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Abstract:  Topicality. The rapid growth of data in various domains has necessitated the development of 

efficient tools and libraries for data processing and analysis. Python, a popular programming language for data 

analysis, offers several libraries, such as NumPy and Numba, for numerical computations. However, there is a 
lack of comprehensive studies comparing the performance of these libraries across different tasks and data sizes. 

The aim of the study. This study aims to fill this gap by comparing the performance of Python, NumPy, Numba, 

and Numba.Cuda across different tasks and data sizes. Additionally, it evaluates the impact of multithreading 

and GPU utilization on computation speed. Research results. The results indicate that Numba and Numba.Cuda 

significantly optimizes the performance of Python applications, especially for functions involving loops and array 

operations. Moreover, GPU and multithreading in Python further enhance computation speed, although with certain 

limitations and considerations. Conclusion. This study contributes to the field by providing valuable insights into 

the performance of different Python libraries and the effectiveness of GPU and multithreading in Python, thereby 

aiding researchers and practitioners in selecting the most suitable tools for their computational needs. 
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Introduction 

In solving problems in Data Science that depend on 

the availability of necessary data, processing large 

volumes of information becomes an increasingly 

important task [1]. However, with the increase in data 

volumes, there is a need for accelerated processing and 

multithreading data processing [2]. Python libraries, such 

as Numba [3], Numpy [4], CPython [5], Numba.Cuda 

[6], can be not only convenient but also an effective 

solution for such tasks.  

Python is one of the most popular programming 

languages in the field of Data Science, and its main 
advantage is that it provides powerful tools for working 

with data. Libraries like Numpy and Pandas [7] provide 

various tools for working with data arrays and tables. 

However, multithreading processing may be necessary 

for processing large volumes of data.  

This paper examines Python libraries, such as 

Numba, Numpy, CPython, and Numba.Cuda, for 

multithreading data processing in Data Science tasks. We 

will analyze their advantages and disadvantages and 

consider examples of using the mentioned libraries for 

data processing in Data Science tasks.  

Particular attention should be paid to the use of 
these libraries for processing COVID-19 data, as the data 

is quite voluminous and reliable, and it is also essential 

that there is an opportunity to evaluate the processing 

results by comparing them with real values [8]. 

Assuming that this pandemic was not the last, and the 

processing and analysis of large volumes of data were 

critically essential tasks, the acceleration and 

optimization of this process have immense practical 

significance [9]. Python libraries can help speed up data 

processing and make it more efficient.  

Overall, this article will provide readers with 

information on how the use of Python libraries can 

improve multithreading data processing in Data Science 

tasks and help assess the advantages and disadvantages 

of the mentioned libraries. 

The primary aim of this research was to evaluate 
and compare the performance of different computational 

tools, namely Python, NumPy, Numba, and 

Numba.Cuda, in the context of specific Data Science 

applications. The study sought the most efficient tool for 

various tasks, considering different data sizes and 

computational requirements. The following tasks were 

formulated to achieve the aim: 

• Implement solutions for three distinct applied 

tasks in Data Science using Python, NumPy, Numba, and 

Numba.Cuda. The selected tasks included regression 

analysis, image normalization, and activation function 
computation. 

• Evaluate the performance of each implemented 

solution by measuring the execution time for different 

data sizes. This involved analyzing the execution time of 

each tool for varying sizes of datasets and determining 

the impact of data size on the performance of each tool. 

• Compare the performance of the different tools 

based on the execution time and identify the most 

efficient tool for each specific task. This involved a 

detailed analysis of the results obtained from the 

performance evaluation to determine the optimal tool for 

each task and data size. 
• Analyze the potential benefits and limitations of 

using multithreading and GPU computations in Python. 

This involved evaluating the impact of multithreading 

and GPU computations on the performance of the 

implemented solutions and identifying potential 

challenges and limitations associated with their use. 
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• Provide recommendations on the optimal 

computational tool for different Data Science 

applications based on the performance evaluation and 

comparison results. This involved synthesizing the 

study's findings to provide practical guidelines for 

researchers and practitioners in selecting the most 

appropriate tools for their specific tasks and 

computational requirements. 
The research makes a significant and respectful 

contribution to the academic community and the field of 

Data Science by providing a comprehensive and 

systematic evaluation of widely used computational tools, 

including Python, NumPy, Numba, and Numba.Cuda. By 

implementing solutions for three distinct applied tasks, 

evaluating their performance across different data sizes, and 

analyzing the impact of multithreading and GPU 

computations, this study offers valuable insights into the 

optimal selection of computational tools for various 

applications. Furthermore, the research provides practical 

recommendations for researchers and practitioners, aiding 
in selecting the most appropriate tools for specific tasks and 

computational requirements. Ultimately, this work 

contributes to the ongoing efforts to optimize computational 

efficiency in Data Science applications, facilitating more 

robust and efficient analyses in this ever-evolving field. 

