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POST-FILTERING OF LOSSY COMPRESSED NOISY IMAGES
AND ITS EFFICIENCY PREDICTION

Abstract. The object of the study is the process of lossy compression of noisy images and their post-filtering. The
subject of the study is the approach to efficient two-stage processing (compression and post-filtering) for better portable
graphics (BPG) coder and prediction of its efficiency. The goal of the study is to analyze performance characteristics of the
considered two-stage approach and to propose an approach to their prediction. Methods used: numerical simulation,
regression, statistical analysis. Results obtained: 1) the considered approach advantage is that it is able to provide
improvement of quality of compressed noisy image under condition that an image is compressed with compression ratio
smaller than that one corresponding to optimal operation point; 2) the approach efficiency depends on several factors
including noise intensity, image complexity, and filter type and parameters; 3) the main characteristics of the two-step
procedure can be quite accurately predicted in advance and this allows offering useful information for decision undertaking
on what value of the coder parameter to apply; 4) this leads to either improving the compressed and processed image quality
compared to its original version or, at least, to avoiding quality degradation. Conclusions: based on the results of the study,
it is worth 1) predicting performance characteristics for the two-stage processing; 2) adapting the processing to image

complexity and noise intensity.
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Introduction

A tremendous number of images of different origin
is acquired nowadays by different imaging systems
[1-3]. This takes place in medical diagnostics [1], remote
sensing [2], military reconnaissance [3], social
networking [4], and so on. In addition, average image
size becomes larger due to improved spatial resolution
and the use of more components of multispectral [5] and
hyperspectral [6] data. This results in problems dealing
with image storage and transfer via communication lines
[7]. Compression is known as a tool to decrease the data
size [5-7] where lossless image compression [7, 8] is
reversible but often unable to provide appropriately large
and variable compression ratio (CR). Because of this,
lossy compression is widely used [5, 6, 8]. Such a
compression introduces distortions [5, 9] and, then, it
occurs necessary to provide an appropriate trade-off
between a compressed image quality according to a used
metric and CR [9, 10].

Reaching the trade-off is carried out in two ways.
First, a coder able to provide the best (or nearly the best)
rate/distortion curves (for a set of images) is chosen. In
this sense, the better portable graphics (BPG) encoder
[11-13] can be considered as one of the best. This was
one of the reasons to concentrate on considering this
encoder in our studies. Second, it is usually assumed that
distortions increase if CR becomes larger [9, 10, 14]. In
other words, a rate/distortion curve (RDC) that
characterizes dependence of a metric that describes
distortions on a parameter that controls compression
(PCC) occurs to be monotonous.

This simplifies the task of reaching the
aforementioned trade-off and allows using either iterative
procedures [14] or a two-step approach [13] or an
approach based on prediction [15].

All this is true if one deals with lossy compression
of noise-free images. However, a lot of images that are
acquired by different systems and have to be compressed
are noisy [6, 16, 17]. This relates to optical images
acquired in bad illumination conditions, medical and
radar images. For such images, lossy compression has
two specific effects [6, 17]. The first effect is the
existence of a specific noise filtering effect due to lossy
compression discovered at the end of the previous
century [17, 18]. The second effect is possible existence
of the so-called optimal operation point (OOP), e.g. such
a value of PCC that a compressed image is maximally
close to the corresponding noise-free (true) image
according to a given similarity (quality) metric. Note that
both standard metrics (such as mean square error or peak
signal-to-noise ratio) and visual quality metrics [19-21]
can be used [6, 22].

If OOP exists, then it is reasonable to compress an
image at hand in OOP neighborhood [6, 17, 22]. This
allows producing the compressed image of rather high
quality and quite large CR. In turn, if OOP does not exist
for an image subject to lossy compression, it is expedient
to compress it with a smaller CR since this introduces less
distortions into information content. Note that since one
does not have noise-free images in practice, it is
impossible to determine does OOP exist or not for a given
noisy image and what is OOP very accurately.
Fortunately, for some coders including the BPG one,
quite simple procedures for prediction of OOP existence
and CCP in OOP have been designed for the cases of
additive white Gaussian noise (AWGN) and signal-
dependent Poisson noise [6, 22].

