
ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 1

37

Information systems research

UDC 004.438:67 doi: https://doi.org/10.20998/2522-9052.2024.1.05

Serhii Krivtsov1, Yurii Parfeniuk2, Kseniia Bazilevych1, Ievgen Meniailov2, Dmytro Chumachenko1

1 National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
2 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

PERFORMANCE EVALUATION OF PYTHON LIBRARIES

FOR MULTITHREADING DATA PROCESSING

Abstract: Topicality. The rapid growth of data in various domains has necessitated the development of

efficient tools and libraries for data processing and analysis. Python, a popular programming language for data

analysis, offers several libraries, such as NumPy and Numba, for numerical computations. However, there is a
lack of comprehensive studies comparing the performance of these libraries across different tasks and data sizes.

The aim of the study. This study aims to fill this gap by comparing the performance of Python, NumPy, Numba,

and Numba.Cuda across different tasks and data sizes. Additionally, it evaluates the impact of multithreading

and GPU utilization on computation speed. Research results. The results indicate that Numba and Numba.Cuda

significantly optimizes the performance of Python applications, especially for functions involving loops and array

operations. Moreover, GPU and multithreading in Python further enhance computation speed, although with certain

limitations and considerations. Conclusion. This study contributes to the field by providing valuable insights into

the performance of different Python libraries and the effectiveness of GPU and multithreading in Python, thereby

aiding researchers and practitioners in selecting the most suitable tools for their computational needs.

Keywords: machine learning; Python; GPU; multithreading; numerical computations optimization.

Introduction

In solving problems in Data Science that depend on

the availability of necessary data, processing large

volumes of information becomes an increasingly

important task [1]. However, with the increase in data

volumes, there is a need for accelerated processing and

multithreading data processing [2]. Python libraries, such

as Numba [3], Numpy [4], CPython [5], Numba.Cuda

[6], can be not only convenient but also an effective

solution for such tasks.

Python is one of the most popular programming

languages in the field of Data Science, and its main
advantage is that it provides powerful tools for working

with data. Libraries like Numpy and Pandas [7] provide

various tools for working with data arrays and tables.

However, multithreading processing may be necessary

for processing large volumes of data.

This paper examines Python libraries, such as

Numba, Numpy, CPython, and Numba.Cuda, for

multithreading data processing in Data Science tasks. We

will analyze their advantages and disadvantages and

consider examples of using the mentioned libraries for

data processing in Data Science tasks.

Particular attention should be paid to the use of
these libraries for processing COVID-19 data, as the data

is quite voluminous and reliable, and it is also essential

that there is an opportunity to evaluate the processing

results by comparing them with real values [8].

Assuming that this pandemic was not the last, and the

processing and analysis of large volumes of data were

critically essential tasks, the acceleration and

optimization of this process have immense practical

significance [9]. Python libraries can help speed up data

processing and make it more efficient.

Overall, this article will provide readers with

information on how the use of Python libraries can

improve multithreading data processing in Data Science

tasks and help assess the advantages and disadvantages

of the mentioned libraries.

The primary aim of this research was to evaluate
and compare the performance of different computational

tools, namely Python, NumPy, Numba, and

Numba.Cuda, in the context of specific Data Science

applications. The study sought the most efficient tool for

various tasks, considering different data sizes and

computational requirements. The following tasks were

formulated to achieve the aim:

• Implement solutions for three distinct applied

tasks in Data Science using Python, NumPy, Numba, and

Numba.Cuda. The selected tasks included regression

analysis, image normalization, and activation function
computation.

• Evaluate the performance of each implemented

solution by measuring the execution time for different

data sizes. This involved analyzing the execution time of

each tool for varying sizes of datasets and determining

the impact of data size on the performance of each tool.

• Compare the performance of the different tools

based on the execution time and identify the most

efficient tool for each specific task. This involved a

detailed analysis of the results obtained from the

performance evaluation to determine the optimal tool for

each task and data size.
• Analyze the potential benefits and limitations of

using multithreading and GPU computations in Python.

This involved evaluating the impact of multithreading

and GPU computations on the performance of the

implemented solutions and identifying potential

challenges and limitations associated with their use.

© Krivtsov S., Parfeniuk Yu., Bazilevych K., Meniailov Ie., Chumachenko D., 2024

Advanced Information Systems. 2024. Vol. 8, No. 1 ISSN 2522-9052

38

• Provide recommendations on the optimal

computational tool for different Data Science

applications based on the performance evaluation and

comparison results. This involved synthesizing the

study's findings to provide practical guidelines for

researchers and practitioners in selecting the most

appropriate tools for their specific tasks and

computational requirements.
The research makes a significant and respectful

contribution to the academic community and the field of

Data Science by providing a comprehensive and

systematic evaluation of widely used computational tools,

including Python, NumPy, Numba, and Numba.Cuda. By

implementing solutions for three distinct applied tasks,

evaluating their performance across different data sizes, and

analyzing the impact of multithreading and GPU

computations, this study offers valuable insights into the

optimal selection of computational tools for various

applications. Furthermore, the research provides practical

recommendations for researchers and practitioners, aiding
in selecting the most appropriate tools for specific tasks and

computational requirements. Ultimately, this work

contributes to the ongoing efforts to optimize computational

efficiency in Data Science applications, facilitating more

robust and efficient analyses in this ever-evolving field.

Research is part of a complex intelligent

information system for epidemiological diagnostics, the

concept of which is discussed in [10].

Background

The exponential growth of data in various fields,

such as finance [11], healthcare [12], sustainability [13]

and social media [14], has posed significant challenges in

data storage, processing, and analysis. The ability to

quickly and efficiently process large volumes of data is

crucial for timely decision-making and gaining insights

from the data [15]. This has led to the development of

various tools and libraries that aim to optimize
computational performance and facilitate data analysis.

Due to its ease of use and extensive library support,

Python has become the go-to language for many data

scientists and researchers. NumPy, a foundational

package for numerical computing in Python, has been

widely adopted for its array object and related

functionalities. However, as the size of the datasets and

the complexity of the computations increase, the

limitations of NumPy in terms of performance become

more apparent [16]. This has led to developing other

libraries, such as Numba, which aims to optimize Python

code for better performance.
Numba leverages the LLVM compiler

infrastructure to translate Python code into optimized

machine code at runtime. This is particularly beneficial

for functions that involve heavy use of loops and array

operations, which are common in numerical

computations [17]. Additionally, Numba. Cuda extends

the capabilities of Numba by allowing developers to

write CUDA code in Python, thereby enabling the

utilization of NVIDIA GPUs for general-purpose

processing [18]. This is a significant advancement as

GPUs' parallel processing capabilities can significantly
reduce computation time for specific tasks [19].

