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DECENTRALIZED INFORMATION SYSTEMS IN INTELLIGENT
MANUFACTURING MANAGEMENT TASKS

Abstract. The object of research: the process of distributed management of production processes in intelligent
manufacturing. The subject of the study: a model of a decentralized system of technological process management in the
production area of a modern plant, taking into account the concept of Industry 4.0. The purpose of the research: improvement
of the management methods of intelligent production processes to ensure the execution of the technological process resistant to
external influences and to ensure the specified indicators of product quality. The following research methods are used: methods
of analysis and synthesis of decentralized production systems, modeling methods and theories of automatic control, mathematical
apparatus of matrix theory, methods of describing linear dynamic systems. Obtained results and conclusions. In this work, the
simulation of the decentralized information system for controlling the production site of intelligent manufacturing using
manipulator robots with an angular coordinate system based on servo drives, which act as stepper motors, is carried out. To
ensure the stability of the distributed system, parallel decentralization of the control process is proposed and the architecture of
the organization of interaction between the components of the cyber-physical system based on it is given. A feature of the proposed
model is the consideration of sensors as part of the feedback of the decentralized control system. The result of the simulation is the

stability of the decentralized cyber-physical system to external influences for the selected transient characteristics.

Keywords:
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Introduction

The implementation of the Industry 4.0 concept in
the manufacturing sector has led to the emergence of a
new class of automated production, namely intelligent
production complexes (smart manufacturing).

Managing intelligent manufacturing is a complex
process that combines diverse equipment, sensors,
actuators, human and material resources, planning tools,
logistics, etc., into a single cohesive mechanism.
Information flows into the management system from
various sources generated by individual devices at each
stage of the technological process.

The relevance of the research lies in the need to
improve management processes in modern intelligent
manufacturing systems to ensure compliance with the
concept of Industry 4.0 and even 5.0. Application of the
model of decentralized management of cyber-physical
systems solves the problem of ensuring the stability of
production processes to external influences and improves
the quality of products. The transition to decentralized
management allows for constant monitoring and control
of the production process in real time, which is critically
important in modern conditions of dynamic production
and changing market needs.

This approach makes it possible to increase the
efficiency of production processes and ensure the
flexibility of the management system for quick response
to changes in the production environment and consumer
requirements.

The object of research is the process of distributed
management of production processes in intelligent

Industry 4.0; 1oT; I1loT; Intelligent Manufacturing; Cyber-physical Systems; Robot; Manipulator;

manufacturing. The subject of the study is a model of a
decentralized system for managing technological
processes in the production area of a modern plant, taking
into account the concept of Industry 4.0.

The purpose of the research: improvement of the
management methods of intelligent production processes
to ensure the execution of the technological process
resistant to external influences and to ensure the specified
indicators of product quality.

Intelligent manufacturing [1-5] is a way of
organizing the production of intelligent services or
intelligent products, based on the search, accumulation,
growth, and transformation of knowledge used as the
foundation for production organization. The intelligent
manufacturing management system allows knowledge to
be collected in a single center (cloud storage) separate
from their carriers (using blockchain technology) and
transmitted to a worker who interprets them to create a
product to meet customer needs.

The main task of intelligent manufacturing
management is to organize the resilient execution of the
technological process to ensure the specified quality
indicators of the product [1].

Research is aimed at solving the problem of
organizing  process management at intelligent
manufacturing. Based on the results of similar works in
this field, the use of parallel decentralization of the
control process is proposed, the architecture of the
organization of interaction between the components of
the cyber-physical system based on it is given, and
mathematical modeling of the system based on
distributed controllers is carried out.
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Analysis of the problem
of creating intellectual production

In work [6], the problem of the gradual
implementation of the fourth technological revolution
and industrial transformation, which is carried out thanks
to information and communication technologies, is
considered.  Technologies that change existing
manufacturing processes are considered: robotics, digital
manufacturing, reinforcement learning, and brain
computing. The authors of the article propose the latest
intelligent technological production system, which is
autonomous and controlled. This structure integrates the
levels of corporate equipment, control and management,
which greatly expands the capabilities of the intelligent
factory and promotes the development of high-level
production.

