10.3390/app10249017

Gelaro, R., McCarty, W., Suarez, Max J. and Zhao, B. (2017), “The Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2)”, Journal of Climate, vol. 30 (14), doi: https://doi.org/10.1175/JCLI-D-16-0758.1
Staffell, I. and Pfenninger, S. (2016), “Using bias-corrected reanalysis to simulate current and future wind power output”,
Energy, vol. 114, pp. 1224-1239, doi: https://doi.org/10.1016/j.energy.2016.08.068

Rodrigues, G.C. and Braga, R.P. (2021), “Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather
Variables in a Hot Summer Mediterranean Climate”, Agronomy, vol. 11(6), no. 1207. doi: https:/doi.org/10.3390/agronomy11061207
Halimi, A. H., Karaca, C. and Biiyiiktas, D. (2023), “Evaluation of NASA POWER Climatic Data against Ground-Based
Observations in The Mediterranean and Continental Regions of Turkey”, JOTAF, vol. 20, is. 1, pp.101-114, doi:
https://doi.org/10.33462/jotaf.1073903

Petrenko, K., Kuznietsov, M., Ivanchenko, I., Karmazin, O. and Borsuk, A. (2023), “ssessment of the possibility of using wind
speed reanalysis data for wind energy calculations”, Vidnovluvana Energetika, is.3, pp.75-85, doi:
https://doi.org/10.36296/1819-8058.2023.3(74).75-85

Shapovalova, S., Matiakh, S. and Titov, V. (2024), “Determination of network traffic anomalies in a distributed computer
system with energy facilities”, Vidnovluvana Energetika, vol. 2(77), pp. 52-57. doi: https://doi.org/10.36296/1819-
8058.2024.2(77).52-57

Sobchuk, V., Pykhnivskyi, R., Barabash, O., Korotin, S. and Omarov, S. (2024), “Sequential intrusion detection system for
zero-trust cyber defense of IOT/IIOT networks”, Advanced Information Systems, vol. 8, no. 3, pp. 92-99. doi:
https://doi.org/10.20998/2522-9052.2024.3.11

Aniskevich, S., Bezrukovs, V., Zandovskis, U. and Bezrukovs, D. (2017), “Modelling the spatial distribution of wind energy
resources in Latvia”, Latvian Journal of Physics and Technical Sciences, vol. 6. pp. 10-20, doi: https://doi.org/10.1515/Ipts-
2017-0037

Abdulhussein, A.-M. Ageel, Smirnova, T., Buravchenko, K. and Smirnov, O. (2023), “The method of assessing and improving
the user experience of subscribers in software-configured networks based on the use of machine learning”, Advanced
Information Systems, vol. 7, no. 2, pp. 49-56, doi: https://doi.org/10.20998/2522-9052.2023.2.07

Poliarush, O., Krepych, S. and Spivak, I. (2023), “Hybrid approach for data filtering and machine learning inside content
management system”, Advanced Information Systems, vol. 7, no. 4, pp. 70-74, 2023, doi: https://doi.org/10.20998/2522-
9052.2023.4.09

Andrieiev, S. and Zhilin, V. (2020) “Methods of construction of hydrological cartographic models according to remote sensing
of the Earth data”, Advanced Information Systems, vol. 4, no. 3, pp. 22—40, doi: https://doi.org/10.20998/2522-9052.2020.3.04
Changyeon, L. (2022), “Long-term wind speed interpolation using anisotropic regression kriging with regional heterogeneous
terrain and solar insolation in the United States”, Energy Reports, vol. 8, pp. 12-23, doi: https://doi.org/10.1016/j.eqyr.2021.11.285
Zhao, W., Zhong, Y., Li, Q., Li, M., Liu, J. and Tang, L. (2022), “Comparison and correction of IDW based wind speed interpolation
methods in urbanized Shenzhen”, Front. Earth Sci., is. 16, pp. 798-808, doi: https://doi.org/10.1007/s11707-021-0948-z
Wackernagel, H. (2003), Multivariate Geostatistics: An Introduction with Applications, Springer, Berlin, 387 p., doi:
https://doi.org/10.1007/978-3-662-05294-5

