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SEQUENTIAL INTRUSION DETECTION SYSTEM
FOR ZERO-TRUST CYBER DEFENSE OF IOT/IIOT NETWORKS

Abstract. Relevance. The Internet of Things (1oT) and the Industrial Internet of Things (I1oT) and their widespread
application make them attractive targets for cyber attacks. Traditional cybersecurity methods such as firewalls and antivirus
software are not always effective in protecting 1oT/IloT networks due to their heterogeneity and large number of connected
devices. The zero-trust principle can be more effective in protecting IoT/l10T networks. This principle assumes on no inherent
trustworthiness of any user, device, or traffic, requiring authorization and verification before accessing any network resource.
This article presents a zero-trust-based intrusion detection system (IDS) that uses machine learning to secure 10T/Il0T networks.
The aim of this article is to develop a two-component IDS for detecting and classifying cyber-attacks. The study utilizes
machine learning techniques, such as Decision Tree, Random Forest, and XGBoost, on the Edge-lloTset dataset. The following
results were obtained. The IDS structure proposed here employs a sequential approach that consists of two Al modules. The
first module detects attacks using a simpler model like Decision Tree. The second module uses more complex models like
Random Forest or XGBoost to classify attack types. Experimental evaluation on the Edge-lloTset dataset demonstrates the
system's effectiveness, with an overall accuracy of 95% and significantly reduced response time compared to single complex
model systems. Conclusion. The proposed design for an Intrusion Detection System (IDS) achieves high accuracy in detecting
attacks while maintaining optimal performance and minimizing additional computational costs. This is especially crucial for
real-time network monitoring in 10T/lloT environments. Further research can focus on the practical implementation of the

proposed IDS structure for physical realization in securing 10T/I10T networks based on the zero-trust principle.
Keywords: cybersecurity; zero-trust security; 10T; 110T; intrusion detection; machine learning.

Introduction

The Industrial Internet of Things (l1oT) refers to a
complex network of interconnected devices, sensors, and
machinery utilized in industrial environments to gather,
share, and analyze data. Its objective is to augment
operational efficiency, facilitate predictive maintenance,
refine processes, and boost overall productivity across
various sectors, including manufacturing, energy,
transportation, and healthcare. 110T is revolutionizing urban
areas worldwide, turning them into smart cities. A study
from 2021 [1] highlighted a notable growth in the number
of lloT-connected devices: from 8.6 billion in 2019 to 9.76
billion in 2020, reaching 11.28 billion in 2021. Furthermore,
projections estimate an exponential increase to
approximately 29.42 billion connected devices by 2030.

As the internet has become indispensable in our
daily lives, the quantity of internet-connected systems
continues to rise. The evolution of computer networks,
servers, and mobile technology has significantly
expanded internet access. However, the widespread use
of the internet has also attracted cybercriminals, who are
continuously developing more advanced and potent
cyber-attack methods for their gain. According to IBM
[2], the average data breach cost in 2022 was $4.35
million USD, a 2.6 percent increase from 2021's $4.24
million USD. This estimate is based on the expenses of
550 organizations experiencing data breaches across 17
countries and industries, such as healthcare, finance, and
energy, indicating the significant financial impact of
cybersecurity threats.

In response to these evolving challenges, the
concept of Zero-Trust Architecture (ZTA) [3-5] is
rapidly gaining traction and is increasingly regarded as

the preferred security architecture for these
environments. It marks a paradigm shift from the
traditional “trust but verify” approach to a more robust
“never trust, always verify” stance. ZTA is characterized
by a fundamental stance where no user or device is
inherently trusted, regardless of status or location.
Instead, it requires continuous monitoring, robust
authorization, authentication methods, and ongoing
assessment of the trustworthiness of all users and devices
in the network. However, Implementing Zero Trust (ZT)
principles using static policies is an exceptionally
complex task, becoming even more challenging in
10T/I1oT environments due to their dynamic nature.