Research is part of a complex intelligent 

information system for epidemiological diagnostics, the 

concept of which is discussed in [10]. 

Background 

The exponential growth of data in various fields, 

such as finance [11], healthcare [12], sustainability [13] 

and social media [14], has posed significant challenges in 

data storage, processing, and analysis. The ability to 

quickly and efficiently process large volumes of data is 

crucial for timely decision-making and gaining insights 

from the data [15]. This has led to the development of 

various tools and libraries that aim to optimize 
computational performance and facilitate data analysis. 

Due to its ease of use and extensive library support, 

Python has become the go-to language for many data 

scientists and researchers. NumPy, a foundational 

package for numerical computing in Python, has been 

widely adopted for its array object and related 

functionalities. However, as the size of the datasets and 

the complexity of the computations increase, the 

limitations of NumPy in terms of performance become 

more apparent [16]. This has led to developing other 

libraries, such as Numba, which aims to optimize Python 

code for better performance. 
Numba leverages the LLVM compiler 

infrastructure to translate Python code into optimized 

machine code at runtime. This is particularly beneficial 

for functions that involve heavy use of loops and array 

operations, which are common in numerical 

computations [17]. Additionally, Numba. Cuda extends 

the capabilities of Numba by allowing developers to 

write CUDA code in Python, thereby enabling the 

utilization of NVIDIA GPUs for general-purpose 

processing [18]. This is a significant advancement as 

GPUs' parallel processing capabilities can significantly 
reduce computation time for specific tasks [19]. 

CUDA, on the other hand, is a parallel computing 

platform and API model developed by NVIDIA [20]. It 

provides a comprehensive set of programming tools and 

APIs that enable developers to write software that can 

leverage the parallel processing capabilities of NVIDIA 

GPUs. This is especially important for applications 

involving large datasets or computationally intensive 

tasks, as GPUs' parallel processing capabilities can 
significantly reduce computation time [21]. 

Despite the availability of these tools and libraries, 

there needs to be more comprehensive studies that 

compare their performance across different tasks and 

data sizes. Moreover, the impact of using GPU over CPU 

for computations and the effectiveness of multithreading 

in Python, are areas that require further exploration. This 

study aims to fill this gap by comparing the performance 

of Python, NumPy, Numba, and Numba.Cuda across 

different tasks and data sizes. Additionally, it will 

evaluate the impact of multithreading and GPU 

utilization on computation speed, thereby providing 
valuable insights for researchers and practitioners in data 

science and computational research. 

Materials and methods 

Let us consider three applied tasks from the field 

of Data Science, based on which the above-described 

libraries and processing methods will be tested. All these 
tasks are also used in the medical field, for example, in 

predicting a patient's diagnosis [22] or transforming an 

X-ray image for more qualitative diagnostics [23].  

The first is the regression task – correlating a set 

of features with some number predicting a continuous 

variable. In mathematical terms, regression by the 

gradient descent method optimizes the target function L. 

In the current task, the function J can be defined as the 

sum of squared errors (SSE): 

𝐿(𝑤) =
1

2
(𝑦𝜑(𝑧)).                           (1) 

Based on gradient descent, weights can be updated 
by calculating the gradient of function J. The weight 

change is defined as w = w + Δw.  

The value of the weight change Δw is defined as  

Δw = n Δ L(w). The gradient of function L is the partial 

derivative of L concerning each weight wi.  

Let us consider taking the derivative concerning 

each weight: 

𝑑𝐿

𝑑𝑤
=

𝑑

𝑑𝑤2
(𝑦 − 𝜑(𝑧)) = 

=
𝑑𝐿

𝑑𝑤
=

1𝑑

2𝑑𝑤
(𝑦 − 𝜑(𝑧)) =                 (2) 

= (𝑦 − 𝜑(𝑧))
𝑑

𝑑𝑤
(𝑦 − 𝑤𝑥) = (𝑦 − 𝜑(𝑧))𝑥. 