Another work is the analysis of the application of
parallel additive manufacturing technology [7]. In this
work, a concept is proposed that combines decentralized
intelligent production with additive manufacturing. The
problem of the lack of feedback in online mode for the
production system is considered, which affects its
reliability and stability. The use of prototyping and 3D
printing tools provides a basis for transforming existing
production and transitioning to the Industry 4.0 concept.
Therefore, it is proposed to use integrated systems with
artificial intelligence that employ a methodology for
conducting virtual experiments with simultaneous
parallel execution of the 3D printing process to make 3D
printers intelligent.

The next task for intelligent manufacturing is
resource and production facility management. To
intellectualize this process, it is necessary to apply state-
of-the-art information technologies and identification
principles [8, 9]. This work demonstrates the structure of a
production area management system. The components of
intelligent  production include CNC  machines,
autonomous carts for moving products and parts for their
production, and monitoring tools for measuring
technological process parameters. All components of
automated production are interconnected in a unified
computational network, enabling the management of
goods and raw material logistics. Control over the use of
material resources and intelligent identification is achieved
using radio frequency identification (RFID) devices. The
authors of the paper give suggestions on the organization
of the software structure of the decentralized management
of the production process at the intelligent factory.

In the work [10], the issue of protecting cyber-
physical systems (CPS) from cyber attackers is
examined. Considering that cyber-physical systems rely
on computational networks for managing physical
processes and providing critical services, attacks on these
systems can have dangerous real-world consequences.
This work provides indicators for quantitatively
assessing the level of cyber resilience of CPS based on
criteria such as structural integrity, stability, and
performance during attacks. Using the proposed
mathematical model based on drive saturation, these
indicators allow for a quantitative evaluation of the
ability of CPS to recover their functionality.

The architecture
of intelligent manufacturing

Intelligent manufacturing systems consist of several
subsystems that provide technological, dispatching,
transportation, manipulation, and other operations. These
subsystems should be equipped with auxiliary tools that
provide them with a certain level of intelligence. Thus,
the transition to intelligent manufacturing can be
considered as an advanced phase of flexible production
systems. The components of intelligent manufacturing
systems are shown in Fig. 1.

Intelligent manufacturing
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Fig. 1. The components of intelligent manufacturing systems

As can be seen from the provided illustration, the
components of intelligent manufacturing systems
include: intelligent  design, intelligent quality
management, intelligent management of production
operations, intelligent personnel management, smart
planning, and intelligent maintenance [11, 12].

In intelligent manufacturing, one can distinguish
between the physical space and cyberspace. Production
resources related to the physical space include universal
machines and auxiliary equipment, industrial robots,
manipulators, autonomous vehicles with intelligent
control (AGV), as well as production personnel [13-17].

Data necessary for the execution of the
technological process are collected from intelligent
sensors, RFID devices, computer vision systems, and
measuring devices. These sensors are the source of
information for the cloud environment, which
accumulates data, performs big data processing, carries
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out computations, and generates recommendations for
the operation of executive devices. In the intelligent
factory, these resources constitute cyberspace.

The integration of physical space and cyberspace is
achieved through distributed, high-speed information
networks [18, 19]. The foundation of such networks is
formed by the information technologies of the industrial
internet of things (11oT) [20, 21].

This concept of building intelligent manufacturing
with decentralized control of production processes has been
named cyber-physical systems. Based on input information
from a network of sensors, CPS performs calculations and
influences physical devices to achieve high quality,
flexibility in production, and reduction of raw material costs.
Thus, CPS ensures continuous production with almost zero
downtime of production means and intelligent real-time
decision-making [2, 20, 21].