To mitigate cyber threats, zero-trust networks must
implement an Intrusion Detection System (IDS) to
promptly detect potential cyberattacks and anomalies.
IDS ensures network systems can effectively respond to
evolving threats while maintaining integrity and security.
As the number of users and devices grows, automated
real-time monitoring and dynamic security assessments,
essential aspects of Zero Trust Architecture (ZTA),
require solutions and methods capable of handling large
volumes of data. Artificial intelligence (Al) algorithms
can play a pivotal role in overcoming these challenges
through intelligent monitoring, evaluation, and decision-
making processes.

Thus, Spadaccino and Cuomo [6] explored the
potential and obstacles of implementing edge computing
within an 1DS-equipped loT setting. They utilized
machine learning within their IDS to facilitate the
detection of anomalies. Their examination included the
pros and cons of deploying IDS, focusing on the
necessities for immediate responses, storage capabilities,
and processing power.
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DNNs and other complex ML algorithms are widely
employed by researchers [7-11] to develop IDSs.
However, these models are becoming increasingly
intricate in architecture, requiring substantial computing
resources and hardware. The complexity of ML-based
IDS models makes it challenging to elucidate the
reasoning behind their predictions and complicates the
process for humans to understand the rationale behind
these decisions. Additionally, such models are difficult to
troubleshoot and maintain, further complicating their
practical application.

As evidenced by numerous surveys [12-17], many
researchers have focused more on improving the
accuracy of various classification models rather than
developing realistic and trustworthy IDS systems. This
trend highlights a potential gap in addressing the practical
implementation challenges and the overall reliability of
IDS solutions in real-world scenarios. Our study
proposes a zero-trust IDS framework with two Al-based
modules for anomaly detection and classification:

1. Attack Detection Module: This module is tasked
with identifying attacks. It can be situated on edge servers
in a 5G network to optimize learning traffic patterns from
connected devices. Its design prioritizes low
computational demands, rapid traffic analysis, and high
detection accuracy.

2. Attack Classification Module: Utilizing more
sophisticated and complex Al algorithms, this module
specializes in categorizing the types of attacks. It can be
deployed in the cloud or on-premise servers and integrate
third-party applications. Its functionality hinges on
analyzing attack traffic, making it versatile for
deployment scenarios.

This study includes an experimental analysis of the
proposed solution to test the effectiveness, efficiency,
and practicality of the zero-trust IDS in real-world
scenarios. The aim is to demonstrate its capabilities and
identify areas for improvement.

By focusing on these critical areas, the study seeks
to contribute valuable insights and advancements to the
field of cybersecurity, particularly in developing and
implementing more secure, reliable, and transparent IDS.

The rest of the paper is organized as follows.
Section 2 briefly reviews zero trust architecture
principles, network micro-segmentation for 10T security,
types and classifications of IDS, and machine learning
approaches for anomaly-based network IDS, and provides
an overview of the Edge-11oTset dataset as a testbed for IDS.
Section 3 introduces the proposed IDS framework
architecture and workflow, including details on the Attack
Detection Module and the Attack Classification Module.
Section 4 contains the experimentation process, the dataset
used for evaluation, the preprocessing steps, the training
process for the detection and classification models, the
evaluation metrics employed, and the analysis of the results
obtained. Finally, Section “Conclusions” summarizes the
essential findings and contributions of the study in this
section, along with potential future research directions.

1. Background and Related Work

The United States Department of Defense (DoD)
has introduced a Zero-Trust Architecture (ZTA)

framework [5] that integrates threat intelligence and
remediation strategies. Central to this framework are
machine learning analytics, real-time network traffic
monitoring, and orchestration capabilities.

Network micro-segmentation is crucial for
implementing Zero Trust (ZT) security within loT
networks. The key benefits of using micro-segmentation
are:

e Micro-segmentation minimizes the attack
surface by dividing the network into smaller, controlled
segments. It confines potential breaches, significantly
reducing the overall attack surface.

e Granular access control for precise access
control policies, ensuring devices can only access
necessary network resources, aligning with the Zero
Trust principle of “never trust, always verify.”

o Lateral movement prevention segmentation
limits an attacker's ability to move laterally within the
network, containing any damage to isolated segments.

e Improved compliance: helps meet regulatory
standards by restricting access to sensitive data only to
authorized devices and users.

o Scalability and flexibility: adapts to changes in
the network, such as adding or removing devices, without
compromising security.

o Enhanced incident response: Facilitates quicker
identification and isolation of compromised devices,
minimizing the impact of security incidents.