Thus, the weight update is carried out according to 

the rule: 

Δ𝑤 = ∑(𝑦 − 𝜑(𝑧))𝑥𝑗 .

𝑛

𝑖=1

                  (3) 

Thus, we can iteratively update the weights to 

minimize the cost function, knowing the function's 
derivative. In this process, there are some nuances, such 
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as overfitting, underfitting, the curse of dimensionality, 

etc., but their discussion is beyond the scope of this 

article. Testing of technologies will be carried out as 

follows: for a generated set of values, which has the form 

(BATCHSIZE, SAMPLESIZE), perform a single weight 

update. The dependence of the computation time on 

BATCHSIZE will be the final result.  

The second task is image normalization. Medical 
data is often represented in images (X-rays, ultrasound 

results, etc.). For a more successful application of 

Convolutional Neural Network (CNN) - the primary 

method of image processing in deep learning, the image 

(or rather its representation as an array of numbers) needs 

to be normalized, that is, to bring all values in the array 

to the range [0, 1]. For images, the normalization process 

is significantly simplified - it consists of dividing each 

array value by 255 (in the RGB format, 255 is the 

maximum value of the color channel).  

If an image of size 1024x1024 has three channels 

(red, green, blue), then the array, which represents the 
image in numerical form, will have the shape (1024, 

1024, 3). Similarly, an array of such image-size 100 will 

have the shape (100, 1024, 1024, 3).  

The dependence of the execution time of the image 

array normalization on the number of images in the array 

is the final result, based on which any conclusions can be 

made.  

The last task is using the activation function for an 

array of numbers. The activation function of a neural 

network layer (also used, for example, in logistic regression) 

is often a nonlinear transformation of spaces to highlight 
new features. In this section, we will use the sigmoid 

function (the inverse function of the logit function), which 

is used in classification problems due to the ease of 

calculating its derivative. This function looks as follows: 

f(x) =
1

1 + 𝑒−𝑥
 .                           (4) 

This function takes values from 0 to 1 since: 

lim
𝑥→∞

𝑓(𝑥) =
1

1 + ∞
= 0;                    (5) 

lim
𝑥→∞

𝑓(𝑥) =
1

1 + 0
= 0.                     (6) 

We will compute this function from an array of 

numbers vectorized, that is, in the following way: 

𝑀 = (𝑚1, 𝑚2, … , 𝑚𝑛);                   (7) 

𝑓(𝑀) = (𝑓(m1), 𝑓(𝑚2), … , 𝑓(𝑚𝑛)).          (8) 

The result of the study is the dependence of the 
execution time of the vectorized operation on the size of 

the array.  

There are several tools for working with such data.  

CPython is the standard Python language interpreter 

distributed on the official website python.org. All aspects 

of this interpreter's internal workings are beyond this 

article's scope, but the general concept needs to be stated. 

Python uses the Everything-Is-Object system, as well as 

dynamic typing. Code execution is carried out by 

interpreting the program line by line and building 

bytecode, which is then converted into machine code and 
executed on the user's machine. All of the above 

significantly slows down the speed of work (which is 

compensated by other advantages), making Python 

unsuitable for large calculations. However, the 

conciseness of the language and the ability to create a high-

quality and simple API led to the creation of various 

compiling libraries based on C, Fortran, and LLVM. Since 

the publication's research subject is functions and their 

execution time, it is necessary to provide an example of 
implementing a function in the Python language. The 

logit(p) function is implemented in the example below: 

From math import log 
def logit(p:float) -> float: return log(p / (1 - p)) 

Importantly, annotating the arguments of the 

function and the returned value is optional (that is, it is 

not typing) and exists only to improve the quality of the 

code. The function is called standardly, using round 

brackets (in the internal implementation of Python for 

this purpose, the "magic" method call() is used): 

>>> logit(0.5) 
-0.47712125472 

It is also worth considering how to use the logit 

function vectorized. For this, list comprehension or 

genexp (generator expression) is used. An example of 
these tools for a list and a tuple is given below: 

>>>  user_list:list  =  [1,  2,  3,  4] 
>>> [logit(p) for  p in  user_list] [0.0, 0.693147, 

1.098612, 1.386294] 
>>>  user_tuple:tuple  =  (1,  2,  3,  4) 