A cyber-physical system must be resilient to failures,
for which various approaches are used. For example, from
the perspective of organizing communication between the
network of intelligent sensors or actuators, the architecture
(Fig. 1) suggests the use of wireless sensor networks [22—
25]. Wireless sensor networks find application in industrial
automation systems for monitoring and control tasks.
Their main advantage is flexible architecture and minimal
costs for their implementation. An important feature of
wireless sensor networks is their self-organization. Each
individual node connects to a node located within the range
of the antenna. Thus, a stable network is formed for
organizing data transmission. Sensors and actuators
combined into a wireless sensor network form a distributed
system for collecting, processing, and transmitting
information, which has self-organizing properties [25].

The use of a service-oriented approach in
manufacturing management ensures the distribution of
data from various sources in isolated structures and the
construction of a decentralized control model,
implemented through weak links between distributed
processes. This maintains the autonomy of managing
each process for each individual service [26, 27].

Cyber-physical systems [3] are intelligent systems
that include networks of physical and computational
components interacting with each other in the process of
solving a common task. CPS and related systems
(including the Internet of Things (10T) and the Industrial
Internet of Things) have great potential for creating
innovative programs and influencing numerous
economic sectors of the global economy. These
interconnected and integrated systems provide new
functions to improve the quality of life and technological
progress in critically important areas such as healthcare,
emergency prevention, management of transport flows in
a smart city, intelligent manufacturing, defense, and
national security, as well as energy supply and usage.

The conceptual model of CPS is shown in Fig. 2.
This figure demonstrates the interaction of devices,
systems, as well as systems within a system of systems
(So0S). A CPS can be as simple as an individual device,
or it may consist of one or several cyber-physical devices
forming a system, or it can be a system within a system,
consisting of multiple systems made up of multiple
devices.
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Fig. 2. Conceptual model of CFS

This model is recursive and perspective-dependent
(i.e., a device from one perspective can be a system from
another perspective) [1]. Ultimately, the CFS contains a
decision stream along with at least one information or
action stream. An information flow represents a digital
measurement of the physical state of the physical world,
while an action flow affects the physical state of the
physical world. It allows collaboration from small and
medium scale to city/country/world scale.

Ensuring stability of the distributed system

One of the approaches to ensuring the resistance of
a distributed system to failures is the use of a switched
system with parallel computing flows (Fig. 3) [27-29].

In Fig. 3 shows the parallel architecture of the
organization of interaction between the components of
the cyber-physical system, where several processes work
simultaneously without certain connections between
them. In this scheme, interaction is formed dynamically,
by connecting processes through shared memory. All
processes in the decentralized system [21, 25, 29-31] are
performed in parallel and asynchronously, with different
calculation speeds. In the notations of the cyber-physical
system, this architecture provides for parallelization of
processes organized by three groups of flows:
measurement, calculation, and activation.

The approach to fault tolerance of information
systems takes as input a CFS modeled by a transfer
function and creates a robust equivalent system capable
of controlling the same physical process using a switched
linear control system. A switched system consists of a
finite number of subsystems and a logical rule that
controls switching between subsystems. It can be
modeled as follows:

X1 = Toie) (X U ) @
where k € Z* istime interval (Z set of natural numbers),

x € R" is the state of the decentralized system (R is a set

of real numbers), u e RPis input control, & is a logical
rule by which switching between subsystems occurs.
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Fig. 3. Parallel architecture of the organization of interaction
between the components of the cyber-physical system

The function f, maps the set of natural numbers

Z" to the set of integers I:
c:Zt 1, @)
where | ={1,...,N} is contains indexes of subsystems.

The subsystem is determined by the pair:
SUbZ(Mi,Gi), (3)

:{Ai'Bi’Ci e
models, Gj={Vj,Ej:iel} is a set of graphs that

represent network connections in a distributed
communication system between intelligent hardware.