Micro-segmentation in the 10T context can be
implemented through software-defined networking
(SDN), supplemented by network function virtualization
(NFV) and a software-defined perimeter (SDP). These
components work together to form an overlay network,
providing enhanced resource protection.

Syed et al. in [18], showed that IDS integrated within
SDN environments significantly enhances network
security through centralized monitoring, detection, and
responsive measures against malicious activities and
policy violations. This integration facilitates the dynamic
deployment of security policies. SDN controllers can
quickly adjust network configurations in response to
detected threats, such as rerouting traffic or isolating
compromised network segments. Additionally, the
programmable nature of SDN enhances traffic analysis
capabilities, allowing for selective traffic inspection and
more efficient use of resources. Upon identifying potential
threats, IDS can trigger automated responses to contain
and mitigate these risks promptly.

Intrusion Detection Systems (IDS) are typically
divided into two main types: Signature-based IDS (SIDS)
and Anomaly-based IDS (AIDS) [16]. SIDS matches
network traffic against a predefined database of known
attack signatures, effectively identifying only previously
recognized threats. This approach, however, cannot
detect novel, zero-day attacks or sophisticated threats that
still need to be cataloged, highlighting a significant
vulnerability in the face of rapidly evolving cyber threats.

Additionally, IDS technologies can be categorized
based on their data source into Host-based IDS (HIDS)
and Network-based IDS (NIDS). HIDS monitors data
from a specific device or host, examining system logs,
firewall logs, and application audits, among other
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sources. This method is particularly adept at uncovering
insider threats that may not generate observable network
traffic. Conversely, NIDS scrutinizes data traversing the
network to identify malicious activity through traffic
analysis, offering a broader, albeit potentially less
granular, view of network security.

The concept of anomaly-based NIDS has gained
significant attention among scholars due to its potential
to overcome the limitations of traditional signature-based
IDS. Furthermore, the rapid development of machine
learning and artificial intelligence algorithms has
contributed to the growing popularity of anomaly-based
NIDS. Surveys [19-21] in the IDS domain have shown
that these algorithms have improved NIDS's accuracy
and detection rates, making it a promising area of
research for scholars in the field.

Our research study utilized a state-of-the-art
cybersecurity dataset called the Edge-l10Tset, which was
published in 2022 by Ferrag et al. in [22]. This cutting-
edge dataset is widely used for evaluating Al-based NIDS
(Network Intrusion Detection Systems). It is generated
using more than ten types of 10T devices, including low-
cost digital sensors for sensing temperature and humidity,
ultrasonic sensors, water level detection sensors, pH sensor
meters, soil moisture sensors, heart rate sensors, flame
sensors, and many more. The dataset contains 14 different
attack categories related to 10T/IloT connectivity
protocols, including DoS/DDoS attacks, information
gathering, man-in-the-middle attacks, injection attacks,
and malware attacks. So this comprehensive dataset is
particularly useful for evaluating the performance of Al-
based NIDS in detecting and mitigating various types of
cyber attacks on 10T/ll0T devices.

The authors of Edge-110T-2022 conducted the most
relevant study to our work. This study [22] achieved high
accuracy results for binary-class classifiers, scoring
between 99.98% and 99.99% classification accuracy using
five algorithms. However, multiclass threat classification
had much lower accuracy, ranging from 67.11% to 83.39%
using Decision Tree (DT), Random Forest (RF), Support
Vector Machine (SVM), and K-Nearest Neighbors
(KNN). The highest accuracy achieved for multiclass
threat classification was 96.01% using DNN.

Taraf et al. [23], evaluated six different
classification algorithms: J48, PART, BayesNets,
AdaBoost, LogitBoost, and an Attribute-Selected

Classifier. The highest accuracy achieved for multiclass
threat classification was 92.92% using DNN.

Nkoro et al. [24] introduced a novel NIDS model
that employed a deep learning approach based on a
combination of Convolutional Neural Network (CNN)
and Bidirectional Long Short-Term Memory (BiLSTM)
architectures. The proposed model was evaluated on the
Edge-110T dataset and achieved an impressive accuracy
of 92% for 4-class classification.