Next, let us consider working with NumPy 

(Numeric Python) – an open-source library for Python 

based on functions implemented in C and Fortran 

languages. NumPy provides the ability to perform 

vectorized operations on numpy.ndarray – the main class 

of the library, representing an array with various 

dimensions. NumPy functions that work with the array 
vectorized are called u-funcs. For the study, it is worth 

considering only the functions div, mul, add, and exp, 

which are replacements for the division, multiplication, 

addition, and exponent operators. Moreover, NumPy 

provides the ability for very fast calculations due to its 

implementation. Let us consider an example of a function 

that calculates the exponent of the inverse argument: 

import numpy as np 
def rev_exp(x:np.ndarray) -> np.ndarray: return np.exp(-x) 

As you can see, there are no special differences in 

implementing functions. However, now we can perform 

operations on arrays of numbers vectorized, that is: 

>>> import numpy as np 
>>> user_arr:np.ndarray = np.arange(1, 6, 1) 
>>> user_arr 
array([1, 2, 3, 4, 5]) 

>>> rev_exp(user_arr) 
array([0.367879, 0.135335, 0.049787, 0.018315, 0.006737]) 

Also, NumPy provides a convenient interface 

for changing the shape of the array. For example, to 

create a column vector from a one-dimensional array of 

numbers, you can use the following method: 

>>> np.reshape(user_arr, (-1, 1)) array([[1], [2], [3], [4], [5]]) 

It is also worth noting that functions such as 

np.add, np.reshape, and many others are alternatives to 

the methods of the np.ndarray class .add(), .reshape(), etc. 
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However, calling methods implies calling the library's 

function, so this method of calling functions will be used 

in testing.  

Key in our research is that NumPy can perform 

operations on arrays of different but compatible 

dimensions. For example, we can add two arrays with 

dimensions 5x5 and 5: 

>>> arr1:np.ndarray = np.arange(1, 26, 1).reshape((5, 5) 
>>> arr1 
array([[ 1, 2, 3, 4, 5], 
[ 6, 7, 8, 9, 10], 

[11, 12, 13, 14, 15], 
[16, 17, 18, 19, 20], 
[21, 22, 23, 24, 25]]) 

>>> arr2:np.ndarray = np.arange(1, 5) 
>>> arr2 
array([1, 2, 3, 4, 5]) 

>>> np.add(arr1, arr2) array([[ 2, 4, 6, 8, 10], 
[ 7, 9, 11, 13, 15], 
[12, 14, 16, 18, 20], 

[17, 19, 21, 23, 25], 
[22, 24, 26, 28, 30]]) 

Also, by specifying the axis of operation, you can 

calculate the sum of each column of the array. 

>>> sum_arr:np.ndarray = np.add(arr1, arr2) 
>>> np.sum(sum_arr, axis=1) array([ 30, 55, 80, 105, 130]) 

We will use this technique when testing tools for 

gradient descent.  
Moreover, finally, Numba is a library for optimized 

execution of Python functions. It supports almost all 

built-in language features and NumPy functions and 

operations. Numba translates Python functions into 

optimized machine code during execution using the 

standard LLVM compiler library. The function is 

compiled at the first call (Just-In-Time compilation), and 

then the compiled version is called, which runs much 

faster. The study considers two decorators from Numba 

– jit and vectorized. They are used very simply: 

from numba import jit 
@jit 
def f(x:float)  ->  float: return x**3 - 2 * x**2 + 5 

The function f will be compiled at the first call 

and work faster after that. We will use the time module 

from the standard Python library for measurements. 

from numba import jit 
from time import time 
import numpy as np 
@jit 

def f(x:float) -> float: 
    return x**3 - 2 * x**2 + 5 
arr:np.ndarray  =  np.arange(1,  10000,  0.05) 

print(arr.shape) 
start = time() 
f(arr) 

print(time() - start) 
start = time() 
f(arr) 

print(time() - start) 
The program output is as follows: 
scssCopy code 

(199980,) 
0.6352410316467285 
0.0010001659393310547 

Also, Numba allows you to create your own u-

funcs, working on the principle of NumPy functions. For 

example, let us implement a function that calculates the 

square root of each array element. 

from numba import vectorize 
@vectorize 
def f(x:float) -> float: return x * x 
Test the function on a NumPy array: 

>>> arr:np.ndarray = np.arange(1, 6, 1) 
>>> arr 
array([1, 2, 3, 4, 5]) 

>>> f(arr) 
array([ 1, 4, 9, 16, 25]) 

Vectorized functions are the subject of research in 

image normalization and the use of activation functions.  

