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FPGA-BASED IMPLEMENTATION OF A GAUSSIAN SMOOTHING FILTER
WITH POWERS-OF-TWO COEFFICIENTS

Abstract. The purpose of the study is to develop methods for synthesizing a Gaussian filter that ensures simplified
hardware and software implementation, particularly filters with powers-of-two coefficients. Such filters can provide effective
denoising of images, including landscape maps, both natural and synthetically generated. The study also involves analyzing
of methods for FPGA implementation, comparing their hardware complexity, performance, and noise reduction with
traditional Gaussian filters. Results. An algorithm for rounding filter coefficients to powers of two, providing optimal
approximation of the constructed filter to the original, is presented, along with examples of developed filters. Topics covered
include FPGA implementation, based on the Xilinx Artix-7 FPGA. Filter structures, testing methods, simulation results, and
verification of the scheme are discussed. Examples of the technological placement of the implemented scheme on the FPGA
chip are provided. Comparative evaluations of FPGA resources and performance for proposed and traditional Gaussian filters
are carried out. Digital modeling of the filters and noise reduction estimates for noisy images of the terrain surface are
presented. The developed algorithm provides approximation of Gaussian filter coefficients as powers of two for a given
window size and maximum number of bits with a relative error of no more than 0.18. Implementing the proposed filters on
FPGA results in a hardware costs reduction with comparable performance. Computer simulation show that Gaussian filters
both traditional and proposed effectively suppress additive white noise in images. Proposed filters improve the signal-to-
noise ratio within 5-10 dB and practically match the filtering quality of traditional Gaussian filters.

Keywords: Gaussian filter, noise filtering; powers-of-two coefficients; hardware implementation; quality and performance
estimation; simulation training complex; computer-generated environment; procedural landscape generation enhancement.

Introduction

The recent progress in science and technology has
significantly influenced the emergence of new types of
specialized vehicles. Their complexity has increased,
along with the requirements for the quality of their
operation. This necessitates a qualitative improvement in
the training of operators for such equipment. The most
modern means of training operators are simulation
training complexes (STCs), which use computer-
generated environments during the learning process.
They are free from the drawbacks of traditional training
methods, have a relatively low cost, both in terms of the
complex development and its maintenance, are safe for
humans, and allow the modeling of any situations that
may arise during the operation of the real vehicle.

At the same time, the most essential component of
any STC is the visual aspect of the learning process [1,
2]. This aspect allows conveying the principles of
operating a vehicle to the future operator, enabling an
appropriate and quick response to various situations that
may arise during the operation of the vehicle. It reflects
the results of the operator's actions, facilitating control
over the learning process by the instructor. The main part
of the visualization system involves modeling a plausible
and realistic landscape, which should allow for physical
simulation of movement and accurately simulate the
surrounding environment, including lighting and weather
conditions in different natural-climatic zones.

In the creation of the landscape model, it is crucial to
require minimal resources and take up a small amount of
time. This becomes particularly relevant given the
requirements for the size of the landscape in training
complexes (exceeding 16-25 square kilometers,
determined by exercise areas). Therefore, it is expedient to

use various methods of automated landscape synthesis,
such as [1, 3].

Many automated algorithms for procedural
landscape generation [4, 5] synthesize landscapes in a
combined manner, using existing height maps of real
landscapes as a foundation, which allows for obtaining a
realistic model [6, 7]. However, existing sets of landscape
height maps (Digital Elevation Models, DEM), such as
SRTM and ASTER, have insufficient resolution in the
horizontal plane and exhibit a significant level of noise.
This necessitates additional filtering of the original
height map data before its use in landscape synthesis.

Images, during their formation, storage, and
transmission, are typically subject to various random
disturbances or noise. The most common type of noise is
random additive noise, which is statistically independent
of the source image. The additive noise model is
employed when the output signal from an imaging
system can be considered as the sum of the useful signal
and some random signal (noise). The additive noise
model effectively describes the effects of film grain,
photochemical defects, thermal noise in sensors, charge
transfer noise, analog-to-digital converter quantization
noise, video signal amplifier noise, dirt, dust on the
sensor, and so on.

Visually, noise in an image appears as randomly
positioned raster elements (dots) with sizes close to the
pixel size.

The noise differs from the image with a lighter or
darker shade.