Latif et al. in [25], proposed tri-layer approach for
attack detection combines Convolutional Neural
Networks, Genetic  Algorithms, and  bootstrap
aggregation ensemble techniques to achieve a 100%
accuracy rate for binary and multi-class classification.

As we can observe, achieving high accuracy in
threat classification through machine learning models

comes at the cost of increased complexity. This increased
complexity makes debugging, interpreting, and
maintaining such models challenging. Additionally, high
computational costs make applying Intrusion Detection
Systems (IDSs) that use such models in loT
environments difficult.

2. The Proposed Framework

The architecture of SDN with an Intrusion IDS
framework is illustrated in Fig. 1.
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loT Devices
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Fig. 1. Architecture of SDN with IDS

The proposed IDS framework comprises three
major components: an SDN switch, an SDN controller,
and the IDS. The SDN switch is responsible for
forwarding network traffic based on the instructions
received from the SDN controller. The SDN controller
acts as a central point of control for the SDN network,
enabling administrators to manage network traffic flows
efficiently. Finally, the IDS monitors network traffic for
signs of malicious activity and alerts administrators of
potential security threats. Together, these components
form a comprehensive IDS framework that helps network
administrators proactively detect and mitigate security
risks in the SDN environment.

Our Intrusion Detection System (IDS) comprises
two modules: the Attack Detector and the Attack
Classifier. The Attack Detector utilizes a relatively
simple and easy-to-understand machine learning (ML)
model for binary classification, such as Logistic
Regression (LR) or Decision Tree (DT). This makes it
effective in environments where resources are limited.
On the other hand, the Attack Classifier is based on a
more complex and powerful ML model for multiclass
classification, such as Random Forest (RF) or XGBoost
(XGB).

The workflow of our IDS is illustrated in Fig. 2. The
IDS uses an attack detector to filter and identify
malicious traffic efficiently. Once identified, the traffic is
sent to the Attack Classifier for further analysis. This
approach reduces the computational cost of IDS
operations and enables distributed training of the detector
and classifier.

The attack detector can be fine-tuned for specific
network segments, allowing it to detect anomalies in the
traffic more effectively. This is important because different
network segments may have different characteristics that
need to be considered when detecting attacks.
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Fig. 2. The workflow of the proposed IDS

The Attack Classifier can be a third-party
application based on a large amount of data used to

Edge-llot dataset

Preprocessing

classify attacks. That will make the classifier more
accurate and effective at identifying attacks, as it has
access to a broad range of data to draw upon.

3. Performance Evaluation

To determine the effectiveness of the proposed
design, we constructed two IDS. The first IDS used a
combination of DT and RF, which we called DT-RF. The
second IDS combined DT and XGBoost, which we
named DT-XGB. We compared the performance of our
IDS systems with single-model-based IDS that used RF
and XGBoost. We employed an ML pipeline, as
illustrated in Fig. 3.

This consisted of dataset preprocessing, ML model

training, and evaluation using standard metrics:
Accuracy (1), Precision (2), Recall (3), and F1-score (4):
2 _ TN + TP L
cauracy = sy yrpvrps v D
Precision = —— 2
recision = TP+FP’ ( )
Recall = TP 3
eca = TP +FN' ( )
Precision X Recall
F1=2x . 4)

Precision + Recall

Data cleanup

Feature
Encoding

S l

Train ML model

Evaluate ML model

Fig. 3. Used ML classification pipeline

These metrics use different parameters to measure
the performance of the model TP (True Positive)
represents the number of correctly classified attacks, TN
(True Negative) denotes the number of correctly classified
non-attacks, FP (False Positive) is the number of wrongly
classified attacks, and FN (False Negative) refers to the
number of the misclassified non-attack records.

In our multi-class classification, we used macro-
averaged Precision, Recall, and F1-score to provide an
average performance measure across all classes. This
gives us a comprehensive view of the IDS's overall
effectiveness.

In addition to overall performance measures, we
conducted two types of inference time performance
evaluations. The first, batch classification, involved
running an ML model on a set of records. The second,
sequential packet-wise classification, evaluated the
model's ability to process packets individually.