Moreover, it has been shown recently [23] that
quality of compressed noisy images can be additionally
improved by their post-filtering after decompression.
Both a DCT-based [24] and block-matching
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3-dimensional (BM3D) [25] filters have been shown
useful where the latter is slightly more efficient under
condition that thresholds are properly set for both filters.
Note that thresholds for both filters are usually set as
T=Bo where o is the noise standard deviation and f is the
adjustable proportionality factor. If Q for the BPG
encoder increases and ¢ for the original noisy image is
known a priori or accurately pre-estimated, the optimal 3
decreases since intensity of the noise in compressed
images is lower than in original ones and to avoid over-
smoothing.

The problems with the two-stage approach [23]
that presumes post-filtering of lossy compressed noisy
images are the following. First, it has been tested for
only two images that are remote sensing ones, i.e. of
specific class. Second, possibilities of prediction of the
efficiency of this two-stage approach have not been
studied.

Thus, the object of our study is the process of
two-stage processing of noisy images that includes their
lossy compression by the BPG encoder and further
denoising by the BM3D filter. Our basic idea is the
following. OOP existence can be predicted in advance
[22]. Denoising efficiency can be predicted in advance
as well [26]. Then, it seems possible to predict the
performance of the two-stage processing procedure in
general.

The goals of this paper is to check this idea and to
give practical recommendations on its use in practice.

Background of the two-stage approach

For simplicity and without losing generality (an
appropriate variance stabilizing transform can be applied
before compression if noise is signal-dependent under
condition that its statistical characteristics are a priori
known), consider the case of AWGN having zero mean
and a priori known variance 2. Then, for conventional 8-
bit representation of input data, for a considered
grayscale image one has input peak signal-to-noise ratio
(PSNR) defined as

PSNRinp= 10l0g10(2552/c?). 1)

Let us denote PSNRs of lossy compressed image Ic
and post-filtered image Ip as PSNR¢: and PSNRs where

SNR=10l0g10(255%/MSE,), )
PSNRpi=1010g10(2552/MSEp), 3

where MSEq and MSEgw are mean square errors
calculated for compressed and post-filtered images with
respect to the corresponding noise-free (true) image It
supposed known in our experiments.

Consider now difference PSNRs determined as

PSNRp1=PSNR¢-PSNRinp, (4)
PSNRp2=PSNRpsi-PSNRip. (%)

as functions of CR. Here, we present examples for the
BPG encoder and BM3D filter with optimal § from the
paper [23] for two test images: FRO1 (that contains a lot
of small-sized details and textures) and Frisco (that has
quite simple structure and has a lot of pixels belonging to
image homogeneous regions). In both cases, noise
variance (Var) is equal to 50.
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Fig. 1. Dependences of PSNRp:1 (after compression) and
PSNRp: (after filtering) on CR for Fr01 (a) and Frisco (b) test
images corrupted by AWGN with noise variance equal to 50

Analysis of the curves in Fig. 1, a shows the
following. First, formally OOP exists for CRoop = 8 but
it is not “obvious”. For smaller CR, post-filtering
provides certain  benefits in image quality
(PSNRp2 ~ 2 dB for CR~5). However, for CR > CRqop,
post-filtering becomes practically useless and, for
CR > 12, both PSNRy1 and PSNRp, become negative.
Analysis of the plots in Fig. 1, b shows that OOP takes
place for CRoop~ 26 and it is “obvious”, i.e. PSNRy is
large. Again, post-filtering is beneficial for CR < CRoop
and PSNRy, reaches =8 dB. On the opposite, for
CR > CRoop, post-filtering is practically useless
although PSNRp: and PSNR;2 remain positive for a
wide range of CR variation. CRoop for simple structure
images is significantly larger than for more complex
image for the same noise variance.

Summarizing the presented conclusions as well as
the results presented in [23], it is possible to state the
following. First, post-filtering can be efficient,
especially for simple structure images and/or intensive
noise, but only under condition that CR < CRoop (or,
equivalently, Q < Qoor Where Q serves as PCC for the
BPG encoder, a larger Q correspond to a larger CR).
Second, for CR > CRoor (Q > Qoopr), post-filtering
becomes useless. For complex structure images,
compression with Q > Qoop cannot be recommended at
all (moreover, it is possible to recommend compression
with Q slightly smaller than Qoop). For simple structure
images, it seems possible to compress images with Q
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slightly larger than Qoor (without post-processing, if a
larger CR is strongly desired), but it is unclear what can
be the largest appropriate Q — Qoor.