CUDA, on the other hand, is a parallel computing

platform and API model developed by NVIDIA [20]. It

provides a comprehensive set of programming tools and

APIs that enable developers to write software that can

leverage the parallel processing capabilities of NVIDIA

GPUs. This is especially important for applications

involving large datasets or computationally intensive

tasks, as GPUs' parallel processing capabilities can
significantly reduce computation time [21].

Despite the availability of these tools and libraries,

there needs to be more comprehensive studies that

compare their performance across different tasks and

data sizes. Moreover, the impact of using GPU over CPU

for computations and the effectiveness of multithreading

in Python, are areas that require further exploration. This

study aims to fill this gap by comparing the performance

of Python, NumPy, Numba, and Numba.Cuda across

different tasks and data sizes. Additionally, it will

evaluate the impact of multithreading and GPU

utilization on computation speed, thereby providing
valuable insights for researchers and practitioners in data

science and computational research.

Materials and methods

Let us consider three applied tasks from the field

of Data Science, based on which the above-described

libraries and processing methods will be tested. All these
tasks are also used in the medical field, for example, in

predicting a patient's diagnosis [22] or transforming an

X-ray image for more qualitative diagnostics [23].

The first is the regression task – correlating a set

of features with some number predicting a continuous

variable. In mathematical terms, regression by the

gradient descent method optimizes the target function L.

In the current task, the function J can be defined as the

sum of squared errors (SSE):

𝐿(𝑤) =
1

2
(𝑦𝜑(𝑧)). (1)

Based on gradient descent, weights can be updated
by calculating the gradient of function J. The weight

change is defined as w = w + Δw.

The value of the weight change Δw is defined as

Δw = n Δ L(w). The gradient of function L is the partial

derivative of L concerning each weight wi.

Let us consider taking the derivative concerning

each weight:

𝑑𝐿

𝑑𝑤
=

𝑑

𝑑𝑤2
(𝑦 − 𝜑(𝑧)) =

=
𝑑𝐿

𝑑𝑤
=

1𝑑

2𝑑𝑤
(𝑦 − 𝜑(𝑧)) = (2)

= (𝑦 − 𝜑(𝑧))
𝑑

𝑑𝑤
(𝑦 − 𝑤𝑥) = (𝑦 − 𝜑(𝑧))𝑥.

Thus, the weight update is carried out according to

the rule:

Δ𝑤 = ∑(𝑦 − 𝜑(𝑧))𝑥𝑗 .

𝑛

𝑖=1

 (3)

Thus, we can iteratively update the weights to

minimize the cost function, knowing the function's
derivative. In this process, there are some nuances, such

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 1

39

as overfitting, underfitting, the curse of dimensionality,

etc., but their discussion is beyond the scope of this

article. Testing of technologies will be carried out as

follows: for a generated set of values, which has the form

(BATCHSIZE, SAMPLESIZE), perform a single weight

update. The dependence of the computation time on

BATCHSIZE will be the final result.

The second task is image normalization. Medical
data is often represented in images (X-rays, ultrasound

results, etc.). For a more successful application of

Convolutional Neural Network (CNN) - the primary

method of image processing in deep learning, the image

(or rather its representation as an array of numbers) needs

to be normalized, that is, to bring all values in the array

to the range [0, 1]. For images, the normalization process

is significantly simplified - it consists of dividing each

array value by 255 (in the RGB format, 255 is the

maximum value of the color channel).

If an image of size 1024x1024 has three channels

(red, green, blue), then the array, which represents the
image in numerical form, will have the shape (1024,

1024, 3). Similarly, an array of such image-size 100 will

have the shape (100, 1024, 1024, 3).

The dependence of the execution time of the image

array normalization on the number of images in the array

is the final result, based on which any conclusions can be

made.

The last task is using the activation function for an

array of numbers. The activation function of a neural

network layer (also used, for example, in logistic regression)

is often a nonlinear transformation of spaces to highlight
new features. In this section, we will use the sigmoid

function (the inverse function of the logit function), which

is used in classification problems due to the ease of

calculating its derivative. This function looks as follows:

f(x) =
1

1 + 𝑒−𝑥
 . (4)

This function takes values from 0 to 1 since:

lim
𝑥→∞

𝑓(𝑥) =
1

1 + ∞
= 0; (5)

lim
𝑥→∞

𝑓(𝑥) =
1

1 + 0
= 0. (6)

We will compute this function from an array of

numbers vectorized, that is, in the following way:

𝑀 = (𝑚1, 𝑚2, … , 𝑚𝑛); (7)

𝑓(𝑀) = (𝑓(m1), 𝑓(𝑚2), … , 𝑓(𝑚𝑛)). (8)

The result of the study is the dependence of the
execution time of the vectorized operation on the size of

the array.

There are several tools for working with such data.

CPython is the standard Python language interpreter

distributed on the official website python.org. All aspects

of this interpreter's internal workings are beyond this

article's scope, but the general concept needs to be stated.

Python uses the Everything-Is-Object system, as well as

dynamic typing. Code execution is carried out by

interpreting the program line by line and building

bytecode, which is then converted into machine code and
executed on the user's machine. All of the above

significantly slows down the speed of work (which is

compensated by other advantages), making Python

unsuitable for large calculations. However, the

conciseness of the language and the ability to create a high-

quality and simple API led to the creation of various

compiling libraries based on C, Fortran, and LLVM. Since

the publication's research subject is functions and their

execution time, it is necessary to provide an example of
implementing a function in the Python language. The

logit(p) function is implemented in the example below:

From math import log
def logit(p:float) -> float: return log(p / (1 - p))

Importantly, annotating the arguments of the

function and the returned value is optional (that is, it is

not typing) and exists only to improve the quality of the

code. The function is called standardly, using round

brackets (in the internal implementation of Python for

this purpose, the "magic" method call() is used):

>>> logit(0.5)
-0.47712125472

It is also worth considering how to use the logit

function vectorized. For this, list comprehension or

genexp (generator expression) is used. An example of
these tools for a list and a tuple is given below:

