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POST-FILTERING OF LOSSY COMPRESSED NOISY IMAGES 

AND ITS EFFICIENCY PREDICTION   
 

Abstract .  The object of the study is the process of lossy compression of noisy images and their post-filtering. The 

subject of the study is the approach to efficient two-stage processing (compression and post-filtering) for better portable 

graphics (BPG) coder and prediction of its efficiency. The goal of the study is to analyze performance characteristics of the 

considered two-stage approach and to propose an approach to their prediction. Methods used: numerical simulation, 

regression, statistical analysis. Results obtained: 1) the considered approach advantage is that it is able to provide 

improvement of quality of compressed noisy image under condition that an image is compressed with compression ratio 

smaller than that one corresponding to optimal operation point; 2)  the approach efficiency depends on several factors 

including noise intensity, image complexity, and filter type and parameters; 3) the main characteristics of the two-step 

procedure can be quite accurately predicted in advance and this allows offering useful information for decision undertaking 

on what value of the coder parameter to apply; 4) this leads to either improving the compressed and processed image quality 

compared to its original version or, at least, to avoiding quality degradation. Conclusions: based on the results of the study, 

it is worth 1) predicting performance characteristics for the two-stage processing; 2) adapting the processing to image 

complexity and noise intensity.   
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Introduction 

A tremendous number of images of different origin 

is acquired nowadays by different imaging systems  

[1–3]. This takes place in medical diagnostics [1], remote 

sensing [2], military reconnaissance [3], social 

networking [4], and so on. In addition, average image 

size becomes larger due to improved spatial resolution 

and the use of more components of multispectral [5] and 

hyperspectral [6] data. This results in problems dealing 

with image storage and transfer via communication lines 

[7]. Compression is known as a tool to decrease the data 

size [5–7] where lossless image compression [7, 8] is 

reversible but often unable to provide appropriately large 

and variable compression ratio (CR). Because of this, 

lossy compression is widely used [5, 6, 8]. Such a 

compression introduces distortions [5, 9] and, then, it 

occurs necessary to provide an appropriate trade-off 

between a compressed image quality according to a used 

metric and CR [9, 10].  

Reaching the trade-off is carried out in two ways. 

First, a coder able to provide the best (or nearly the best) 

rate/distortion curves (for a set of images) is chosen. In 

this sense, the better portable graphics (BPG) encoder 

[11–13] can be considered as one of the best. This was 

one of the reasons to concentrate on considering this 

encoder in our studies. Second, it is usually assumed that 

distortions increase if CR becomes larger [9, 10, 14]. In 

other words, a rate/distortion curve (RDC) that 

characterizes dependence of a metric that describes 

distortions on a parameter that controls compression 

(PCC) occurs to be monotonous.  

This simplifies the task of reaching the 

aforementioned trade-off and allows using either iterative 

procedures [14] or a two-step approach [13] or an 

approach based on prediction [15].   

All this is true if one deals with lossy compression 

of noise-free images. However, a lot of images that are 

acquired by different systems and have to be compressed 

are noisy [6, 16, 17]. This relates to optical images 

acquired in bad illumination conditions, medical and 

radar images. For such images, lossy compression has 

two specific effects [6, 17]. The first effect is the 

existence of a specific noise filtering effect due to lossy 

compression discovered at the end of the previous 

century [17, 18]. The second effect is possible existence 

of the so-called optimal operation point (OOP), e.g. such 

a value of PCC that a compressed image is maximally 

close to the corresponding noise-free (true) image 

according to a given similarity (quality) metric. Note that 

both standard metrics (such as mean square error or peak 

signal-to-noise ratio) and visual quality metrics [19–21] 

can be used [6, 22].        

If OOP exists, then it is reasonable to compress an 

image at hand in OOP neighborhood [6, 17, 22]. This 

allows producing the compressed image of rather high 

quality and quite large CR. In turn, if OOP does not exist 

for an image subject to lossy compression, it is expedient 

to compress it with a smaller CR since this introduces less 

distortions into information content. Note that since one 

does not have noise-free images in practice, it is 

impossible to determine does OOP exist or not for a given 

noisy image and what is OOP very accurately. 

Fortunately, for some coders including the BPG one, 

quite simple procedures for prediction of OOP existence 

and CCP in OOP have been designed for the cases of 

additive white Gaussian noise (AWGN) and signal-

dependent Poisson noise [6, 22]. 