Before coming to analysis of new data, it is worth
recalling that Qoop can be easily determined as
Qoop = 15 + 20logio(c) whilst optimal B~2.6 for
Q < Qoop-3 and B~ 2.0 for Q = Qoor [23]. Existence of
OOP is more likely for more intensive noise. Thus, we
need more test data obtained as functions of Q for wider
limits of noise variance.

Analysis of the results obtained for new test data

We have carried out analysis for three optical
grayscale images, namely Barbara, Bikes, and Boat (all of
middle complexity). Three values of noise variance have
been considered: 50, 100, and 200. In addition to the metric
PSNR, the visual quality metrics PSNR-HVS-M [24, 25]
and FSIM [27] have been employed. Both have larger
values for images of better visual quality. PSNR-HVS-M
is expressed in dB, FSIM varies in the limits from 0 to 1
where unity corresponds to perfect quality.

Fig. 2 shows the dependences of PSNRp on Q and f3
for 6= 50 (Pinp = 31.2 dB) for all three images. The case of
minimal considered B can be treated as dependence of
PSNR¢ on Q. As one can see, OOP is present for all three
test images where it is the most obvious for the test image
Barbara. Optimal B is about 2.8 for Q < 30 (Qoop = 32), but
it is smaller for Q= Qoop. This means that the main
conclusions are the same as for remote sensing images
earlier studied in [23]. Dependences of PSNR-HVS-Ms on
Q and B for 6?=50 (input PSNR-HVS-M is not the same
and it is 38 dB for the image Barbara, 37.5 dB for

Decompressed barbara
PSNR

Decompressed bikes
PSNR PSNR

the image Bikes, and 37 dB for the image Boat) for all three
images are represented in Fig. 3. According to this metric,
OOPs are not observed but post-processing slightly
improves visual quality for Q smaller than Qoop. Increasing
of Q for Q > Qoor leads to radical reduction of processed
image quality.

Dependences PSNRyx on Q and B for o= 200
(Pinp=25.2 dB, Qoor= 38) are given in Fig. 4. For all
three test images, OOPs are observed and compression in
OOP provides considerable benefits compared to
compression with Q < Qoop-4 and Q > Qoopr+4. In
other words, significant improvement of compressed
image quality is observed not for all Q, but only for a
limited area of Qoop-4< Q< Qoor+4. In turn, for
Q < Qoor—4, there is a significant improvement due to
compressed image post-filtering with = 2.6.

Fig. 5 presents dependences of PSNR-HVS-Mps on
Q and B for 6®=200. Only for the image Barbara, the
lossy compression in OOP produces improvement of
visual quality. Meanwhile, post-filtering improves it for
Q < Qoor — 4. The results for the metric PSNR-HVS-M
are in good agreement with the results for the other visual
quality metric FSIM (see data in Fig. 6).

In addition to data presented in Fig. 2-6, we have
collected data in Table 1. The following data are presented:
SPSNR = PSNR-PSNRi, where PSNRt is the output PSNR
for BM3D applied directly to the noisy image (without lossy
compression); SPSNRped denotes the predicted SPSNR
(details  will be given later); PSNRp2(Qoor-5);
PSNRpy2(Qoor); PSNRc pred  that denotes predicted
improvement in PSNR due to lossy compression in OOP,
see details below; PSNRp2(Qoor+5).

Decompressed boat

Fig. 2. Dependences of PSNRp (after compression and filtering) on Q and P for three test images
Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 50
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Fig. 3. Dependences of PSNR-HVS-Mptt (after compression and filtering) on Q and f for three test images
Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 50
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Fig. 4. Dependences of PSNRp (after compression and filtering) on Q and P for three test images
Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 200
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Fig. 5. Dependences of PSNR-HVS-Mptt (after compression and filtering) on Q and B for three test images
Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 200
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Fig. 6. Dependences of FSIMptt (after compression and filtering) on Q and B for three test images
Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 200

Table 1 — Generalized data for PSNR

Image o? OPSNR | 3PSNRpred PSNRp2(Qoor-5) PSNRp2(Qoor) PSNRct pred PSNRp2(Qoop+5)
Barbara | 50 5.3 35 4.9 4.2 0.6 2.0
100 7.3 5.1 6.7 5.7 19 3.0
200 8.7 6.4 8.1 6.9 3.2 4.0
Bikes 50 2.7 2.0 2.3 15 -0.3 -1.0
100 4.3 31 3.8 2.7 0.3 -0.1
200 54 4.2 4.8 3.6 11 0.7
Boat 50 3.8 3.6 3.4 2.7 0.7 0.9
100 5.9 5.4 5.3 4.4 2.3 2.3
200 7.4 6.9 6.8 5.9 3.8 3.7
Analysis of data shows the following: PSNRp2(Qoor — 5), PSNRp2(Qoop), PSNRp2(Qoor + 5) are