3.1. Dataset Description. The Edge-lloTset dataset
encompasses 61 features generated from a test bed that
includes the cloud computing layer, network functions
virtualization layer, blockchain network layer, fog
computing layer, software-defined networking layer, edge
computing layer, and 10T and 10T perception layer. These
features meet the critical requirements of loT
communications.

The dataset contains 20,939,646 records, with
11,209,923 representing regular traffic and 9,729,723
corresponding to 14 attack classes. Our study used a
sample dataset with 244,460 records to evaluate machine
learning-based intrusion detection systems. This sample is
balanced concerning 'Attack_label," which indicates the
traffic type: O for regular traffic and 1 for attack. It is also
balanced within 'Attack_type' for attack scenarios.

3.2. Dataset Preprocessing And Cleanup.

Step 1: Remove ‘NaN’ values, 29 rows.
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Step 2: Remove duplicated rows, 6201 removed.

Step 3: Drop unnecessary features: “frame.time”,
“ip.dst_host”, “arp.src.proto_ipv4”, “http.file_data”,
“ip.src_host”,  “tcp.srcport”,  “arp.dst.proto_ipv4”,
“http.request.uri.query”,  “icmp.transmit_timestamp”,
“http.request.full_uri”, “tcp.payload”, “tcp.options”,
“udp.port”, “tcp.dstport” and “mgtt.msg” (15 columns
removed).

Step 4: Fix the representation of zero as a string.
We replaced all instances of “0” with “0.0” in rows
containing categorical (non-numeric) data: “mqtt.topic”,
“http.request.version”, “dns.qry.name.len”,
“maqtt.protoname” and “http.request.method”.

It’s crucial to note that normal records have zeros as
“0.0” and attack records have zeros as “0”. This
inconsistency can cause inaccurate machine learning
models with high binary classification accuracy.
Correcting this discrepancy is necessary for accurate
models.

Step 5: Perform encoding of categorical features
using one-hot encoding, a technique to represent
categorical variables as numerical values.

Fig. 4. and 5 illustrate the distribution of records in
the dataset after preprocessing and cleanup concerning
“Attack_label” and “Attack_type” respectively.
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Fig. 4. Class distribution concerning “Attack label”
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Fig. 5. Class distribution concerning “Attack type”

4. Training of Detection Models

We considered two lightweight classification
algorithms, DT and LR, for the detection phase of the
proposed IDS system. From an ML perspective, the
detection phase is a binary classification problem where
“Attack label” is the value to predict. We split the data set
into training and evaluation sets, with 70% for training and
30% for testing. We performed hyperparameter tuning
using Grid Search with stratified cross-validation to obtain
a more efficient and generalized model.

As shown in Fig. 6, DT performs much better as the
detector, showing 96% accuracy compared to LR
algorithm, which has 60% accuracy. This suggests a non-
linear dependency between features and the target. DT
showed good results in terms of detecting anomalous
network traffic while minimizing the number of false-
positive predictions.

We will use DT as the detector for further
implementation of our IDS.

BB Decision Tree
1.01 0.96 0.97 0.96

0.96
0.8 1
0.6 ] 0.59 0.59 0.59 058
0.4 1
0.2 1
0.0 -

Accuracy Precision Recall Fl-score

B Logistic Regression

Fig. 6. Detection performance results

4.1. Training Of Classification Models. We used
two advanced ML models for classifying attack types: the
Random Forest (RF) classifier and XGBoost. Both
methods demonstrated promising results in classifying 14
attack types, with average accuracies of 91% and 92%,
respectively. Fig. 7 illustrates the performance comparison
between the Random Forest and XGBoost methods.

mmm Random Forrest s XGBoost
1.0 1
0.92 0.92 093 094 0.92 0.92 0.92 0.93
0.8 1
0.6
0.4
0.2
0.0 -
Accuracy Precision Recall Fl1-score

Fig. 7. Random Forrest and
XGBoost performance comparison
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4.2. Training Of Classification Models. We also
measured the inference time of the considered models
using a set of 10,000 network packets with 10%
malicious traffic.