>>> user_list:list = [1, 2, 3, 4]
>>> [logit(p) for p in user_list] [0.0, 0.693147,

1.098612, 1.386294]
>>> user_tuple:tuple = (1, 2, 3, 4)

Next, let us consider working with NumPy

(Numeric Python) – an open-source library for Python

based on functions implemented in C and Fortran

languages. NumPy provides the ability to perform

vectorized operations on numpy.ndarray – the main class

of the library, representing an array with various

dimensions. NumPy functions that work with the array
vectorized are called u-funcs. For the study, it is worth

considering only the functions div, mul, add, and exp,

which are replacements for the division, multiplication,

addition, and exponent operators. Moreover, NumPy

provides the ability for very fast calculations due to its

implementation. Let us consider an example of a function

that calculates the exponent of the inverse argument:

import numpy as np
def rev_exp(x:np.ndarray) -> np.ndarray: return np.exp(-x)

As you can see, there are no special differences in

implementing functions. However, now we can perform

operations on arrays of numbers vectorized, that is:

>>> import numpy as np
>>> user_arr:np.ndarray = np.arange(1, 6, 1)
>>> user_arr
array([1, 2, 3, 4, 5])

>>> rev_exp(user_arr)
array([0.367879, 0.135335, 0.049787, 0.018315, 0.006737])

Also, NumPy provides a convenient interface

for changing the shape of the array. For example, to

create a column vector from a one-dimensional array of

numbers, you can use the following method:

>>> np.reshape(user_arr, (-1, 1)) array([[1], [2], [3], [4], [5]])

It is also worth noting that functions such as

np.add, np.reshape, and many others are alternatives to

the methods of the np.ndarray class .add(), .reshape(), etc.

Advanced Information Systems. 2024. Vol. 8, No. 1 ISSN 2522-9052

40

However, calling methods implies calling the library's

function, so this method of calling functions will be used

in testing.

Key in our research is that NumPy can perform

operations on arrays of different but compatible

dimensions. For example, we can add two arrays with

dimensions 5x5 and 5:

>>> arr1:np.ndarray = np.arange(1, 26, 1).reshape((5, 5)
>>> arr1
array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],

[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]])

>>> arr2:np.ndarray = np.arange(1, 5)
>>> arr2
array([1, 2, 3, 4, 5])

>>> np.add(arr1, arr2) array([[2, 4, 6, 8, 10],
[7, 9, 11, 13, 15],
[12, 14, 16, 18, 20],

[17, 19, 21, 23, 25],
[22, 24, 26, 28, 30]])

Also, by specifying the axis of operation, you can

calculate the sum of each column of the array.

>>> sum_arr:np.ndarray = np.add(arr1, arr2)
>>> np.sum(sum_arr, axis=1) array([30, 55, 80, 105, 130])

We will use this technique when testing tools for

gradient descent.
Moreover, finally, Numba is a library for optimized

execution of Python functions. It supports almost all

built-in language features and NumPy functions and

operations. Numba translates Python functions into

optimized machine code during execution using the

standard LLVM compiler library. The function is

compiled at the first call (Just-In-Time compilation), and

then the compiled version is called, which runs much

faster. The study considers two decorators from Numba

– jit and vectorized. They are used very simply:

from numba import jit
@jit
def f(x:float) -> float: return x**3 - 2 * x**2 + 5

The function f will be compiled at the first call

and work faster after that. We will use the time module

from the standard Python library for measurements.

from numba import jit
from time import time
import numpy as np
@jit

def f(x:float) -> float:
 return x**3 - 2 * x**2 + 5
arr:np.ndarray = np.arange(1, 10000, 0.05)

print(arr.shape)
start = time()
f(arr)

print(time() - start)
start = time()
f(arr)

print(time() - start)
The program output is as follows:
scssCopy code

(199980,)
0.6352410316467285
0.0010001659393310547

Also, Numba allows you to create your own u-

funcs, working on the principle of NumPy functions. For

example, let us implement a function that calculates the

square root of each array element.

from numba import vectorize
@vectorize
def f(x:float) -> float: return x * x
Test the function on a NumPy array:

>>> arr:np.ndarray = np.arange(1, 6, 1)
>>> arr
array([1, 2, 3, 4, 5])

>>> f(arr)
array([1, 4, 9, 16, 25])

Vectorized functions are the subject of research in

image normalization and the use of activation functions.

Special mention should be made of CUDA and

Numba.Cuda. Computations on GPUs are a relatively
new concept in Computer Science, but despite this, they

have made significant changes in Machine Learning and

Deep Learning. When comparing two types of processors

used for calculations, the deciding factor is the number of

floating-point operations per second (flops). At the

moment, the value of this metric for graphic cards is

about ten times higher than for CPUs.

The graphic processor has many computing cores

(in modern realities, thousands or tens of thousands),

which are combined into blocks, which imposes some

restrictions. Thus, the high computing power of graphic
cards is a consequence of a special architecture (which,

of course, imposes its restrictions). Initially, graphic

processors were created for rendering textures, creating

graphic objects, etc., so the main direction for GPUs

became large parallel calculations.

An important point when working with a GPU is

that all cores during calculations perform the same set of

instructions (SIMD), which relates to the disadvantages

of using calculations on graphic processors. Also,

graphic processors are used to calculate large volumes of

data, but not in complex algorithms with many

conditional constructs-loops, etc.
One of the objects of this study in the field of

computations is CUDA (Compute Unified Device

Architecture) – an SDK from NVidia, that allows the use

of video cards of this company for computations.

CUDA SDK has a very convenient interface, many

add-ons for various programming languages, and quality

documentation. Within the Python programming

language, we will focus on implementing the add-on over

CUDA in the Numba library. The Numba.cuda

submodule provides a simple interface, requiring almost

nothing from the user. Using the example of a function
that raises each element of the array to a square, we will

analyze the mechanism of interaction with CUDA:

import numpy as np
from numba import cuda

@cuda.jit
def power2(arr:np.ndarray) -> None:
i:int = cuda.grid(1)

if i < arr.shape[0]:
arr[i] = arr[i] * arr[i]

Here, the expression cuda.grid(1) may cause

difficulty. This function returns the index for the array

element being processed now. This opens up the

possibility for parallel calculations, simultaneously

changing the passed array in real-time. To run the

function, you also need to specify the number of blocks

of processor cores used and the number of threads in one

block of cores. The product of these two values is equal

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 1

41

to the total number of threads used in the calculations.