1) If3PSNR >4 dB (e.g., see data for the test image  positive and it is possible to choose the option according
Barbara, ¢?=100), then, most probably, all to the priority of requirements, i.e. if a larger CR is desired
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with simultaneous appropriate quality, then Q can be set
up to Qoor + 5; otherwise Q can be set equal to Qoor;

2) If 2 dB <3PSNR <4 dB (e.g., see data for the
test image Bikes, 2= 50), then it is not reasonable to use
Q larger than Qoop; otherwise, compressed image quality
is+ significantly worse than original;

3) If 3PSNR < 2 dB, then it is reasonable to use
Q equal to Qoor — 5 or Qoor — 4 with post-filtering with
f smaller than 2.6 (e.g. 2.3),

4) Since PSNRp2(Qoor) > PSNR¢ipres (and the
difference is of about 2—4 dB, this is clearly seen in Fig. 2
and 4), it is still reasonable to apply post-filtering for
Q = Qoor;

5) OPSNR =~ 6PSNRyred, i.e. prediction is quite
accurate although predicted values are smaller than true
ones (note that we have used the method [26], which is
the simplest but less accurate compared to more complex
counterparts);

6) PSNRy2(Qoor —5) is only 0.4-0.6 dB smaller
than 3PSNR, i.e. quality of compressed and post-filtered
images is high; meanwhile, PSNRp2(Qoop+ 5) is by
3—4 dB smaller than 6PSNR, i.e. quality degradation is
significant.

If so, it is worth predicting SPSNR and it is able to
serve for decision undertaking according to the
recommendations given above. Prediction of OOP
existence can be useful as well since it is able to provide
additional data for decision undertaking.

And now we come to description how prediction
can be carried out. It has been shown in [26] that the

ratio between output MSE and noise variance has a
rather strict dependence with a parameter P This
parameter is defined as probability that amplitudes of
AC DCT coefficients in 8x8 pixel blocks are smaller
than 2c.

It is usually enough to have 500-1000 randomly
placed blocks to determine P, with appropriate accuracy.
For the BM3D filter, SPSNRpeq iS determined as
10log10(c%/MSE) where

MSE/6? = —2.69(P25)?+2.2P,+0.36 [26].

The ways for more accurate prediction are
described in [30].

To predict PSNRe pred (image quality after lossy
compression), it is possible to use the same (previously
obtained) parameter P, and the formula presented in the
article [22]:

PSNR pred =

1.533x10% xP,_ + 1.112 x 10* (6)
(Pyo )* + 75.71x(Pyy )* —6291x Py, + 6139

Below in Fig.7, we present some results of
processing: the original image Barbara is given in
Fig. 7, a, its noisy version for =200 is given in
Fig. 7, b.

The image after lossy compression with
Q = Qoop is presented in Fig. 7, ¢ whilst the image
with lossy compression with Q = Qoop — 5 is given in
Fig. 7, d.

d

f

Fig. 7. An example of the original image (a), distorted by noise (b), compressed with losses at Q=Qoor (C),
compressed with losses at Q=Qoop-5 (d), filtering result for Q=Qoor (¢) and filtering result for Q=Qoor-5 (f)
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As one can see, lossy compression with
Q =~ Qoor — 5 does not suppress noise significantly whilst
compression in OOP leads to considerably noise
reduction.

Images in Fig. 7, e and 7, f are post-filtered ones
using the BM3D filter. After filtering, the following
PSNR values have been obtained: 31.98 dB for OOP
(CR =14.21) and 33.18 dB for Q = Qoor — 5 (CR = 3.9).
As one can see, the best result is provided for
Q~Qoor—5 with post-filtering (however, by the
expense of smaller CR).

If alarger CR is of prime importance, a larger Q can
be employed.

Conclusions

In this paper, we have considered applicability of
post-filtering to improving the quality of compressed

It has been shown that post-filtering is reasonable
for Q <Qoor and, sometimes, for simple and middle
complexity images and intensive noise, even for
Q < Qoor + 5.