The results and the models' performance metrics are
presented in Table 1. It is evident that our sequential IDS,
utilizing two ML models, demonstrates comparable
performance to single-model IDS but also shows
significantly better runtime performance with lower
inference time.

Fig. 8 lllustrates the average inference time after 10
trials for a single packet classification.

We used a set of 10,000 network packets, with 50%
consisting of malicious traffic. It is evident that for
normal traffic, the inference time using DT as the
detector is significantly lower than the inference time
when using more complex models like RF or XGB. Low
computational overhead is crucial for IDS, especially in
IoT environments. Even for malicious traffic, our IDS
performs better than single-model IDS.

Table 1 — Comparison in model performances and inference time

Batch classification -
Model Accuracy Precision Recall F1-score inference time Sequeptlal inference
time (ms)
(ms)
RF 0.99 0.94 0.95 0.95 144 31,394
XGB 0.99 0.98 0.92 0.95 35 4,256
DT-RF 0.99 0.99 0.93 0.96 24 3,373
DT-XGB 0.99 0.98 0.92 0.94 7 821
20 Network packet classification inference time
3.5 - N 1 Y
ek L Ju-v-\_:v-rw ‘WW\M\W‘J e i;“f‘.* "’A\I"*"
3.0
e . RV WPV
E 254 ge
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s 201 — orxcs
E 15 4 Normal Traffic
% ' Malicious Traffic
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0.0
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Fig. 8. Network packet classification inference time

We used a set of 10,000 network packets, with 50%
consisting of malicious traffic. It is evident that for
normal traffic, the inference time using DT as the
detector is significantly lower than the inference time
when using more complex models like RF or XGB. Low
computational overhead is crucial for IDS, especially in
0T environments. Even for malicious traffic, our IDS
performs better than single-model IDS.

Conclusions

This paper presents a design for a machine learning-
based Intrusion Detection System (IDS) that adopts a
zero-trust security paradigm for 10T/lloT systems. We
tested our design using Edge-lloTset, one of the most
recent cybersecurity datasets. We created a two-stage
anomaly detection and classification system capable of
identifying diverse cyber threat patterns with a high
accuracy of 95% and high run-time efficiency. Our
simulation results showed a speedup of 5 times for batch
classification compared to single-model-based IDS using

complex models like Random Forest (RF) or eXtreme
Gradient Boosting (XGB) and 5 (RF vs. DT-RF) to 8
times (XGB vs. DT-XGB) for sequential packet-wise
classification, where packets were inputted to the model
one by one.

Our results showed that the presented design of IDS
with Decision Tree (DT) as a relatively simple ML model
for malicious traffic detection, accompanied by more
complex and powerful models like RF or XGB, has
significantly lower overhead than IDSs based on only
complex models. This indicates that our two-stage model
has significant potential for real-time Network-based IDS
(NIDS) usage. Additionally, using a simple ML model as
the attack detector is much easier to debug, maintain, and
interpret. For example, a Decision Tree (DT) delivers the
classification decision and elucidates its rationale.

In future work, we will assess our design on other
popular cybersecurity datasets and a real Software-
Defined Networking (SDN) system and evaluate its
throughput and latency performance.
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IocinoBHa cucTeMa BUsIBJIEHHSI BTOPTHEHb 1151 3a0e3neuyennst Kibep3axucry mepex loT/I10T
HA OCHOBi NPUHIUITY HYJbOBOI 10BipH