Also, to prevent Out-Of-Bounds Error (in Numba –

Cuda.APIError), we check whether the index is valid for

a given array.

Let us set the number of threads to 32, and the

number of blocks will be calculated according to the

recommended formula:

threadsperblock = 32
blockspergrid = (len(array) + (threadsperblock - 1))
// threadsperblock

Now we call the function from the previously

created array of numbers as follows (square brackets

when calling are part of the Numba.cuda interface).

Putting the array into the graphic processor's memory is

also important. Previous experiments show that

calculations using Numba.cuda are significantly slowed

down without this action.

user_arr:np.ndarray = np.random.random(size=(100,))
user_arr:np.ndarray = cuda.to_device(user_arr)
power2[blockspergrid, threadsperblock](user_arr)

At the first call, the function is compiled similarly

to numba.jit and changes the source array, raising all its

elements to a square. CUDA also supports processing

multidimensional arrays (cuda.grid() can return up to 3

values for the index) and some Python and NumPy

features. For example, when normalizing images, we will

use the range() function (the definition "function" is
indicated only because of its prevalence; in fact, range in

Python is a class), since images, in our case, are

represented as an array of numbers with four dimensions.

Implementation using various tools

This section presents implementations of the tasks

described above using the tools we are considering.
Almost all functions work in-place; they modify the

passed array rather than returning a new one. This is done

only to simplify code fragments; this approach is not

recommended (at least from the point of view of

constructing processing pipelines).

Regression. The software implementation of

gradient descent (this optimization method is described

above) is very simple and is just a notation of the formula

for updating weights. With NumPy, the situation is even

easier, as this library inherently supports operations on

arrays of different shapes, and we will use this.

Python. In the implementation of pure CPython, the
process of updating weights is most explicit, as it is

written in the form of two loops (calculating the model's

prediction and subsequent updating of weights). Here, we

also use the global variable LEARNING_RATE (also

only for convenience; using global variables is not good

practice) to control learning. LEARNING_RATE is a

double-precision floating-point number. The software

implementation is as follows:

def python_version(weights:list, samples:list, target:list) -> None:
for i in range(len(samples)):
sample:list = samples[i]
value:float = target[i]

predicted:float = 0
for j in range(len(weights)):
predicted += weights[j] * sample[j]

for j in range(len(weights)):
weights[j] -= sample[j] * LEARNING_RATE * (value - predicted)

NumPy. Using vectorized operations, we can move

away from loops and write the weight update in matrix

form (representing the set of samples for training as a

matrix and the weights and values of the target variable

as row vectors). It looks like this:

def numpy_version (weights:np.ndarray,
samples:np.ndarray, target:np.ndarray) -> None:

dw:np.ndarray = np.reshape((target - np.sum
(weights * samples)), (-1, 1))

weights -= LEARNING_RATE * np.sum(samples * dw)

All aspects of this implementation (using NumPy

functions, changing the shape of the array, etc.) were

considered when analyzing work with NumPy.
Numba. For the Numba library, for application in

the gradient descent task, we used two implementations:

the first is based on pure Python, and the second is

implemented based on NumPy.

The functions repeat the implementations given

above, except for the use of the @jit decorator;

however, for a complete understanding, we provide

their source:

@jit('(f8[:], f8[:, :], f8[:])')
def numba_python_version (weights:np.ndarray,

samples:np.ndarray, target:np.ndarray) -> None:
for i in range(samples.shape[0]):
sample:list = samples[i]

predicted:float = 0
for j in range(weights.shape[0]):
predicted += weights[j] * sample[j]

for j in range(weights.shape[0]):
weights[j] -= sample[j] * LEARNING_RATE * (target[i]

- predicted)

@jit('(f8[:], f8[:, :], f8[:])')
def numba_numpy_version(weights:np.ndarray,

samples:np.ndarray, target:np.ndarray) -> None:

dw:np.ndarray = np.reshape((target - np.sum(weights
* samples)), (-1, 1))

weights -= LEARNING_RATE * np.sum(samples * dw)

CUDA. The implementation based on GPU

computations is based on the idea of implementation on

CPython. However, we do not iterate over all sets of

features but select one using cuda.grid() and update the

weights with each selected set. The implementation using

CUDA looks like this:

pythonCopy code
@cuda.jit('(f8[:], f8[:, :], f8[:])')
def cuda_version (weights:np.ndarray,

samples:np.ndarray, target:np.ndarray) -> None:
i:int = cuda.grid(1)
if i < samples.shape[0]:

pred:float = 0
for j in range(weights.shape[0]):
pred = pred + weights[j] * samples[i, j]

for j in range(weights.shape[0]):
weights[j] = weights[j] - LEARNING_RATE *

samples[i, j] * (target[i] - pred)

Image normalization. From a software

implementation perspective, image normalization is

much simpler, as it requires no additional computations.

Here, we divide each element of the 4-D array by 255.

Almost all functions listed below also work in place,

modifying the passed array.

Python. The main difficulty in Python

implementation is calculating the image's dimensions
(since the images in the array may have different sizes).

Using built-in functions is very costly, so expecting this

method to work efficiently is not advisable.

Advanced Information Systems. 2024. Vol. 8, No. 1 ISSN 2522-9052

42

def python_version(images:list) -> None:
for i1 in range(len(images)):
for i2 in range(len(images[i1])):
for i3 in range(len(images[i1][i2])):

for i4 in range(len(images[i1][i2][i3])):
images[i1][i2][i3][i4] /= 255

NumPy. Since NumPy provides vectorized

operations, we can use the division operator (in this case,

the "magic" method idiv()) to achieve the goal.

def numpy_version(images:np.ndarray) -> None:
images /= 255

Numba. Since we use vectorized operations for the
current problem, there will be three variants in the

implementation using Numba: pure CPython, NumPy,

and the vectorize decorator. The first two repeat the

source functions of CPython and NumPy, and the third

returns a value equal to the passed argument divided by

255. Implementation using Python:

@jit
def numba_python_version (images:np.ndarray) -> None:
d1, d2, d3, d4 = images.shape

for i in range(d1):
for j in range(d2):
for k in range(d3):

for p in range(d4):
images[i][j][k][p] /= 255
Implementation using NumPy functions:

@jit
def numba_numpy_version(images:np.ndarray) -> None:
return np.divide(images, 255)