Moreover, it has been shown recently [23] that 

quality of compressed noisy images can be additionally 

improved by their post-filtering after decompression. 

Both a DCT-based [24] and block-matching  
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3-dimensional (BM3D) [25] filters have been shown 

useful where the latter is slightly more efficient under 

condition that thresholds are properly set for both filters. 

Note that thresholds for both filters are usually set as 

T=βσ where σ is the noise standard deviation and β is the 

adjustable proportionality factor. If Q for the BPG 

encoder increases and σ for the original noisy image is 

known a priori or accurately pre-estimated, the optimal β 

decreases since intensity of the noise in compressed 

images is lower than in original ones and to avoid over-

smoothing.  

The problems with the two-stage approach [23] 

that presumes post-filtering of lossy compressed noisy 

images are the following. First, it has been tested for 

only two images that are remote sensing ones, i.e. of 

specific class. Second, possibilities of prediction of the 

efficiency of this two-stage approach have not been 

studied.  

Thus, the object of our study is the process of 

two-stage processing of noisy images that includes their 

lossy compression by the BPG encoder and further 

denoising by the BM3D filter. Our basic idea is the 

following. OOP existence can be predicted in advance 

[22]. Denoising efficiency can be predicted in advance 

as well [26]. Then, it seems possible to predict the 

performance of the two-stage processing procedure in 

general.  

The goals of this paper is to check this idea and to 

give practical recommendations on its use in practice.  

Background of the two-stage approach  

For simplicity and without losing generality (an 

appropriate variance stabilizing transform can be applied 

before compression if noise is signal-dependent under 

condition that its statistical characteristics are a priori 

known), consider the case of AWGN having zero mean 

and a priori known variance σ2. Then, for conventional 8-

bit representation of input data, for a considered 

grayscale image one has input peak signal-to-noise ratio 

(PSNR) defined as  

 PSNRinp= 10log10(2552/σ2).  (1) 

Let us denote PSNRs of lossy compressed image Ic 

and post-filtered image Ip as PSNRct and PSNRpft where  

 SNRct=10log10(2552/MSEct),  (2) 

 PSNRpft=10log10(2552/MSEpft), (3) 

where MSEct and MSEpft are mean square errors 

calculated for compressed and post-filtered images with 

respect to the corresponding noise-free (true) image It 

supposed known in our experiments.  

Consider now difference PSNRs determined as  

 PSNRp1=PSNRct-PSNRinp, (4) 

 PSNRp2=PSNRpft-PSNRinp. (5) 

as functions of CR. Here, we present examples for the 

BPG encoder and BM3D filter with optimal β from the 

paper [23] for two test images: FR01 (that contains a lot 

of small-sized details and textures) and Frisco (that has 

quite simple structure and has a lot of pixels belonging to 

image homogeneous regions). In both cases, noise 

variance (Var) is equal to 50.  

 
a 

 
b  

Fig. 1. Dependences of PSNRp1 (after compression) and 

PSNRp2 (after filtering) on CR for Fr01 (a) and Frisco (b) test 

images corrupted by AWGN with noise variance equal to 50 

 

Analysis of the curves in Fig. 1, a shows the 

following. First, formally OOP exists for CROOP ≈ 8 but 

it is not “obvious”. For smaller CR, post-filtering 

provides certain benefits in image quality 

(PSNRp2 ≈ 2 dB for CR≈5). However, for CR > CROOP, 

post-filtering becomes practically useless and, for 

CR > 12, both PSNRp1 and PSNRp2 become negative. 

Analysis of the plots in Fig. 1, b shows that OOP takes 

place for CROOP ≈ 26 and it is “obvious”, i.e. PSNRp1 is 

large. Again, post-filtering is beneficial for CR < CROOP 

and PSNRp2 reaches ≈ 8 dB. On the opposite, for 

CR > CROOP, post-filtering is practically useless 

although PSNRp1 and PSNRp2 remain positive for a 

wide range of CR variation. CROOP for simple structure 

images is significantly larger than for more complex 

image for the same noise variance.  