Some common types of noise [8, 9] include:

- Gaussian noise — intensity variation following a
normal distribution;

- "Salt and Pepper" — random isolated black or white
points in the image;
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- Speckle noise — a type of multiplicative noise that
visually produces a "grainy" appearance in the image,
and it is caused by the overlay of coherent waves,
energetic interference when reflecting rays in the
equipment.

To improve the quality of a noisy image (cleaning
from noise), a wide range of smoothing filters is applied
[10], including moving average, Gaussian, median,
binomial and bilateral filters [11].

Gaussian filtering

A filter that is relatively simple to implement yet
provides satisfactory results for solving many practical
tasks is the Gaussian filter [12]. Gaussian filtering is
applied both directly for noise suppression and as a
preliminary step in tasks such as edge detection, for
example, in the Canny method [13], highlighting ridges
and valleys [14, 15].

Gaussian filtering is carried out through
convolution with a kernel of size N X N (where N is
odd), derived from surface formed by rotating of the
curve of the normal distribution (Gaussian distribution)
around the vertical axis and described by the expression:

1 (M=% +M—j)? _

Gijzﬁ-e o? , L,j=1,N, ¢))
where M = (N + 1)/2 and o — the standard deviation of
the normal distribution, determining the scale of the
transformation.

Since the elements of the Gaussian matrix
calculated according to (1) are real numbers, rounding
errors inevitably occur when smoothing the image by
computing the convolution. On the other hand, dealing
with real numbers in floating point format slows down
calculations in the software and complicates the
implementation in hardware.

The traditional method to address this problem is to
approximate the elements of the matrix and replace them
with integers. For example, a known approach is the use
of a two-dimensional smoothing filter with integer
coefficients in the popular Canny algorithm, used for
edge detection in images [16, 17]. The kernel of such a
filter with dimensions 5x5 has the form:
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A series of integer approximations of Gaussian
matrices are known [18, 19].

For dimensions of 3x3, 5x5 and 7x7 the most
commonly used approximations are:
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In [20], integer approximations of Gaussian
smoothing filters of higher dimensions are also considered.
In [21], an alternative approach is proposed, replacing
Gaussian filters with the filtration of several consecutively
connected box filters (averaging image elements within a
two-dimensional window). There are also proposals to
construct smoothing filters from binomial coefficients
(elements of Pascal's triangle) [22, 23]. The drawbacks of
these methods include insufficiently  accurate
approximation of the Gaussian filter and, more
importantly, the need for a significant number of
computationally intensive multiplication operations.

Gaussian filters
with powers-of-two coefficients

Significant simplification of the filter hardware and
software implementation can be achieved by
approximating the filter kernel elements with powers of
two. In this case, computationally intensive
multiplication operations are replaced with shift
operations. Some publications [20, 24] consider
approximations of Gaussian filters using powers of two
as coefficients. However, these works do not provide a
methodology for filter synthesis and lack a quantitative
estimation of the reduction in software and hardware
complexity.

An algorithm has been developed to find the
optimal power-of-two approximation of the Gaussian
filter kernel based on the mean squared error criterion.
The algorithm includes the following steps:

1. Specify the maximum power of two exponent
n and compute P = 2™, which should not exceed the
maximum element of the kernel matrix (central element).

2. Using formula (1), calculate the Gaussian
matrix VG of the given size N. Determine the central
element of the matrix € = NGy,1y/2,v+1)/2-

3. Calculate the wvalues Ky, = [0.75-P/C]
and K,,q, = |1.5 - P/C]. These values define the range in
which the relationship [k - C] = 2™ holds. Here, brackets
[1,11,[] denote rounding to the nearest greater, nearest
smaller, and nearest integer, respectively.

4. Multiply by k and round to the nearest integer:
GP%2 =[k-G]. The resulting integer matrix is then
divided by the normalization coefficient

— p2
s =X Z?}=1 Gy
5. For each of the obtained matrices, calculate the

degree of deviation d of the original Gaussian kernel
matrix from the rounded-to-powers-of-two matrix

N N 2
2i=12j=1(6ij—6ipj )2
N yN
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6. Choose the rounded matrix for which the
deviation d is minimal, and consider it as the optimal one.
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[ 4 8 4 1 image denoising filters, including Gaussian filters [27,
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Fig. 1. Structural diagram of the implemented filtering module

The module consists of the following blocks: a
deserializer ~ (accumulative  register-converter  of
sequentially incoming data), element-wise matrix
multiplier, adder, and arithmetic divider.