The following function is based on the Numba

interface, which was discussed earlier. In the example, a

squaring function was implemented; now, a division by

255 functions is implemented. Numba implementation

using vectorization:

@vectorize
def numba_vectorize_version(x:float) -> float:
return x / 255

CUDA. In the CUDA implementation from Numba,

the cuda.grid() function can return up to 3 values. In our

task, the image array has four dimensions, which means

using an additional loop to perform the task. However,

CUDA is optimized for such constructions, unlike

conditional branching. It is also essential to prevent an

out-of-bounds error for each image, as the image size
may vary (in NumPy, subarrays can have different sizes

when dtype='object'). Implementation using the cuda.jit

decorator:

@cuda.jit()
def cuda_version(images:np.ndarray) -> None:

i1, i2, i3 = cuda.grid(3)
if (i1 < images.shape[0] and
i2 < images[i1].shape[0] and

i3 < images[i1, i2].shape[0]):
for i4 in range(images.shape[3]):
images[i1][i2][i3][i4] /= 255

Using the in-place division operator ensures

changes to the array elements (CUDA works in this way,

changing the state of the array).

Layer activation using activation function. Next,

we present implementations of functions that compute

the value of the activation function (in our case – the

sigmoid function, used in logistic regression). This is a

vectorization task; however, unlike the previous task, we

consider a row vector, not a 4-D array, and the

calculations are somewhat more complex, as

exponentiation from this point of view is much "heavier"

than ordinary division.

Python. In the Python implementation, the idea is

simple: use a loop to iterate over the elements of the x

array, replacing them with the value 1-x. The function

works in place:

pythonCopy code
def python_version(values:list) -> None:

for i in range(len(values)):

values[i] = 1 / (1 + exp(-values[i]))

NumPy. Using the u-func of the NumPy library, we

can remove the iteration of elements and write a pure

mathematical expression. Here, the function works with

a return, as it is impossible to change the elements of the

array in place in this way without using multiple

constructions. However, using the return construction

will not affect the execution time of the function.

def numpy_version(values:np.ndarray) -> np.ndarray:
return 1 / (1 + np.exp(-values))

Numba. As in the previous task, this subsection
presents three implementations using different

approaches and decorators. They have the same

properties as the corresponding implementations without

using just-in-time compilation.

@jit('(f8[:])')
def numba_python_version(values:np.ndarray) -> None:

for i in range(len(values)):
values[i] = 1 / (1 + exp(-values[i]))
@jit('f8[:] (f8[:])')

def numba_numpy_version (values:np.ndarray) -> np.ndarray:
return 1 / (1 + np.exp(-values))

The function generated by the vectorize decorator

also works:

@vectorize
def numba_vectorize_version(x:float) -> float:
return 1 / (1 + np.exp(-x))

CUDA. In the implementation of calculations on

the GPU, we select one index for the array element and

change this element by index using the sigmoid function.

pythonCopy code
@cuda.jit()
def cuda_version(values:np.ndarray) -> None:

i:int = cuda.grid(1)
if i < values.shape[0]:
values[i] = 1 / (1 + exp(-values[i]))

Results

It should be noted in advance that for the purity of

the experiment, all functions were implemented using

Numba and Numba.Cuda is precompiled using a call.

This is because the Numba interface allows you to save

compiled functions to a separate source file, which can

be imported and used in the future without compilation at

the first call. Therefore, only the pure execution time

should be evaluated.
The nominal time must not interest us; the main

object of analysis is the law of growth of execution time

and the ratio between the indicators of different functions.

In the last section, we will discuss all aspects related to the

results of execution, as there are many of them.

Calculations were performed on a machine with the

following configuration:

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 1

43

• AMD Ryzen 7 (8/16) 3.0-3.7 GHz (AM4

Socket)

• MSI GTX 1060 TI (3 GB)

• SSD 256 GB

Regression. A graph of the dependence of the

execution time of various functions on the number of

feature sets in the considered matrix is presented in

Fig. 1.

This graph shows that the function's implementation

in pure Python is significantly faster than implementations

in NumPy and its variations with just-in-time compilation.

As expected, CUDA implementations are unparalleled in

calculations (acceleration relative to Python is slightly less

than a million times).

Table 1 is presenting execution times for various

tools, depending on the number of rows in the dataset.

Table 1 – Regression task execution time

Tool
Number of samples in dataset

5 000 50 000 100 000 150 000 200 000

Python 0.13095 1.3231 2.5853 3.7579 5.1502

Numba (Python) 0.00012 0.00100 0.00216 0.00304 0.00404

Numba (NumPy) 0.00036 0.00668 0.01344 0.02245 0.02713

NumPy 0.00024 0.00784 0.01668 0.02737 0.03421

CUDA 7.932e-05 8.149e-05 8.355e-05 8.481e-05 8.566e-05

Fig. 1. A graph of the dependence of the execution time of various functions
on the number of feature sets in the considered matrix

Image normalization. When normalizing images,
as can be seen from the graph, Numba in any of its

variations is better than NumPy, giving an acceleration

of about six times. The execution speed of the function

using CUDA practically does not change from the

number of images in the array. A significant result is that

we achieved acceleration of the function precisely with

the implementation of Numba, based on standard Python

constructions, which speaks of extremely high

optimization of cyclic operations (Fig. 2).

Table 2 shows the dependence of normalization

execution time on the number of images in the set.

Activation function. Let us analyze the execution
results for calculating the activation function. This is an

essential aspect, as such a task often arises in Machine

Learning and Deep Learning spheres, where the speed of

calculations plays a crucial role in the development

process.

A graph of the dependence of the execution time of

various functions on the number of feature sets in the

considered matrix is presented in Fig. 3.