Summarizing the presented conclusions as well as 

the results presented in [23], it is possible to state the 

following. First, post-filtering can be efficient, 

especially for simple structure images and/or intensive 

noise, but only under condition that CR < CROOP (or, 

equivalently, Q < QOOP where Q serves as PCC for the 

BPG encoder, a larger Q correspond to a larger CR). 

Second, for CR > CROOP (Q > QOOP), post-filtering 

becomes useless. For complex structure images, 

compression with Q > QOOP cannot be recommended at 

all (moreover, it is possible to recommend compression 

with Q slightly smaller than QOOP). For simple structure 

images, it seems possible to compress images with Q 
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slightly larger than QOOP (without post-processing, if a 

larger CR is strongly desired), but it is unclear what can 

be the largest appropriate Q – QOOP.  

Before coming to analysis of new data, it is worth 

recalling that QOOP can be easily determined as 

QОOP = 15 + 20log10(σ) whilst optimal β ≈ 2.6 for 

Q < QOOP-3 and β ≈ 2.0 for Q ≈ QOOP [23]. Existence of 

OOP is more likely for more intensive noise. Thus, we 

need more test data obtained as functions of Q for wider 

limits of noise variance. 

Analysis of the results obtained for new test data 

We have carried out analysis for three optical 

grayscale images, namely Barbara, Bikes, and Boat (all of 

middle complexity). Three values of noise variance have 

been considered: 50, 100, and 200. In addition to the metric 

PSNR, the visual quality metrics PSNR-HVS-M [24, 25] 

and FSIM [27] have been employed. Both have larger 

values for images of better visual quality. PSNR-HVS-M 

is expressed in dB, FSIM varies in the limits from 0 to 1 

where unity corresponds to perfect quality. 

Fig. 2 shows the dependences of PSNRpft on Q and β 

for σ2 = 50 (Pinp = 31.2 dB) for all three images. The case of 

minimal considered β can be treated as dependence of 

PSNRct on Q. As one can see, OOP is present for all three 

test images where it is the most obvious for the test image 

Barbara. Optimal β is about 2.8 for Q < 30 (QOOP = 32), but 

it is smaller for Q ≈ QOOP. This means that the main 

conclusions are the same as for remote sensing images 

earlier studied in [23]. Dependences of PSNR-HVS-Mpft on 

Q and β for σ2 = 50 (input PSNR-HVS-M is not the same 

and it is 38 dB for the image Barbara, 37.5 dB for  

the image Bikes, and 37 dB for the image Boat) for all three 

images are represented in Fig. 3. According to this metric, 

OOPs are not observed but post-processing slightly 

improves visual quality for Q smaller than QOOP. Increasing 

of Q for Q > QOOP leads to radical reduction of processed 

image quality.     

Dependences PSNRpft on Q and β for σ2 = 200 

(Pinp = 25.2 dB, QOOP ≈ 38) are given in Fig. 4. For all 

three test images, OOPs are observed and compression in 

OOP provides considerable benefits compared to 

compression with Q < QOOP - 4 and Q > QOOP + 4. In 

other words, significant improvement of compressed 

image quality is observed not for all Q, but only for a 

limited area of QOOP - 4< Q < QOOP + 4. In turn, for 

Q < QOOP – 4, there is a significant improvement due to 

compressed image post-filtering with β ≈ 2.6.  

Fig. 5 presents dependences of PSNR-HVS-Mpft on 

Q and β for σ2 = 200. Only for the image Barbara, the 

lossy compression in OOP produces improvement of 

visual quality. Meanwhile, post-filtering improves it for 

Q < QOOP – 4. The results for the metric PSNR-HVS-M 

are in good agreement with the results for the other visual 

quality metric FSIM (see data in Fig. 6). 

In addition to data presented in Fig. 2–6, we have 

collected data in Table 1. The following data are presented: 

δPSNR = PSNRf-PSNRinp where PSNRf is the output PSNR 

for BM3D applied directly to the noisy image (without lossy 

compression); δPSNRpred denotes the predicted δPSNR 

(details will be given later); PSNRp2(QOOP-5); 

PSNRp2(QOOP); PSNRct pred that denotes predicted 

improvement in PSNR due to lossy compression in OOP, 

see details below; PSNRp2(QOOP+5). 

   
a                                                                   b                                                                    c  

Fig. 2. Dependences of PSNRpft (after compression and filtering) on Q and β for three test images  

Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 50  

 

 
a                                                                   b                                                                  c  