Kuchuk, N., Mozhaiev, O., Semenov, S., Haichenko, A., Kuchuk, H., Tiulieniev, S., Mozhaiev, M., Davydov, V., Brusakova, O.
and Gnusov, Y. (2023), “Devising a method for balancing the load on a territorially distributed foggy environment”, Eastern-
European Journal of Enterprise Technologies, vol. 1(4 (121), pp. 48-55, doi: https://doi.org/10.15587/1729-4061.2023.274177
Wang, Yu, Wang, D., Zhao, J. and Zhu, C. (2020), “Wind speed spatial estimation using geostatistical kriging”, IOP Conf.
Ser.: Earth Environ. Sci., vol. 619, no. 012049, doi: https://doi.org/10.1088/1755-1315/619/1/012049

Brower, M. C., Barton, M. S., Lledo, L. and Markus, M. J. (2012), Wind Resource Assessment: A Practical Guide to Developing
a Wind Project, Wiley, 280 p., doi: https://doi.org/10.1002/9781118249864

Jung, C. and Schindler, D. (2024), “Global trends of wind direction-dependent wind resource”, Energy, vol. 304, no. 132235,
doi: https://doi.org/10.1016/j.energy.2024.132235

(2024), “NASA Prediction of Worldwide Energy Resources”, The POWER Project, available at: https://power.larc.nasa.gov/
Kudrya, S. (2023), Wind energy, The Institute of Renewable Energy, Kyiv, 135 p., available at: https://www.ive.org.ua/wp-
content/uploads/%D0%92%D1%96%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B
5%D1%82%D0%B8%D0%BA%D0%B0_%D0%BC%D0%BE%D0%BD%D0%BE%D0%B3%D1%80%D0%B0%D1%84
%D1%96%D1%8F-2023 %D0%BD%D0%B0_%D1%81%D0%B0%D0%B9%D1%82.pdf

18


https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Jul/IRENA_Renewable_Energy_Statistics_2024.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Jul/IRENA_Renewable_Energy_Statistics_2024.pdf
https://ourworldindata.org/grapher/wind-generation
http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Aug/IRENA_Renewable_power_generation_costs_in_2022.pdf
http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Aug/IRENA_Renewable_power_generation_costs_in_2022.pdf
https://doi.org/10.1016/j.jclepro.2021.127933
https://doi.org/10.3390/app10249017
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.3390/agronomy11061207
https://doi.org/10.33462/jotaf.1073903
https://doi.org/10.36296/1819-8058.2023.3(74).75-85
https://doi.org/10.36296/1819-8058.2024.2(77).52-57
https://doi.org/10.36296/1819-8058.2024.2(77).52-57
https://doi.org/10.20998/2522-9052.2024.3.11
https://doi.org/10.1515/lpts-2017-0037
https://doi.org/10.1515/lpts-2017-0037
https://doi.org/10.20998/2522-9052.2023.2.07
https://doi.org/10.20998/2522-9052.2023.4.09
https://doi.org/10.20998/2522-9052.2023.4.09
https://doi.org/10.20998/2522-9052.2020.3.04
https://doi.org/10.1016/j.egyr.2021.11.285
https://link.springer.com/article/10.1007/s11707-021-0948-z#auth-Minghua-Li-Aff2
https://link.springer.com/article/10.1007/s11707-021-0948-z#auth-Jia-Liu-Aff2
https://link.springer.com/article/10.1007/s11707-021-0948-z#auth-Li-Tang-Aff2
https://doi.org/10.1007/s11707-021-0948-z
https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/10.15587/1729-4061.2023.274177
https://doi.org/10.1088/1755-1315/619/1/012049
https://doi.org/10.1002/9781118249864
https://doi.org/10.1016/j.energy.2024.132235
https://power.larc.nasa.gov/
https://www.ive.org.ua/wp-content/uploads/%D0%92%D1%96%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D0%BA%D0%B0_%D0%BC%D0%BE%D0%BD%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%8F-2023_%D0%BD%D0%B0_%D1%81%D0%B0%D0%B9%D1%82.pdf
https://www.ive.org.ua/wp-content/uploads/%D0%92%D1%96%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D0%BA%D0%B0_%D0%BC%D0%BE%D0%BD%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%8F-2023_%D0%BD%D0%B0_%D1%81%D0%B0%D0%B9%D1%82.pdf
https://www.ive.org.ua/wp-content/uploads/%D0%92%D1%96%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D0%BA%D0%B0_%D0%BC%D0%BE%D0%BD%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%8F-2023_%D0%BD%D0%B0_%D1%81%D0%B0%D0%B9%D1%82.pdf
https://www.ive.org.ua/wp-content/uploads/%D0%92%D1%96%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D0%BA%D0%B0_%D0%BC%D0%BE%D0%BD%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%8F-2023_%D0%BD%D0%B0_%D1%81%D0%B0%D0%B9%D1%82.pdf