Thus, o defines a switching signal between
subsystems, which is a function of time (activated at time
k) and determined by the process model and the topology
of the sensor network. The physical model activated at
time k is defined by the equation [31]:

where M; I} is a set of physical system

X1 = Ag(k) Xk + Bo(i)Uk »
(k) Xk s Q)

where A, B, C are matrices of control models.

This approach consists in the development of
distributed controllers that change over time the physical
model they execute.

In the considered architecture, the overall
production process is controlled by several independent
controllers and is collectively a decentralized control
system, i.e. if at time k the control model with matrices
A, B;,C; is activated, then as a result we get a set of j

Yk =C

controllers with j el..0. Each controller will use a set of

matrices Ay, B;j,C

0 0

A:LJ'A‘J’ Bi:UBij: Ci:UCij'
j=1

= =

Thus, the controllers work only with a limited part
of the general information.

To obtain different models to represent the general
structure of the state space using the matrices A;,Bj;,C

, It is necessary to construct equivalent models startlng
from the initial transfer G(s).

This will make it possible to obtain different sets of
controllers capable of managing the physical processes
of a distributed system.

Using a set of matrices A, B, C, the mathematical
model of a cyber-physical system can be written as
follows [10]:

Xis1 = Ax + B (U )+ o, (5)

where x, € R" s vector of state variables at the kth

time step, u, € RP is control signal, e, is process noise,
which can be described by white Gaussian noise,
AeR™" is state matrix, B R™P is input matrix of
actuator signals.

The output signals of the system depend on the set
of states x,, of sensors that are affected by noise vy :

Yk =Cx¢ +uy (6)

mxn
R

where C e is matrix of output signals.
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When CFS are used to manage technological
processes in intelligent manufacturing, large data flows
are used, coming from the network of sensors and
reaching the executive mechanisms. These flows impose
fundamental limitations on the performance and
capabilities of CFS, as they require a large bandwidth and
contribute to the rapid depletion of energy reserves
during wireless communication. To overcome this

limitation, it is necessary to consider the CFS as an
implementation of a set of distributed information
processing systems [31].

The principle of the decentralized process of
managing physical processes in intelligent production
with independent controllers and executive devices can
be presented in the form of a functional diagram
(Fig. 4) [32].

Physical processes
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Fig. 4. The principle of the decentralized process of managing physical processes

This diagram describes a situation where industrial
controllers of a distributed technological process manage
specific executive devices. The executive devices affect
the physical environment not only in their area of
responsibility. For example, the ventilation control
system regulates the microclimate condition in the
production area, but at the same time, the dynamics of
temperature change can affect the quality of the final
product due to the dependence of technological regimes
on its indicators. Thus, in the physical world, a controller
managing one device or process influences the operation
of another piece of equipment or process in the physical
world.

The system has two inputs Ry (s), Ry (s) and two
outputs Y;(s), Y(s). In general, the output of the

control unit U (s) can be described by the following
equation:

()

The output signal U (s) from the control unit takes
into account the error E(s):
U(s)=C(s)E(s). (8)

Physical processes controlled by a set of controllers
can be described by the following equation:

R (s) Rq (s)
P(s)= I:’212(5) PZqE(S) _ ©)
Pu(s) Pag (s)

The set of distributed controllers is written by the
equation:

Cua(s) Ciq(s)
C(s)= C”E(S) ngz(s) . (10)
Cra (s) Cnq (5)

Thus, the output signal Y (s) takes into account the
signal from the control unit U (s) and the effect of the
operation of the physical process unit P(s) and is
described by the following equation:

Y(s)=P(s)U(s).

Possible variants of output signals at the output of a
distributed system can be presented in the form of a
matrix:

(11)

Yi(s)
(12)
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At the same time, the set of input signals R(s) can
be presented in the form of a matrix:

Ri(s)

R(s)=|

(13)

The measurement signals M(s), coming from the
output of the sensors S(s), included in the feedback
circuit, give the controllers information about the state of
the executive devices:

: (14)
Mg (s)

Thus, the sensor output signal M(s) takes into
account the output signal Y(s) and the conversion factor
of the sensor S(s) and can be described by the following
equation:

M(s)=Y(s)S(s).