B. B. Cobuyk, P. O. Iuxniscekuii, O. B. Bapa6ami, C. M. Koporin, 11I. A. Omapos

AHoTanisan. AxkryaiabHicth. Mepexi Iateprery Peueii (IoT) i IIpomucnoBoro Inteprery Peueit (IIoT) Ta ix mmpoke
3aCTOCYBaHHS, POOJIATH IX MPUBAOIMBOIO MilIeHHIO [T KibepaTak. TpaauiiitHi MeToau KibepOesmeky, Taki sk OpaHaMayepH Ta
aHTHBIpYCHE NpOrpaMHe 3a0e3redeHHs, He 3aBxau edekTuBHi i 3axucty mepex [oT/IloT gepe3 HeoqHOPIAHICTE Ta BETUKY
KUTBKICTD MTiIKITFOUSHHX MPHIaaiB. [IpHHIMI HYTLOBOT T0BipH (zero-trust) Moxe OyTu 6ibin e)eKTHBHIM METOIOM 3a0e3MeyeHHs
kibep6esnexkn mepexx [0T/IloT. Lle mpuHIMI IPYHTY€EThCS HA MPUITYLICHHI, 1[0 JKOASH KOPHCTYBad, MPUCTPiit abo Tpadik He €
HaJiiHUM 32 3aMOBYYBAHHSM, 1 10 BCi BOHHU INOBHMHHI OyTH aBTOPHM30BaHI Ta MEpEeBipeHi mepen JOCTYHOM 0 OyIb-SKOro
MepexeBoro pecypcy. Ilpeamerom BUBUeHHS 1€l CTaTTi € cucTeMa BusiBieHHs BTopraeHs (IDS) Ha ocHOBI Mojesieii MalnHHOTO
HaBUYaHHA, po3pobieHa s 3axucty Mepex [oT/IloT nobymoBaHuX 3a MPUHIMIIOM HYJIHOBOI TOBipH. MeTOI0 CTaTTi € po3poOKa
nBokoMIoHeHTHOI IDS muist BusiBieHHs Ta Kiacudikamii kibeparak. B mocainxeHHi BUKOpUCTaHi MeTOIM MAIIMHHOTO HABYaHHS,
taki sk Decision Tree, Random Forest Ta XGBoost, 3 BukopucranusM cydacHoro Habopy manmx Edge-110Tset. Orpumano
HACTYNHI pe3yabTaTH. 3alporoHoBaHa CTPykTypa IDS 3 BUKOPHCTaHHSM ITOCTIZOBHOTO MiAXOMY, IO BKJIIOYAE JBAa MOy
IITYYHOTO IHTEJIEKTY: MOJYJIb BUSIBICHHS 3JI0BMHCHOTO TpadiKy 3a A0OMOMOroo mpocToi Moaedni, sk-ot Decision Tree, i Moxymnb
kinacudikanii aTak, 110 BAKOPUCTOBYE O1JIbLI CKIaaHi Moaedi, Taki sik Random Forest a6o XGBoost, 1uist kinacugikarii THITIB aTak.
ExcrniepumeHTansHa oninka Ha Habopi nanux Edge-IloTset nemMoHcTpye eeKTHBHICTh CHCTEMH i3 3arajbHOI0 TOYHICTIO 95% Ta
3HAYHO MCHIIIMM YacOM BiMOBi/i MOPIBHSIHO 3 CHCTEMaMH Ha OCHOBI OJHi€l CKIaaHOT Mojesi. BHCHOBOK. 3ampomnoHOBaHMiA
nu3aite IDS 1o3BosIsie JOCATTH BUCOKOT TOYHOCTI BUSBICHHS aTak 31 30€pe:KEHHSAM MPOJYKTUBHOCTI 1 MIiHIMI3aIi€lo JOIaTKOBUX
00YNCITIOBATFHUX BUTPAT, IO € KPUTHYHUM IUISI MOHITOPHHTY Mepexi y peanpHoMy daci B cepenoBumax loT/IIoT. Takox
iarerpamis IDS i3 mporpamuo-KoH}irypoBaHoto Mepexkero (SDN) cmpuse IeHTpami3oBaHOMY KOHTPOIIO, IWHAMITHHM
OHOBJICHHSIM TIOTITHKHM OE3MEeKHM Ta aBTOMATH30BAaHMM pEaKmisM Ha 3arpo3d. [lepCcreKTHBHUM HANPSIMKOM MOAAIBIINX
JDOoCTiIKeHb € TPaKTUYHA IMIUIEMEHTALlis 3arnponoHoBaHoi crpyktypu IDS ms ¢isnunoi peanizarii B 3a6e3nedenHi kibepoesnexu
mepex [0T/IIoT Ha OCHOBI IPUHLKUITY HYJIBOBOI JAOBIpH.

KawuoBi croBa: kibepOesneka; Mozeb HyIp0B0i AoBipy; |0T; 110T; BUsABICHHS BTOPTHEHD; MAITMHHE HABUYAHHS.
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