Fig. 3. Dependences of PSNR-HVS-Mpft (after compression and filtering) on Q and β for three test images  

Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 50 
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a                                                                    b                                                                   c  

Fig. 4. Dependences of PSNRpft (after compression and filtering) on Q and β for three test images  

Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 200 

 

   
a                                                                    b                                                                   c  

Fig. 5. Dependences of PSNR-HVS-Mpft (after compression and filtering) on Q and β for three test images  

Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 200 

 

   
a                                                                    b                                                                    c  

Fig. 6. Dependences of FSIMpft (after compression and filtering) on Q and β for three test images  

Barbara (a), Bikes (b), and Boat (c) corrupted by AWGN with noise variance equal to 200 

 
Table 1 – Generalized data for PSNR 

Image σ2 δPSNR δPSNRpred PSNRp2(QOOP-5) PSNRp2(QOOP) PSNRct pred PSNRp2(QOOP+5) 

Barbara 50 5.3 3.5 4.9 4.2 0.6 2.0 

 100 7.3 5.1 6.7 5.7 1.9 3.0 

 200 8.7 6.4 8.1 6.9 3.2 4.0 

Bikes 50 2.7 2.0 2.3 1.5 -0.3 -1.0 

 100 4.3 3.1 3.8 2.7 0.3 -0.1 

 200 5.4 4.2 4.8 3.6 1.1 0.7 

Boat 50 3.8 3.6 3.4 2.7 0.7 0.9 

 100 5.9 5.4 5.3 4.4 2.3 2.3 

 200 7.4 6.9 6.8 5.9 3.8 3.7 

 

Analysis of data shows the following:  

1) If δPSNR > 4 dB (e.g., see data for the test image 

Barbara, σ2 = 100), then, most probably, all  

PSNRp2(QOOP – 5), PSNRp2(QOOP), PSNRp2(QOOP + 5) are 

positive and it is possible to choose the option according 

to the priority of requirements, i.e. if a larger CR is desired 
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with simultaneous appropriate quality, then Q can be set 

up to QOOP + 5; otherwise Q can be set equal to QOOP;  

2) If 2 dB < δPSNR <4 dB (e.g., see data for the 

test image Bikes, σ2 = 50), then it is not reasonable to use 

Q larger than QOOP; otherwise, compressed image quality 

is+ significantly worse than original;  

3) If δPSNR < 2 dB, then it is reasonable to use 

Q equal to QOOP – 5 or QOOP – 4 with post-filtering with 

β smaller than 2.6 (e.g. 2.3),  

4) Since PSNRp2(QOOP) > PSNRct pred (and the 

difference is of about 2–4 dB, this is clearly seen in Fig. 2 

and 4), it is still reasonable to apply post-filtering for 

Q ≈ QOOP;  

5) δPSNR ≈ δPSNRpred, i.e. prediction is quite 

accurate although predicted values are smaller than true 

ones (note that we have used the method [26], which is 

the simplest but less accurate compared to more complex 

counterparts);  

6) PSNRp2(QOOP  –5) is only 0.4–0.6 dB smaller 

than δPSNR, i.e. quality of compressed and post-filtered 

images is high; meanwhile, PSNRp2(QOOP + 5) is by  

3–4 dB smaller than δPSNR, i.e. quality degradation is 

significant.  

If so, it is worth predicting δPSNR and it is able to 

serve for decision undertaking according to the 

recommendations given above. Prediction of OOP 

existence can be useful as well since it is able to provide 

additional data for decision undertaking.   

And now we come to description how prediction 

can be carried out. It has been shown in [26] that the 

ratio between output MSE and noise variance has a 

rather strict dependence with a parameter P2σ. This 

parameter is defined as probability that amplitudes of 

AC DCT coefficients in 8×8 pixel blocks are smaller 

than 2σ.  

It is usually enough to have 500-1000 randomly 

placed blocks to determine P2σ with appropriate accuracy. 

For the BM3D filter, δPSNRpred is determined as 

10log10(σ2/MSE) where  

MSE/σ2 ≈ –2.69(P2σ)2+2.2P2σ+0.36 [26]. 

The ways for more accurate prediction are 

described in [30].  