(15)

The transition to full decentralization occurs with
the use of decentralized controllers C(s) (Fig. 5) [32]:

C(s)=C'(s)D(s), (16)

where C'(s) is diagonal controller, D(s) is compensation
block.

The compensation block D(s) can be represented as
a distributed network to minimize interactions between
processes. Thus, the decentralized controller C(s)
produces signals V(s) that enter the input of the
distributed network. As a result, each diagonal controller
C'(s) controls n independent processes.

The distributed network nxn with n =2 is written
in the form of a compensation matrix:

o(s) {Dﬂl(s) Dlzl(s)}_

After the application of distributed controllers, the
model of the decentralized control system of the cyber-
physical system can be presented in the form shown in

(17

C4(s): Coupled controller

V(S)

Fig. 6.
M(S)
S(s)
5 Y(S)
D(s) : SO >

Fig. 5. Transition to a control system with a distributed controller
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Fig. 6. Model of a decentralized cyber-physical system control system

Experimental research

Considering the dynamic nature of real processes,
the standard mathematical description of models
includes, in addition to algebraic relations, dependence
on the accumulated (integral) effect of process variables

and dependence on the rate of change (differential effect)
of variables.

These two features define the dynamics of the
object, and point to the fact that the behavior of a real
process cannot be satisfactorily described without
including its past history and how changes occur.
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We will conduct experimental studies of the model
of decentralized control of automation means at the
production site. To build the model, we will use
executive devices in the form of angular manipulator
robots [33, 34]. The constructions of manipulators under

NEMA17

consideration consist of two moving links and a rotating
platform. The movement of the joints is performed by
servo drives based on NEMAL7 and NEMAZ23 stepper
motors. In Fig.7 shows the appearance of the

manipulators.

NEMA23 . 3

%

g
\

Fig. 7. Appearance of manipulators

In Fig. 7, a shows the design of a manipulator robot
with four moving degrees of freedom based on NEMA17
stepper motors. A feature of the design is the ability to
move the rails to the left and right. Each stepper motor
implements a certain degree of freedom. The motors are
controlled by the control module, which is built on the
basis of the Arduino Mega controller.

In Fig. 7, b shows the design of the layout of an
industrial manipulator robot with three moving degrees
of freedom based on NEMAZ23 stepper motors.

In Fig. 8 shows the spatial reach zones of both
angular-type manipulator designs.

Zmin

Fig. 8. Spatial zones of reach of the manipulator
in the vertical plane

The spatial area of action of the manipulator in the
vertical plane is limited by the design features of the

device and in Fig. 8 is represented by the radii Rmin, Rmax,
and the surface Zmin and Zmax. In the horizontal plane, the
movement of the manipulator is limited by the radii Rmin,
Rmax- Thus, we have a set of coordinates located within
the range of the manipulator, which can be presented as
follows:

Mxyz e{Rmin RMmax Zmin Z)r(r;/gx}

Xyz » \xyz 1 &xyz o (18)

Models can be reduced to the form of differential
equations with continuous time, difference equations
(with discrete time), or their combination (hybrid or
impulse systems). These models connect the object's
inputs with its individual outputs and deal with a limited
description of the system in the process of its study.