The deserializer receives a packet consisting of
sequentially incoming data from the current window
(byte blocks) and places them in a register with parallel
access to the outputs, so that the data of the entire window
is simultaneously available for subsequent processing.
An interface similar to AXI-Stream is used at the input, a
popular bus interface used in embedded systems. The
output data is accompanied by a data-ready signal (valid)
on the block's outputs.

The multiplier performs element-wise
multiplication of window data and constant coefficients
from the Gaussian matrix of the corresponding size. The
multiplication results in the form of a multi-bit binary
vector are passed to the adder.

The adder performs arithmetic addition of all matrix
elements.

The sum result is passed to the divider block, where
arithmetic division by the coefficient before the matrix is
performed.

The output of the scheme is the value from the 8
least significant bits of the division result.

The output values of the scheme, after processing
each window's data, are stored in a specially allocated
memory buffer and then, after processing all packets,
form an array of filtered data.

The proposed scheme is scalable for any required
size of the processed data block (window or packet) and
the corresponding Gaussian matrix.

Functional verification and technological synthesis
of the described scheme were performed for all variants
of Gaussian matrices with integer coefficients of
dimensions 3x3, 5x5, 7x7 and 9x9.
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Example of the modeling and verification process
for the scheme working with 3x3 matrices is shown in
Fig. 2. The screenshot displays the timing diagrams of
sequential packet transmission and processing.
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The Xilinx Artix-7 FPGA chip (XC7A35Tftg256-1)
was chosen as the target platform for implementation. An
overall cost estimate based on technological synthesis
results is provided in Table 1.

S50 ns 1,100 ns 1,150 ns

1,000 ns

M' B B B M' B B B %’ |

1,080 ns

Fig. 2. Verification process for the scheme with 3x3 matrices

Table 1 — Cost estimation for the synthesis of the filter for different variants of the Gaussian matrix

Filter core Gaussian matrix SLICE Units LUT (Logic) FF (Register) Crit. Path Delay, ns
3gint 70 127 240 6.207
33Gp2 47 86 147 6.097
36Gp2 96 236 248 9.820
5gint 231 399 668 9.562
536p2 181 313 631 11.833
56Gp2 176 303 634 10.028
7Gint 360 899 1040 12.365
73Gp? 275 454 1114 13.317
76GP2 324 501 1213 12.280
oGint 737 1918 2220 13.375
93GP2 610 1026 1703 12.753
96GP2 579 1024 1990 12.602

The synthesis results indicate that in almost all
cases, only the built-in resources of logic and
configurable block registers were utilized, and no special
FPGA resources (LUT as Memory, Block RAM, DSP
Blocks) were engaged. Comparing the consumed
resources, it is evident that filters based on Gaussian
matrices with power-of-two coefficients are slightly
more resource efficient compared to filters constructed
with matrices having arbitrary integer coefficients. It can
be concluded that as the size of the processed data
window increases, along with the corresponding
enlargement of matrices used in the filter, the resource
savings become even more significant.

To assess performance, the duration of signal
propagation along the longest combinational critical path
in the implemented design can be considered. Static timing
analysis showed that for all schemes using a 3x3 matrix,
as well as for the scheme based on the 3G™ matrix, the

signal propagation delay along the critical path does not
exceed 10 ns. This allows for the operation of filters with
a clock frequency of 100 MHz. However, in schemes using
filters based on matrices >3GP? and >°GP?, the delay
exceeds 10 ns, requiring a reduction in clock frequency.
Testing the possibility of operating the technological
implementation at a working frequency of 80 MHz (period
of 12.5 ns) yielded positive results. For filters based on
matrices of size 7x7 and 9%9, the signal propagation delays
exceed 12.3 ns, which necessitates reducing the operating
clock frequency. All considered variants of filters based on
matrices of these dimensions can successfully operate at a
frequency of 50 MHz (clock period of 20 ns).

The graphical representation of relative cost
estimation for schemes based on various Gaussian
matrices is shown in Fig.3. The Fig.4 shows an
approximate view of the technological placement of the
implemented filter scheme on the FPGA chip.
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Fig. 3. Graphical representation of relative cost estimation according to Table 1:
Gauss — Gaussian filter implementation using approximated integer coefficients,
GFP2 — Gaussian filters N*GP? with powers-of-two coefficients, n — maximum exponent value
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Fig. 4. Technological placement of the filter scheme on the FPGA chip: a — overall view of the chip (the scheme occupies part
of the resources in sector X0YO, in the bottom left corner), b — enlarged image of the portion occupied by the scheme
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Experimental results

To estimate the efficiency of the developed
algorithms, a series of computational experiments were
performed, and the results are presented in Figures 4 and
5. An elevation map of the terrain surface was chosen as
the original image (higher areas were assigned a lighter
color, lower ones a darker color).