Table 3 shows the execution times for some

amounts of values in one-dimensional arrays for which

the activation function is calculated:

Table 2 – Image normalization execution time

Tool
Number of samples in dataset

500 2500 5000 7500 9500

Python 0.28126 1.37804 2.78959 3.93409 4.99358

Numba (Python) 0.00024 0.00131 0.00256 0.00376 0.0048

Numba (NumPy) 0.00055 0.00292 0.00576 0.00908 0.01196

Numba (vectorized) 0.00031 0.00232 0.00492 0.00772 0.01028

NumPy 0.00035 0.00228 0.00496 0.00792 0.01044

CUDA 3.999e-05 4.539e-05 5.236e-05 6.002e-05 6.34e-05

Advanced Information Systems. 2024. Vol. 8, No. 1 ISSN 2522-9052

44

Fig. 2. A graph of the dependence of the execution time of various functions

on the number of feature sets the considered matrix

Table 3 – Activation function execution time

Tool
Number of samples in dataset

50000 250000 500000 750000 950000

Python 0.03597 0.16328 0.32821 0.48553 0.63951

Numba (Python) 0.00036 0.00194 0.00378 0.00574 0.00738

Numba (NumPy) 0.00016 0.00108 0.0022 0.00356 0.00472

Numba (vectorized) 0.00014 0.00112 0.00256 0.00364 0.00492

NumPy 0.0007 0.00438 0.00854 0.01342 0.01748

CUDA 4.038e-05 4.08e-05 4.218e-05 4.656e-05 4.997e-05

Fig. 3. A graph of the dependence of the execution time of various functions
on the number of feature sets in the considered matrix

Discussion

PyTorch [24] and Keras [25] can use both CPU and

GPU for computations. Therefore, comparing CUDA and

other implementations here is particularly meaningful
(unlike the previous task, as the primary data

preprocessing pipeline for models is performed on the

CPU).

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 1

45

As we can see from the graph, implementations

using Numba again increase execution speed compared

to regular Python or NumPy.

The study presents the software implementation of

solutions for three applied tasks from the field of Data

Science, using Python, NumPy, Numba, and

Numba.Cuda. Based on the execution of the

implemented programs, correspondences of the
program's runtime, using one or another tool, were

compiled depending on the amount of data to be

processed. An analysis was carried out on the rationality

of using various tools for a specific task using the

obtained data presented in the work in the form of graphs

and tables.

Even though computations on video cards are the

fastest option for calculations, they should be used in

specific situations.

With a small dataset, due to the memory exchange

between the main processor and the graphic processor,

the computation speed may be the same as when
performed on the main processor. Computations on video

cards should be used in high-load systems or with a large

dataset (sufficiently large means a high difference

between the execution speed on the processor and the

graphic processor).

It is also worth considering the economic aspect of

the issue. Graphic processors on the modern market are

expensive, and even old models (for example, video

cards up to the RTX generation at NVidia) may seem

overpriced for some users.

However, based on the experiment results, using
Numba seems optimal for calculations on the CPU, as it

practically does not require anything from the user. In the

regression task, we achieved a speed increase using the

for...in construction compared to NumPy. Unfortunately,

not all NumPy functions work accelerated when

combined with Numba, so using the latter library is

useful with a very good understanding of the developer's

specific task.

It is worth considering separately the possibility of

implementing multithreaded data processing, which, in

this case, can significantly accelerate the data processing
process itself.

Parallel calculations in Python without external

libraries can be done using several modules: threading –

which provides the ability to manage threads; queue -

which is responsible for organizing queues; and

multiprocessing – which manages processes. In this case,

we are mainly interested in the first module. To start

working with it, you need to import the class:

from threading import Thread

After the import, the Thread() function will be

available – with its help, we will create threads.

For example, like this:

variable = Thread(target=function_name, args=(arg1, arg2,))

For convenience and to avoid confusion during

debugging, assigning a name to the threads is advisable.

To perform calculations in this case, creating a separate

class that inherits from Thread from the threading module

is advisable. Moreover, prescribe the program of actions

in the run() method. This need is dictated by the fact that

the thread's behavior will be quite complex. The

implementation can be as follows:

import threading
class MyThread(threading.Thread):
def __init__(self, num):

super().__init__(self, name="threddy" + num)
self.num = num
def run(self):

print ("Thread ", self.num),
thread1 = MyThread("1")
thread2 = MyThread("2")

thread1.start()
thread2.start()
thread1.join()

thread2.join()

A similar implementation is found in many

languages.

For calculations using multithreading, and not on
the CPU, but on the GPU, the NUMBA library is used in

conjunction with NumPy. Considering the computing

power of modern GPUs and their ability to work in

multithreading mode, we will get a multiple reduction in

the time required for processing.

Suppose it is necessary to implement the addition of

one-dimensional arrays, element by element. Let us

implement it like this:

def arr_sum (x , y):
result_arr = nupmy.empty_like (x)
for i in range (len (x)) :
result_arr [i] = x[i] + y[i]

return result_arr

To speed up the execution of the code, it makes

sense to import the jit class from the numba module and

add the @jit annotation at the beginning of the code:

from numba import jit @jit def arr_sum(x,y)

Thus, the processing will be significantly

accelerated.
However, multithreading in the program can have

negative consequences, with incorrect implementation or

suboptimal use.

For example, when using multithreading, it is not

advisable to use more threads than processor cores

available for use; it should be noted that some processors

have different virtualization and parallelization

technologies.

Interrelated calculations will add dependency

between data streams, leading to performance problems

and, in case of an error, to the program's termination.

Conclusions

The study aimed to analyze the performance of

various computational tools, including Python, NumPy,

Numba, and Numba.Cuda, in the context of Data Science

applications.

The experiment used the tools above to implement
solutions for three applied tasks: regression analysis,

image normalization, and activation function computation.

The performance of each tool was evaluated based on the

execution time for different data sizes.

The main results indicate that while computations

on video cards (GPUs) are the fastest, they are most

effective in high-load systems or with a sufficiently large

Advanced Information Systems. 2024. Vol. 8, No. 1 ISSN 2522-9052

46

dataset. Specifically, the use of Numba.Cuda showed

significant speed improvements compared to traditional

Python or NumPy implementations. However, the

experiment also highlighted that GPUs may not always

be the most efficient approach, especially for small

datasets, due to the memory exchange between the main

and graphic processors. Additionally, the study revealed

that using Numba seems optimal for CPU calculations as
it does not require significant modifications to the

existing Python code and provides a notable speed

increase compared to NumPy.

The contribution of this study to the field lies in its

comprehensive analysis of the performance of different

computational tools in specific Data Science

applications. It provides valuable insights into the

optimal use of these tools based on the size of the dataset

and the nature of the computations involved. Moreover,

the study sheds light on the potential benefits and

limitations of using multithreading and GPU

computations in Python. This can guide researchers and
practitioners in selecting the most appropriate tools for

their tasks.

Future work should focus on expanding the scope

of the experiment to include additional computational

tasks and tools.