Special mention should be made of CUDA and 

Numba.Cuda. Computations on GPUs are a relatively 
new concept in Computer Science, but despite this, they 

have made significant changes in Machine Learning and 

Deep Learning. When comparing two types of processors 

used for calculations, the deciding factor is the number of 

floating-point operations per second (flops). At the 

moment, the value of this metric for graphic cards is 

about ten times higher than for CPUs.  

The graphic processor has many computing cores 

(in modern realities, thousands or tens of thousands), 

which are combined into blocks, which imposes some 

restrictions. Thus, the high computing power of graphic 
cards is a consequence of a special architecture (which, 

of course, imposes its restrictions). Initially, graphic 

processors were created for rendering textures, creating 

graphic objects, etc., so the main direction for GPUs 

became large parallel calculations.  

An important point when working with a GPU is 

that all cores during calculations perform the same set of 

instructions (SIMD), which relates to the disadvantages 

of using calculations on graphic processors. Also, 

graphic processors are used to calculate large volumes of 

data, but not in complex algorithms with many 

conditional constructs-loops, etc.  
One of the objects of this study in the field of 

computations is CUDA (Compute Unified Device 

Architecture) – an SDK from NVidia, that allows the use 

of video cards of this company for computations.  

CUDA SDK has a very convenient interface, many 

add-ons for various programming languages, and quality 

documentation. Within the Python programming 

language, we will focus on implementing the add-on over 

CUDA in the Numba library. The Numba.cuda 

submodule provides a simple interface, requiring almost 

nothing from the user. Using the example of a function 
that raises each element of the array to a square, we will 

analyze the mechanism of interaction with CUDA: 

import numpy as np 
from numba import cuda 

@cuda.jit 
def power2(arr:np.ndarray) -> None: 
i:int = cuda.grid(1) 

if i < arr.shape[0]: 
arr[i] = arr[i] * arr[i] 

Here, the expression cuda.grid(1) may cause 

difficulty. This function returns the index for the array 

element being processed now. This opens up the 

possibility for parallel calculations, simultaneously 

changing the passed array in real-time. To run the 

function, you also need to specify the number of blocks 

of processor cores used and the number of threads in one 

block of cores. The product of these two values is equal 
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to the total number of threads used in the calculations. 

Also, to prevent Out-Of-Bounds Error (in Numba – 

Cuda.APIError), we check whether the index is valid for 

a given array.  

Let us set the number of threads to 32, and the 

number of blocks will be calculated according to the 

recommended formula: 

threadsperblock = 32 
blockspergrid = (len(array) + (threadsperblock - 1))  
// threadsperblock 

Now we call the function from the previously 

created array of numbers as follows (square brackets 

when calling are part of the Numba.cuda interface). 

Putting the array into the graphic processor's memory is 

also important. Previous experiments show that 

calculations using Numba.cuda are significantly slowed 

down without this action. 

user_arr:np.ndarray = np.random.random(size=(100, )) 
user_arr:np.ndarray = cuda.to_device(user_arr) 
power2[blockspergrid, threadsperblock](user_arr) 

At the first call, the function is compiled similarly 

to numba.jit and changes the source array, raising all its 

elements to a square. CUDA also supports processing 

multidimensional arrays (cuda.grid() can return up to 3 

values for the index) and some Python and NumPy 

features. For example, when normalizing images, we will 

use the range() function (the definition "function" is 
indicated only because of its prevalence; in fact, range in 

Python is a class), since images, in our case, are 

represented as an array of numbers with four dimensions. 

Implementation using various tools 

This section presents implementations of the tasks 

described above using the tools we are considering. 
Almost all functions work in-place; they modify the 

passed array rather than returning a new one. This is done 

only to simplify code fragments; this approach is not 

recommended (at least from the point of view of 

constructing processing pipelines). 

Regression. The software implementation of 

gradient descent (this optimization method is described 

above) is very simple and is just a notation of the formula 

for updating weights. With NumPy, the situation is even 

easier, as this library inherently supports operations on 

arrays of different shapes, and we will use this. 