The original image was subjected to the influence
of white noise with a normal distribution, having a zero
mean and a variance D = 0.06. Subsequently, noise
filtering was performed using both traditional Gaussian

filters with various apertures and Gaussian filters with
coefficients rounded to powers of two.

Visual analysis of the images showed that
processing with a Gaussian smoothing filter allows for a
significant reduction in additive noise but leads to the
smoothing of fine details in the images, especially with
an increase of span N in the filtering window. Smoothing
with a GFP2 filter with a central element of 26 = 64
provides nearly identical results to traditional Gaussian
filtering. When using a GFP2 filter with a central element
of 23 = 8, slightly less smoothing and a greater number
of artifacts can be observed.

Fig 4. Terrain surface filtering results using Gaussian filters.
a — original image; b — noised image; ¢ — Gaussian filter 5x5; d — GFP2 23 5x5;
e — GFP2 2° 5x5; f— Gaussian filter 7x7; g — GFP2 23 7x7; h — GFP2 2° 7x7,
i — Gaussian filter 9x9; j — GFP2 23 9x9; k — GFP2 2° 9x9

The degree of noise suppression by both traditional
and proposed filters was also quantitatively estimated.

The Peak Signal-to-Noise Ratio (PSNR) is
commonly used for quantitative estimation. To determine

PSNR, the Mean Squared Error (MSE) is calculated
beforehand:

1 ~ 2
MSE = — 3K, X (I = 1),
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Then PSNR = 10logyo oo -,

Sometimes, Mean Absolute Error (MAE) and the
Structural Similarity Index Measure (SSIM) are also used
as quality criteria for filtering.

Since in the article different types of filters are
considered, it is advisable to compare the signal-to-noise
ratio (or signal-to-noise ratio improvement) before and
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Improvement Factor (SNRIF), as discussed, for example,
in [29].
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Graphs were constructed showing the dependence

of the averaged over 20 realizations of noise suppression
coefficient of GFP2 on the noise level.
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Fig 5. Performance comparison of Gaussian filters and GFP2:
a — window 5x5; b — window 7x7; ¢ — window 9x9; d — window 11x11

The analysis of figures and graphs showed that the
proposed filters in terms of filtration quality practically
do not differ from traditional Gaussian filters (by no more
than 0.5 dB). It is impractical to increase the maximum
power of two beyond 6. Also, increasing the window size
beyond 9 is impractical. It should be noted that when
processing images with different-sized details, it may be
more effective to use filters with different apertures and
powers of two.

At the same time, as demonstrated earlier, the use of
smoothing filters with coefficients in the form of powers
of two significantly improves performance and reduces
hardware complexity in FPGA implementations.

Conclusions

1. Gaussian ~ smoothing filters effectively
suppress additive white noise in images, including
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those of the terrain surface, both natural and
artificially synthesized.
2. The developed algorithm allows for

approximating the coefficients of the Gaussian filter
with powers of two for a given window size and
maximum power of two. The relative mean squared
deviation of the synthesized filter from the original did
not exceed 0.18.

3. Rounding the filter coefficients to powers of
two significantly simplifies FPGA implementation of
the filter and reduces hardware costs by approximately
30-50% to traditional Gaussian filters.

4. Digital modeling of the proposed filters
confirmed their effectiveness for processing images of
the terrain surface.

The filters provide an improvement in the signal-
to-noise ratio within the range of 5-10 dB (depending
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on the noise level, window size, and maximum power  coefficients in the form of powers of two is advisable
of two) and exhibit a filtration quality within 0.5 dB  to choose optimal filter parameters based on the noise
compared to traditional Gaussian filters. level, details' sizes in the image, and implementation
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5. Further analysis of Gaussian filters with  characteristics.
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Peanizanis 3rnaxayrouoro ¢insrpy Iayca
3 koedilnieHTaMu cTyneHiB 1BoX Ha ocHOBI FPGA