As can be seen from Fig. 7, the main moving
element of executive devices of robot manipulators as
part of the CFS are servo drives. To simulate the behavior
of a decentralized production site control system using
manipulator robots, let's write down the main ratios for
DC motors with independent excitation:

JO(t) =10 (t) =keiq (1), (19)
Vo (1) =k0(t), (21)
iy (t):Va (t)_kZé(t) , (22)

R

where J is moment of inertia of the motor shaft, 6(t) is
rotation angle of the engine shaft, 7, (t) is electric

torque, ky, k, are constants, iy (t) is motor armature
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current, V4 (t) is armature voltage; R is armature

resistance.
Combining these equations, we get the following
model in the form of a second-order differential equation:

Jé(t):k{w}

= (23)

This model can be presented as:
0 1 0
d(o(t) o(t)
ll g = _ . t). (24
dt[&(t)j o ke {H(t) Hka fvalt). @29
JR JR

If we take k; =JR and k, =2, then using the
properties of the Laplace transform to the model, we get:

If the initial conditions 9(0‘)=0, 9(0‘):0 and

the input signal is a single step function applied at time
t=0, then

kq )
o) :[JRSZ +k1k25]va( )

_ kg 1
JRs? +kkys ) S

Thus, the transmission characteristic of the system
in its general form will be written as follows:

_ ki
JRSZ + klkzs .

(26)

G(s (27)

JR - -
—52®(s)+kzs®( )- _ _Taklng into account the_value of the moment of
ky inertia of the shaft and the resistance of the armature of
R R (25)  the stepper motors used in the research (Table 1), and
—(—s + kzje(O‘ ) - —9(0—) =V, (5) assuming constant coefficients k; =k, =1, the structural
kg kg diagram shown in Fig. 9.
Table 1 — Characteristics of stepper motors of medium power
Stepper motor model Moment of inertia of the motor shaft, J, kg-m? Armature resistance, R, Ohm
NEMAZ23 JK57HS76-1006 0,00018225 8,6
NEMA17 JK42HS40-1704 0,0016 1,65
NEMAZ23 JK57HM76-2804 0,0324 1,15
NEMAL17 JK42HS34-1334AC 0,000484 2,1
~
1
O " g 2 (i e O
—0.00157s* - s J 1
0.002645% + 5 0.00264s” + 5
=
—0.001025% — s 1
" 0.0372652 + s | 0037268 + 5
1
o Pie) 0.001025" + 5
\I"

Fig. 9. Structural diagram of the experimental model of decentralized control of automation means

After performing the research, in Fig. 10 shows the
transient characteristics of the developed model.

The conducted simulation showed that the system is
stable and the output signal stabilizes in 0.14 ms, which
is good for distributed systems of this type [32, 35-38].

Conclusions

This paper proposes the use of a model of
decentralized management of cyber-physical systems in
intelligent production. The main purpose of such a
decision is to ensure the implementation of a
technological process resistant to external influences to
ensure the specified indicators of product quality.

Cyber-physical systems increase the efficiency of
these processes thanks to the distributed structure of
sensors and executive devices connected to each other by
a decentralized information network of data
transmission. Decentralized management of production
processes provides real-time monitoring and control of
the entire technological process in an intelligent factory,
which provides opportunities to adapt production to meet
customer needs. To ensure the stability of the distributed
system, parallel decentralization of the control process is
proposed and the architecture of the organization of
interaction between the components of the cyber-
physical system based on it is presented.

107



Advanced Information Systems. 2024. Vol. 8, No. 3

ISSN 2522-9052

Ready

70 80 90 100

Sample based |T=100.000

Fig. 10. Transient characteristics of the developed model

An intelligent manufacturing architecture has been
built that combines physical space and cyberspace. The
simulation of the decentralized control system of the
production area using manipulator robots with an angular
coordinate system based on servo drives, which act as
stepper motors, was carried out. The cyber-physical
system is presented as a distributed management process
based on decentralized controllers. It is proposed to use the
methods of describing linear dynamic systems for such
controllers. The described structure is a multi-parameter

controller consisting of a diagonal controller and a
decoupling network in the form of a compensation block.