Moreover, it would be beneficial to explore the

impact of different hardware configurations on the

performance of the tools analyzed in this study.

Additionally, further research is needed to investigate

multithreading's potential negative consequences and
develop strategies for optimizing its use in different

applications.

Ultimately, a more comprehensive understanding of

the performance characteristics of various computational

tools will contribute to developing more efficient and

effective solutions in the field of Data Science.

Acknowledgements

The study was funded by the National Research

Foundation of Ukraine in the framework of the research

project 2020.02/0404 on the topic “Development of

intelligent technologies for assessing the epidemic

situation to support decision-making within the

population biosafety management”.

REFERENCES

1. Motamarri, S., Akter, S., Yanamandram, V. and Wamba, S. F. (2017), “Why is Empowerment Important in Big Data
Analytics?”, Procedia Computer Science, vol. 121, pp. 1062–1071, doi: https://doi.org/10.1016/j.procs.2017.11.136

2. Zhang, J., Cui, Y., Fan, X. and Ren, J. (2023), “Asynchronous Multithreading Reinforcement Control Decision Method for
Unmanned Surface Vessel,” IEEE Internet of Things Journal, Vol. 10, Is. 24, doi: https://doi.org/10.1109/jiot.2023.3305387

3. (2018), “Numba: A High-Performance Python Compiler,” Pydata.org, available at: https://numba.pydata.org/

4. (2009), “NumPy”, Numpy.org, available at: https://numpy.org/

5. (2021), “python/cpython”, GitHub, available at: https://github.com/python/cpython

6. (2023), “Numba for CUDA GPUs — Numba 0.50.1 documentation”, numba.pydata.org, available at:

https://numba.pydata.org/numba-doc/latest/cuda/index.html

7. (2018), “Python Data Analysis Library — pandas: Python Data Analysis Library,” Pydata.org, available at: https://pandas.pydata.org/

8. Haleem, A., Javaid, Mohd., Khan, I. H. and Vaishya, R.(2020), “Significant Applications of Big Data in COVID-19 Pandemic”,
Indian Journal of Orthopaedics, Vol. 54, No. 4, pp. 1–3, doi: https://doi.org/10.1007/s43465-020-00129-z

9. Garattini, C., Raffle, J., Aisyah, D. N., Sartain, F. and Kozlakidis, Z. (2017), “Big Data Analytics, Infectious Diseases and
Associated Ethical Impacts”, Philosophy & Technology, Vol. 32, No. 1, pp. 69–85, doi: https://doi.org/10.1007/s13347-017-0278-y

10. Yakovlev S., Bazilevych, K., Chumachenko, D., Chumachenko, T., Hulianytskyi, L., Meniailov, Ie. and Tkachenko, A. (2020),
“The Concept of Developing a Decision Support System for the Epidemic Morbidity Control”, CEUR Workshop Proceedings,
Vol. 2753, pp. 265–274, available at: https://ceur-ws.org/Vol-2753/paper19.pdf

11. Hasan, Md. M., Popp, J. and Oláh, J. (2020), “Current landscape and influence of big data on finance,” Journal of Big Data,

Vol. 7, No. 1, pp. 1–17, doi: https://doi.org/10.1186/s40537-020-00291-z

12. Izonin, I., Tkachenko, R., Verhun, V. and Zub, K. (2021), “An approach towards missing data management using improved
GRNN-SGTM ensemble method”, Engineering Science and Technology, an International Journal, Vol. 24, No. 3, pp. 749–
759, doi: https://doi.org/10.1016/j.jestch.2020.10.005

13. Davidich, N., Chumachenko, I., Davidich, Y., Taisiia, H., Artsybasheva, N. and Tatiana, M. (2020), “Advanced Traveller

Information Systems to Optimizing Freight Driver Route Selection”, 2020 13th International Conference on Developments in
eSystems Engineering (DeSE), doi: https://doi.org/10.1109/dese51703.2020.9450763

14. Chew, A. M. K. and Gunasekeran, D. V. (2021), “Social Media Big Data: The Good, The Bad, and the Ugly (Un)truths”,
Frontiers in Big Data, Vol. 4, doi: https://doi.org/10.3389/fdata.2021.623794

15. Ahmed, R., Shaheen, S. and Philbin, S. P. (2022), “The role of big data analytics and decision-making in achieving project success”,
Journal of Engineering and Technology Management, Vol. 65, 101697, doi: https://doi.org/10.1016/j.jengtecman.2022.101697

16. Harris, C. R., Millman, K. Ja., Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, Ju., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk, M. H., Brett, M., Haldane, A., Río, Ja. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. and Oliphant T. E. (2020), “Array programming
with NumPy,” Nature, Vol. 585, No. 7825, pp. 357–362, doi: https://doi.org/10.1038/s41586-020-2649-2

17. Lam, S. K., Pitrou, A. and Seibert, S. (2015), “Numba: A LLVM-based Python JIT Compiler”, Proceedings of the Second

Workshop on the LLVM Compiler Infrastructure in HPC - LLVM ’15, doi: https://doi.org/10.1145/2833157.2833162

18. Oden, L. and Saidi, T. (2021), “Implementation and Evaluation of CUDA-Unified Memory in Numba,” Springer eBooks,
pp. 197–208, Jan. 2021, doi: https://doi.org/10.1007/978-3-030-71593-9_16

19. Nguyen G., Dlugolinsky S., Bobák M., Tran V., García, Á. L., Heredia, I., Malík, P. and Hluch, L. (2019), “Machine Learning
and Deep Learning frameworks and libraries for large-scale data mining: a survey”, Artificial Intelligence Review, Vol. 52,
No. 1, pp. 77–124, Jan. 2019, doi: https://doi.org/10.1007/s10462-018-09679-z

https://doi.org/10.1016/j.procs.2017.11.136
https://doi.org/10.1109/jiot.2023.3305387
https://numba.pydata.org/
https://numpy.org/
https://github.com/python/cpython
https://numba.pydata.org/numba-doc/latest/cuda/index.html
https://pandas.pydata.org/
https://doi.org/10.1007/s43465-020-00129-z
https://doi.org/10.1007/s13347-017-0278-y
https://ceur-ws.org/Vol-2753/paper19.pdf
https://doi.org/10.1186/s40537-020-00291-z
https://doi.org/10.1016/j.jestch.2020.10.005
https://doi.org/10.1109/dese51703.2020.9450763
https://doi.org/10.3389/fdata.2021.623794
https://doi.org/10.1016/j.jengtecman.2022.101697
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1007/978-3-030-71593-9_16
https://doi.org/10.1007/s10462-018-09679-z

ISSN 2522-9052 Сучасні інформаційні системи. 2024. Т. 8, № 1

47

20. (2013), “CUDA Toolkit,” NVIDIA Developer, Jul. 02, 2013, available at: https://developer.nvidia.com/cuda-toolkit

21. Pala, A. and Sadecki, J. (2018), “Application of the Nvidia CUDA Technology to Solve the System of Ordinary Differential
Equations”, Advances in intelligent systems and computing (AISC), Vol. 720, Jan. 2018, pp. 207–217, doi:
https://doi.org/10.1007/978-3-319-75025-5_19.