A. B. Ipamixko, A. O. 3yes, /1. I. Kapaman, M. Moikox

AHoTaunisi. MeTol aocaigkeHHs € po3poOKka METOMIB CHHTE3y TayCiBCBKOTO (inbTpa, SKi TapaHTYIOTh CIIPOIIEHY
amaparHy Ta TpPOTpaMHy peasi3alliro, 30KkpeMa (insTpiB 3 KoedillieHTaMu, IO € CTeneHAMH ABidku. Taki (QinbTpH MOXYTh
3abe3mnedyBaTi €(QEeKTUBHE NPUIIYNICHHS IIyMiB Ha 300paKeHHSX, BKIIOUAOYM JAHAMA(THI KapTH, SK MOPHPOIHI, Tak i
CHHTETHYHO CTBOpeHi. JIOCHi/keHHsI TakoXX BKIIIOYAE aHami3 MerofiB peanizauii Ha FPGA, mopiBHsSHHS amapaTHOI CKJIAIHOCTI
pe3ysbTaTiB iX poOOTH, MPOXYKTHBHOCTI Ta MPUIIYIICHHS IIYMiB y MOPIBHSAHHI 3 TPaJULiHHUMHU TayCiBCBKUMH (QiIBTpamu.
[IpencrapieHuii anropuT™M OKpYyIIEHHs KoedilieHTIB (inbTpa 10 CTENeHiB JBiHKkH, 0 3abe3nedye onTHManbHe HAOMIKSHHS
noOynoBaHoro (GijgbTpa 0 OpPHTiHALY, pa3oM 3 MPHKIaAaMH po3poOiaeHUX (inbsTpiB. Po3mIsHYTI TeMH BKIIOYAIOTH MPAKTUYHY
peamizariro Ha ocHOBI FPGA Xilinx Artix-7. OGroBOPIOIOTECS CTPYKTYpH (iTIBTPiB, METOIM TECTYBaHHS, PE3YIBTaTH CUMYJIALII Ta
Bepudikaris cxemu. Hamani npukIaan TeXHOIOTIYHOTO po3MileHHs peaizoBaHoi cxemu Ha wini FPGA. IIpoBeneHi mopiBHSIBHI
OLIHKH pecypciB Ta npoxykruBHOCTI FPGA 171 3arpoIoHOBaHNX Ta TPaJUI[iHHIX rayciBchKuX (insTpi. [Ipencrasneni nudposi
Mozeni (GiIBTpiB Ta OIIHKM 3MEHIICHHS ITYMIiB JJIs 3alIyMIICHHX 300pa’keHb MOBEpXHI MicueBocTi. Po3pobnenuit anroputm
3abe3neuye HaOMIKEHHs KOoe(illi€HTIB rayciBChbKoro (iisTpa y BUMISIL YMCEN CTYNEHIO ABIHKH JUIS 33[aHOr0 po3Mipy BikHA Ta
MaKCHMaJIbHOI KUIBKOCTI OiTiB 3 BigHOCHOIO moxuOkolo He Oinmbmie 0,18. Peamizamis 3anpononoBaHux ¢insrpiB Ha FPGA
HPHU3BOJHUTH 0 3MEHIICHHs BUTPAT Ha armaparHe 3a0e3ledeHHs 3 MOPIBHSHOIO NMPOAYKTHBHiCTIO. KoMIT'toTepHe MOJeIoBaHHS
HOKa3ye, 10 sIK TPaAWIiliHi, TaKk i 3alpOIOHOBAHI TayCiBCbKi (QIIBTPH €(EKTHBHO NMPHIIYHIYIOTh aIUTUBHUI Oinuil myM Ha
300pakeHHsIX. 3apornoHoBaHi (GiIbTPH MOKPAIIYIOTh CIIiBBIIHOILICHHS CUrHaj/iyM Ha 5-10 nb Ta mpakTW4HO BiANOBIZAIOTH
SIKOCTI (UIBTpamii TpaauIifHAX rayCiBCHKHUX (PiBTPIB.

Kawuosi cimoBa: dinsrp [ayca; dinsrparis mymy; koedillieHTn CTyIeHiB ABiiikY; anapaTHa peasi3awis; OIliHKa SKOCTi
Ta MPOAYKTUBHOCTI; iMiTAlliHHUI HaBYAIBHUI KOMIUIEKC; KOMITFOTEPHO-TeHEpOBaHEe CEPEIOBHIIE; YAOCKOHAICHHS MPOLEAYPHOT
reHepauii JaHamadry.
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