A feature of the proposed model is the consideration
of sensors as part of the feedback of the decentralized
control system. The result of the simulation is the
stability of the decentralized cyber-physical system to
external influences for the selected transient
characteristics. Thus, the proposed approach best reflects
the features of cyber-physical systems in the tasks of
intelligent production management.
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I. III. HeBmromos, C. I1. Hosocenos, O. B. CuuoBsa, B. I'oneenko, H. B. Kocenko

AHoTanisi. O0’€KT TOCTIIZKEHHSsI: TIPOLIEC PO3MNOAIIEHOTO YIPABIiHHS BUPOOHUYNMH MTPOLIECAMH B iHTEICKTYaJIbHOMY
BupoOHuLTBI. Ilpeamer MOCHiIKeHHSI: MOJeNb ACLCHTPATi30BaHOI CHCTEMH YIPABIIHHS TEXHOJIOTIYHUM MPOLECOM Yy
BUPOOHUUIH 30HI cyyacHOro 3aBoxy 3 ypaxyBaHHsM koHuenuii Inmycrpii 4.0. MeTa nocaaiaKeHHSI: YIOCKOHAJICHHS METO/IB
YNpPaBIiHHS 1HTEJICKTYaIbHUMH BUPOOHHYUMH TpOLecaMy A 3a0e3MedeHH s CTIHKOro 10 30BHINIHIX BIUIMBIB TEXHOJIOTTYHOTO
nporecy Ta 3a0e3eueHHs 3a1aHNX TIOKa3HUKIB SKOCTI POAYKIIii. BHKOPHCTOBYIOTBCS TaKi METOIM JAOCIIDKEHHS: METOIH aHAITI3Y
Ta CHHTE3Y JICLICHTPAIi30BaHUX BUPOOHUYMX CHCTEM, METOIM MO/ICIIIOBAHHSI Ta TEOPil aBTOMAaTHYHOTO KepyBaHHs, MATeMaTHYHUN
amapaT Teopii MaTPHIb, METOJM OMHCY JIHIHHUX JUHAMIYHUX cucteM. OTpuMaHi pe3yJbTAaTH Ta BHCHOBKH. Y HaHIH poOOTi
MPOBENICHO MOJEITIOBAaHHS JEIIEHTPaTi30BaHOI iHPOPMAIIIITHOT CHCTEMH YIPaBIiHHS BUPOOHHYOIO JUISHKOIO 1HTEIEKTYAIEHOTO
BHPOOHUIITBA 32 JOIOMOT'00 POOOTIB-MaHIMyJIATOPIB 3 KYTOBOIO CHCTEMOIO KOOPIMHAT Ha OCHOBI CEPBOIPUBO/IB, 5IKi BUKOHYIOTh
POJb KPOKOBUX IBHUTYHiB. [1st 3a0e3meueHHs cTabiIbHOCTI PO3MOIITICHOT CHCTEMH 3alPONIOHOBAHO MapaliebHy JeleHTPati3alliio
HpolLecy YIpaBJliHHS Ta HaBEJCHO 3aCHOBAHY Ha Hill apXiTeKTypy opraHizaliii B3aeMoaii MK KOMIIOHEHTaMHu KibepdizndHoi
cucteMd. OCOONUBICTIO 3aIIPOIIOHOBAHOT MOJIEN € BpaXxyBaHHs AAaTYHMKIB K YaCTHHHM 3BOPOTHOTO 3B’S3KY JACILEHTPATi30BaHOT
CHCTEMH yIpaBIiHHs. Pe3yIbTaToM MOIETIOBaHHS € CTIHKICTB ACEHTPATi30BaHO1 Kibep(i3HIHOT CHCTEMH JI0 30BHIIIHIX BIUTABIB
JUIst 0OpaHKX MepexXiTHUX XapaKTePHCTHK.

Kawuosi caosa: Inaycrpis4.0; 10T; 110T; intenexkryansHe BUApOOHUITBO; Kibepdi3znuHi cucTeMu; podoT; MaHimmysTop;
JCLEHTpalIi30BaHa CUCTeMa YIIPaBIiHHS.
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