22. Dash, S., Shakyawar, S. K., Sharma, M. and Kaushik, S. (2019), “Big data in healthcare: management, analysis and future
prospects”, Journal of Big Data, Vol. 6, No. 1, Jun. 2019, pp. 1–25, doi: https://doi.org/10.1186/s40537-019-0217-0

23. Packhäuser, K., Gündel, S., Münster, N., Syben, C., Christlein, V. and Maier, A. (2022), “Deep learning-based patient re-

identification is able to exploit the biometric nature of medical chest X-ray data,” Scientific Reports, Vol. 12, No. 1, Sep. 2022,
doi: https://doi.org/10.1038/s41598-022-19045-3

24. (2023), “PyTorch,” Pytorch.org, available at: https://pytorch.org/

25. (2019), “Home - Keras Documentation,” Keras.io, 2019, available at: https://keras.io/

Надійшла (received) 25.11.2023
Прийнята до друку (accepted for publication) 13.02.2024

ВІДОМОСТІ ПРО АВТОРІВ / ABOUT THE AUTHORS

Кривцов Сергій Олегович – аспірант кафедри математичного моделювання та штучного інтелекту, Національний

аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут», Харків, Україна;
Serhii Krivtsov – PhD Student of Department of Mathematical Modeling and Artificial Intelligence, National Aerospace
University “Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: krivtsovpro@gmail.com; ORCID ID: https://orcid.org/0000-0001-5214-0927;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57214220648.

Парфенюк Юрій Леонідович – доктор філософії, старший викладач кафедри теоретичної та прикладної інформатики,
Харківський національний університет ім. В.Н. Каразіна, Харків, Україна;
Yurii Parfeniuk – PhD, Senior Lecturer of Department of Theoretical and Applied Informatics, V.N. Karazin Kharkiv National
University, Kharkiv, Ukraine
e-mail: parfuriy.l@gmail.com; ORCID ID: https://orcid.org/0000-0001-5357-1868;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57204619131.

Базілевич Ксенія Олексіївна – кандидат технічних наук, доцент, доцент кафедри математичного моделювання та
штучного інтелекту, Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний
інститут», Харків, Україна;
Kseniia Bazilevych – Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of
Mathematical Modeling and Artificial Intelligence, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: ksenia.bazilevich@gmail.com; ORCID ID: https://orcid.org/0000-0001-5332-9545;

Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57202239038.

Меняйлов Євген Сергійович – кандидат технічних наук, доцент, в.о. завідувача кафедри теоретичної та прикладної
інформатики, Харківський національний університет ім. В.Н. Каразіна, Харків, Україна;
Ievgen Meniailov - Candidate of Technical Sciences, Associate Professor, Acting Head of Department of Theoretical and

Applied Informatics, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine;
e-mail: evgenii.menyailov@gmail.com; ORCID ID: https://orcid.org/0000-0002-9440-8378;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=57202229519.

Чумаченко Дмитро Ігорович – кандидат технічних наук, доцент, доцент кафедри математичного моделювання та

штучного інтелекту, Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний
інститут», Харків, Україна;
Dmytro Chumachenko – Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of
Mathematical Modeling and Artificial Intelligence, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: dichumachenko@gmail.com; ORCID ID: https://orcid.org/0000-0003-2623-3294;
Scopus ID: https://www.scopus.com/authid/detail.uri?authorId=58194260300.

Оцінка продуктивності бібліотек Python

для обробки даних з використанням багатопотоковості

С. О. Кривцов, Ю. Л. Парфенюк, К. О. Базілевич, Є. С. Меняйлов, Д. І. Чумаченко

Анотація . Актуальність. Швидке зростання даних у різних доменах потребує розробки ефективних інструментів
та бібліотек для обробки та аналізу даних. Python, популярна мова програмування для аналізу даних, пропонує кілька

бібліотек, таких як NumPy та Numba, для чисельних обчислень. Однак, існує нестача всебічних досліджень, які
порівнюють продуктивність цих бібліотек у різних задачах та з різними розмірами даних. Мета дослідження. Це
дослідження має на меті заповнити цей пробіл, порівнюючи продуктивність Python, NumPy, Numba та Numba.Cuda в
різних задачах та з різними розмірами даних. Крім того, воно оцінює вплив багатопотоковості та використання GPU на
швидкість обчислень. Результати дослідження. Результати вказують, що Numba та Numba.Cuda значно оптимізують
продуктивність додатків Python, особливо для функцій, що включають цикли та операції з масивами. Більше того,
використання GPU та багатопотоковості в Python додатково підвищує швидкість обчислень, хоча і з певними
обмеженнями та міркуваннями. Висновок. Це дослідження вносить вклад у галузь, надаючи цінні висновки щодо
продуктивності різних бібліотек Python та ефективності використання GPU та багатопотоковості в Python, тим самим

допомагаючи дослідникам та практикам у виборі найбільш підходящих інструментів для їхніх обчислювальних потреб.

Ключові слова: машинне навчання; Python; GPU; багатопотоковість; оптимізація чисельних обчислень.

https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1007/978-3-319-75025-5_19
https://doi.org/10.1186/s40537-019-0217-0
https://doi.org/10.1038/s41598-022-19045-3
https://pytorch.org/
https://keras.io/
https://www.scopus.com/authid/detail.uri?authorId=57214220648
https://www.scopus.com/authid/detail.uri?authorId=57204619131
https://www.scopus.com/authid/detail.uri?authorId=57202239038
https://www.scopus.com/authid/detail.uri?authorId=57202229519
https://www.scopus.com/authid/detail.uri?authorId=58194260300