To predict PSNRct pred (image quality after lossy 

compression), it is possible to use the same (previously 

obtained) parameter P2σ and the formula presented in the 

article [22]: 

( ) ( )

ct pred

4 4
2

3 2
2 2 2

PSNR

1.533 10 P 1.112 10
.

P 75.71 P 6291 P 6139

 

   
=

  



  

=

  + 

+  −  +

  (6) 

Below in Fig. 7, we present some results of 

processing: the original image Barbara is given in 

Fig. 7, a, its noisy version for σ2 = 200 is given in 

Fig. 7, b.  

The image after lossy compression with 

Q ≈ QOOP is presented in Fig. 7, c whilst the image 

with lossy compression with Q ≈ QOOP – 5 is given in 

Fig. 7, d.   

 

a             b              c 

   

d             e              f 

Fig. 7. An example of the original image (a), distorted by noise (b), compressed with losses at Q≈QOOP (c),  

compressed with losses at Q≈QOOP-5 (d), filtering result for Q≈QOOP (e) and filtering result for Q≈QOOP-5 (f) 
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As one can see, lossy compression with 

Q ≈ QOOP – 5 does not suppress noise significantly whilst 

compression in OOP leads to considerably noise 

reduction.  

Images in Fig. 7, e and 7, f are post-filtered ones 

using the BM3D filter. After filtering, the following 

PSNR values have been obtained: 31.98 dB for OOP 

(CR = 14.21) and 33.18 dB for Q ≈ QOOP – 5 (CR = 3.9). 

As one can see, the best result is provided for 

Q ≈ QOOP – 5 with post-filtering (however, by the 

expense of smaller CR).  

If a larger CR is of prime importance, a larger Q can 

be employed. 

Conclusions 

In this paper, we have considered applicability of 

post-filtering to improving the quality of compressed 

noisy images.  

It has been shown that post-filtering is reasonable 

for Q ≤ QOOP and, sometimes, for simple and middle 

complexity images and intensive noise, even for 

Q ≤ QOOP + 5.  

When Q increases, filtering should be more 

“careful” – for Q ≤ QOOP – 5, optimal β is about 2.6, but 

for larger Q the optimal β decreases. A good compromise 

between quality and CR is provided for Q ≈ QOOP – 5. 

Then, the quality of the compressed and the post-filtered 

images is almost the same as just the filtered image 

(without compression), but CR is significantly larger than 

for lossless compression (that produces CR that is only 

slightly larger than unity for noisy images irrespectively 

to their complexity).  

We have also shown that improvement of image 

quality due to filtering can be quite accurately predicted 

and this allows deciding what compression parameter to 

apply.  
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Постфільтрація зашумлених зображень стиснутих із втратами та прогнозування її ефективності  

В. С. Ребров, Б. Возель, В. В. Лукін, 

Анотація .  Об’єктом дослідження є процес стиснення із втратами зображень, що спотворені шумом, та їх 

постфільтрація. Предметом дослідження є підхід до ефективної двоетапної обробки (стиснення та пост-фільтрація) для 

кращого портативного графічного кодера (BPG) та прогнозування її ефективності. Мета дослідження – проаналізувати 

характеристики ефективності розглянутого двоетапного підходу та запропонувати підхід до їх прогнозування. 

Використані методи: чисельне моделювання, регресія, статистичний аналіз. Отримані результати: 1) перевага 

розглянутого підходу полягає в тому, що він здатний забезпечити покращення якості стисненого зашумленого зображення 

за умови, що зображення стискається зі ступенем стиснення, меншим за той, який відповідає оптимальній робочій точці; 

2) ефективність підходу залежить від кількох факторів, включаючи інтенсивність шуму, складність зображення, тип і 

параметри фільтра; 3) основні характеристики двоетапної процедури можна досить точно передбачити заздалегідь, що 

дозволяє запропонувати корисну інформацію для прийняття рішення про те, яке значення параметра кодера 

застосовувати; 4) це призводить або до покращення якості стисненого та обробленого зображення порівняно з його 

оригінальною версією, або, принаймні, до уникнення погіршення якості. Висновки: за результатами дослідження 

доцільно 1) спрогнозувати характеристики продуктивності двоетапної обробки; 2) адаптація обробки до складності 

зображення та інтенсивності шуму. 

Ключові  слова:  стиснення зображення з втратами; контроль якості; шум; двоетапна обробка; прогнозування. 
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