ISSN 2522-9052 CyuacHi indopmartiitai cuctemu. 2024. T. 8, Ne 4

26. (2000), “Earthdata”, Shuttle Radar Topography Mission (SRTM), available at: https://www.earthdata.nasa.gov/sensors/srtm

27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Brucher, M., Perrot, M. and Duchesnay, E. (2011), “Scikit-learn: Machine Learning in Python”, The Journal of Machine
Learning Research,, vol. 12, pp. 2825-2830, available at: https://dl.acm.org/doi/10.5555/1953048.2078195

28. (2023), GitHub Prophet, available at: https://github.com/facebook/prophet

29. (2024), “Advancing the power of geography”, ArcGIS Geostatistical Analyst, available at: https://www.esri.com/en-
us/arcgis/products/geostatistical-analyst/overview

Hapiiinma (received) 22.06.2024
[puitasra no apyky (accepted for publication) 06.09.2024

BIIOMOCTI IIPO ABTOPIB / ABOUT THE AUTHORS

AymieBa Harajis MukoJjaiBHa — JOKTOp TEXHIYHHMX Hayk, mpodecop, 3aBigyBauka kadeapu HU(GPOBUX TEXHOJIOTIH B
eHepreTulli, HamioHanbHWil TexHIYHUH yHiBepcuTeT YKpaiHu «KuWiBCbKMH MOMITEXHIYHUH I1HCTUTYT iMeHi Irops
Cikopcrkoroy, Kuie, Ykpaina;

Nataliia Ausheva — Doctor of Technical Sciences, Professor, Head of Department Digital Technologies in Energy, National
Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine;

e-mail: auscheva@gmail.com; ORCID Author ID: https://orcid.org/0000-0003-0816-2971;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=57210707106.

IlanoBanoBa Ceit;iana IropiBHa — KaHAMIAT TEXHIYHUX HAYK, JOIEHT, JOLEHT Kadenpu HU(PPOBUX TEXHOJIOTIH B €HEPreTHIL,
HanionansHuii TexHiYHMH yHiBepcuTeT YKpainu «KuiBcpkuil mositexHiuHmi iHcTHTYT iMeHi Irops Cikopcekoroy», Kwuis,
Vkpaina;

Svitlana Shapovalova — PhD, Associate Professor, Associate Professor of Department Digital Technologies in Energy,
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine;

e-mail: LanaShape@gmail.com; ORCID Author ID: https://orcid.org/0000-0002-3431-5639;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=35367847700.

Herpenko Katepuna BoaogumupiBHa - Monoammii HayKoOBHH CHIBpOOITHHK, I[HCTHUTYT BiZHOBIIOBaHOI EHEPreTUKU
Hamionansaoi akagemii Hayk Ykpainu, Kuis, Ykpaina;
Kateryna Petrenko - junior researcher, The Institute of Renewable energy of the National Academy of Sciences of Ukraine,
Kyiv, Ukraine;
e-mail: Katerynkapetrenko@gmail.com; ORCID Author ID: https://orcid.org/0009-0004-4658-9946;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorld=57219715314.

Kapaamos Ogaexcanap BagumoBuy — acnipant, HamionanpHui TexHiuyHAN yHIBepcuTeT YKpainu « KuiBChbKHiA MOMITEXHIYHAN
iHcTuTyT iMeHi [rops Cikopepkoroy», Kuis, Ykpaina;
Oleksandr Kardashov — Post-graduate student, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic
Institute», Kyiv, Ukraine;
e-mail: alexanderkardashov3@gmail.com; ORCID Author ID: https://orcid.org/0000-0003-1767-7846.

Codpienkxo Anton IOpiiioBuy — acniipant, HamionansHMi TexHiYHUN yHIBepcUTeT YKpainu « KHiBChKHIA MO TEXHIYHIIA IHCTHTYT
imeHi Irops Cikopcepkoroy, Kuis, Ykpaina;
Anton Sofiienko — Post-graduate student, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic
Institute», Kyiv, Ukraine;
e-mail: anton.sofiienko@gmail.com; ORCID Author ID: https://orcid.org/0009-0002-7337-2203.