When Q increases, filtering should be more
“careful” — for Q < Qoop — 5, optimal B is about 2.6, but
for larger Q the optimal 3 decreases. A good compromise
between quality and CR is provided for Q = Qoop — 5.
Then, the quality of the compressed and the post-filtered
images is almost the same as just the filtered image
(without compression), but CR is significantly larger than
for lossless compression (that produces CR that is only
slightly larger than unity for noisy images irrespectively
to their complexity).

We have also shown that improvement of image
quality due to filtering can be quite accurately predicted
and this allows deciding what compression parameter to

noisy images. apply.
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INocTdinbTpanis 3amym/ieHUX 300pazkeHb CTHCHYTHX i3 BTpaTaMH Ta NPOTrHO3yBaHHA ii e)eKTUBHOCTI
B. C. PeGpos, b. Bozeins, B. B. JlykiH,

AHoTanisi. O6’€KTOM NOCTIIDKCHHS € ITPOIEC CTUCHEHHS i3 BTpaTaMH 300pakeHb, IO CIIOTBOPEHI IIyMOM, Ta IX
noctdineTparis. [lpeaMeTrom DoCTiIKEHHS € MIXia 10 epeKTUBHOI TBOETAITHOI OOPOOKH (CTHCHEHHS Ta MOCT-(QiNbTparis) is
KpamIoro nopraTuBHOro rpadidaoro xoxepa (BPG) ta npornosysanns ii edexTnBHOCTI. MeTa IOCIIKEHHS — MPOaHATi3yBaTH
XapaKTePUCTUKKA e(EKTUBHOCTI PO3IJISTHYTOrO JBOETAITHOTO IMIJXOAY Ta 3alMpONOHYBaTH MiAXiJ A0 iX NPOrHO3yBaHHS.
BukopucraHi MeTOAM: YHCENbHE MOJCIIOBAHHS, perpecis, CTaTUCTUUHMA aHanmi3. Otrpumani pe3yabTaTh: 1) mnepesara
PO3TISIHYTOTO MiAXO0AY IOJISIrae B TOMY, L0 BiH 3JaTHHM 3a0€3MeUNTH OKPAICHHS SKOCTi CTHCHEHOTO 3aIlIyMJICHOTO 300payKeHHS
3a YMOBH, 1110 300pa)KeHHsI CTUCKAETBCS 31 CTYNEHEM CTHCHEHHSI, MEHILIMM 3a TOM, KU BiNOBiae ONTUMAaNbHIA po0OoUiil TouII;
2) edeKTHBHICTh MiAXOAY 3aIEKHUTh Bill KUTBKOX (DaKTOPIB, BKIIOYAIOUH IHTCHCHBHICTD LIyMY, CKJIQJHICTh 300paKeHHS, THII i
napameTpu GinbTpa; 3) OCHOBHI XapaKTepUCTHKU ABOETAIHOI MPOLEAYPH MOXHA JOCUTh TOYHO MepeAdaulTH 3a3ajerijib, 10
JIO3BOJISIE 3alPOTIOHYBATH KOPHCHY iH(OpMAIil0 [JIs NPUAHATTA pilleHHsS Npo Te, sKe 3HAa4YeHHS IapaMeTpa Kojepa
3aCTOCOBYBATH; 4) Ile IPU3BOIUTH a00 IO MOKPAIIEHHS SIKOCTI CTUCHEHOTO Ta O0OpOOJICHOTO 300pa)KeHHS MOPIBHSIHO 3 HOro
OpHUTIHAIFHOIO Bepci€o, a0, MPHHANMHI, 10 YHUKHEHHS IOTIpPIICHHS SKOCTi. BHCHOBKH: 3a pe3ynbTaTaMu IOCIiIKEHHS
JIOLTBHO 1) CIPOTHO3YBaTH XapaKTEPUCTHUKHM MPOIYKTHBHOCTI ABOeTanmHOi oO0poOku; 2) amanraiis oOpOOKHM 10 CKJIaAHOCTI
300pakeHHs Ta IHTEHCUBHOCTI LIIyMYy.

KawuoBi ciaoBa: cTucHeHHS 300paXeHHs 3 BTpaTaMH; KOHTPOJIb SIKOCTI; IIyM; IBOETAIHA 00pOOKa; IPOrHO3yBaHHSI.
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