I[MoGynoBa MozeJ1i MPOCTOPOBOro PO3MOALLY XapaKTePUCTUK BiTPOBOI eHepril
H. M. Aymiesa, C. 1. [llanoBanosa, K. B. Ilerpenko, O. B. Kapaamios, A. 10. Codierko

AnoTanisi. MeTolw cTaTTi € CTBOPEHHA MOJENII IPOCTOPOBOTO PO3MOIUTY XapaKTEPHCTHK BITPOBOI €Heprii Ha
teputopii Ykpainu. Ilpenmer mocaigkeHHsi - HaOOpU JaHUX 3HAUCHb IIBUAKOCTI BITPY, METOIM KOpessiii, Bamimamii Ta
inTepnonsuii naHux. PesyabraTn nocaimxkennsi. Ha ocHoBi HabopiB nanux peaHanizy NASA Ta pe3yibTaTiB BUMipIOBaHb Ha
70 MeTeopOoIIOTIYHUX CTAHIIsIX YKpalHU CTBOPEHO JaTaceT map BiAMOBITHUX JaHHUX IIBUIKOCTI BITPY, SKi BiTHOCSATHCS 10 OJHi€T
nokarii, ane oTpuMaHi pi3HHMHU crocobamu. Ha OCHOBI HOpIBHAIBHOIO aHali3y pe3ysbTaTiB po3B’s3aHHs 3amadi perpecii
HaBYEHHMH Ha OTPHMAHOMY JlaTaceTi MOAEISIMH MAaIIMHHOTO HAaBYAaHHS 0OpaHO ONTHMabHY 3a TouHicTio (MeTpuku RMSE,
R2, xoedimienra kopemnsuii [Tipcona) momens Random Forest mist mporHo3yBaHHS 3CyBY 3HAYEHHSI IIBUIKOCTI BITPY B JaHUX
peananizy NASA s ix HaOMIDKSHHS JO pealbHOTO 3HAYeHHs. 3HadeHHs KoedimienTta kopemsnii [lipcona mokpammunacs Ha
0,07 B ripmomy Bumazaky ta 0,66 - B kpamomy. 3a nporao3amu Mozeni Random Forest mpoBeneHO KOpeKmilo BCiX 3HaYCHb
IIBUAKOCTI BiTPy B AaHUX peananizy NASA. KopeKkTHICTh CKOPUIOBaHHUX JAHUX TaKOX AOBEJICHO pe3yIbTaTaMH JIOCHiKEHHS
MUHAMIKM 3MIHM TPEHIOBHX 3HAueHb BIPOJOBX POKY Bifi TPhOX PI3HUX J[DKEpeN AAaHHX: BHUMIPIB METEOCTaHIIH, TaHMX
peananizy NASA Ta ckopuroBanux naHux peaHanizy NASA. MeTonoM yHiBepcaabHOTO KPHUTIHTY 31HCHEHO IHTEPIOJIALIIO
OTPHMaHHUX CKOPUTOBAaHMX 3HAUCHb y BYy3J1aX CITKH Ha BCIO TepUTOpit0 Ykpainu. KopekTHiCTh pe3ynbTaTiB iHTepmossmii
nepeBipeHo MeToI0M Kpocc-Bamiaanii. BucHoBok. 3a otpumanumu pesynsratamu ctBopeHo GIS - mporpamuuii pecypc, skuit
JIO3BOJINTH BU3HAYATH JOCTOBIPHI 3HAYESHHS XapaKTEPUCTUK BITPOBOI €HepTii B OyiIb-sIKiif 3aaHiil TOUNi Ha TepuUTOpii YKpaiHH.
3ampononoBana GIS Moxe BHKOPHCTOBYBAaTHCh, HacaMIIepel, IJIS NPOEKTYBaHHS BITPOBUX EJIEKTPOCTAHLINH Ta BUOOPY
ONTUMAJBHUX MICIb IX PO3TAIIyBaHHS.

KawuoBi cioBa: mamumHHe HaBuaHHS, riodOanpHi armocdepHi mozeni; MERRA-2; mereoponoriuni maHi; mani
MIOBTOPHOT'O aHANI3Yy; IHTEPHOJISLIS IIBHKOCTI BITPY; METOJ] 3BOPOTHO 3BAKCHUX BIJICTaHEH; yHIBEpCAIBHAN KPHUTIHT.
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