Python. In the implementation of pure CPython, the 
process of updating weights is most explicit, as it is 

written in the form of two loops (calculating the model's 

prediction and subsequent updating of weights). Here, we 

also use the global variable LEARNING_RATE (also 

only for convenience; using global variables is not good 

practice) to control learning. LEARNING_RATE is a 

double-precision floating-point number. The software 

implementation is as follows: 

def python_version(weights:list, samples:list, target:list) -> None: 
for i in range(len(samples)): 
sample:list = samples[i] 
value:float = target[i] 

predicted:float = 0 
for j in range(len(weights)): 
predicted += weights[j] * sample[j] 

for j in range(len(weights)): 
weights[j] -= sample[j] * LEARNING_RATE * (value - predicted) 

NumPy. Using vectorized operations, we can move 

away from loops and write the weight update in matrix 

form (representing the set of samples for training as a 

matrix and the weights and values of the target variable 

as row vectors). It looks like this: 

def numpy_version (weights:np.ndarray, 
samples:np.ndarray, target:np.ndarray) -> None: 

dw:np.ndarray = np.reshape((target - np.sum 
(weights * samples)), (-1, 1)) 

weights -= LEARNING_RATE * np.sum(samples * dw) 

All aspects of this implementation (using NumPy 

functions, changing the shape of the array, etc.) were 

considered when analyzing work with NumPy. 
Numba. For the Numba library, for application in 

the gradient descent task, we used two implementations: 

the first is based on pure Python, and the second is 

implemented based on NumPy.  

The functions repeat the implementations given 

above, except for the use of the @jit decorator; 

however, for a complete understanding, we provide 

their source: 

@jit('(f8[:], f8[:, :], f8[:])') 
def numba_python_version (weights:np.ndarray, 

samples:np.ndarray, target:np.ndarray) -> None: 
for i in range(samples.shape[0]): 
sample:list = samples[i] 

predicted:float = 0 
for j in range(weights.shape[0]): 
predicted += weights[j] * sample[j] 

for j in range(weights.shape[0]): 
weights[j] -= sample[j] * LEARNING_RATE * (target[i] 

- predicted) 

@jit('(f8[:], f8[:, :], f8[:])') 
def numba_numpy_version(weights:np.ndarray, 

samples:np.ndarray, target:np.ndarray) -> None: 

dw:np.ndarray = np.reshape((target - np.sum(weights 
* samples)), (-1, 1)) 

weights -= LEARNING_RATE * np.sum(samples * dw) 

CUDA. The implementation based on GPU 

computations is based on the idea of implementation on 

CPython. However, we do not iterate over all sets of 

features but select one using cuda.grid() and update the 

weights with each selected set. The implementation using 

CUDA looks like this: 

pythonCopy code 
@cuda.jit('(f8[:], f8[:, :], f8[:])') 
def cuda_version (weights:np.ndarray, 

samples:np.ndarray, target:np.ndarray) -> None: 
i:int = cuda.grid(1) 
if i < samples.shape[0]: 

pred:float = 0 
for j in range(weights.shape[0]): 
pred = pred + weights[j] * samples[i, j] 

for j in range(weights.shape[0]): 
weights[j] = weights[j] - LEARNING_RATE * 

samples[i, j] * (target[i] - pred) 

Image normalization. From a software 

implementation perspective, image normalization is 

much simpler, as it requires no additional computations. 

Here, we divide each element of the 4-D array by 255. 

Almost all functions listed below also work in place, 

modifying the passed array. 

Python. The main difficulty in Python 

implementation is calculating the image's dimensions 
(since the images in the array may have different sizes). 

Using built-in functions is very costly, so expecting this 

method to work efficiently is not advisable. 



Advanced Information Systems. 2024. Vol. 8, No. 1 ISSN 2522-9052 

42 

def python_version(images:list) -> None: 
for i1 in range(len(images)): 
for i2 in range(len(images[i1])): 
for i3 in range(len(images[i1][i2])): 

for i4 in range(len(images[i1][i2][i3])): 
images[i1][i2][i3][i4] /= 255 

NumPy. Since NumPy provides vectorized 

operations, we can use the division operator (in this case, 

the "magic" method idiv()) to achieve the goal. 

def numpy_version(images:np.ndarray) -> None: 
images /= 255 

Numba. Since we use vectorized operations for the 
current problem, there will be three variants in the 

implementation using Numba: pure CPython, NumPy, 

and the vectorize decorator. The first two repeat the 

source functions of CPython and NumPy, and the third 

returns a value equal to the passed argument divided by 

255. Implementation using Python: 

@jit 
def numba_python_version (images:np.ndarray) -> None: 
d1, d2, d3, d4 = images.shape 

for i in range(d1): 
for j in range(d2): 
for k in range(d3): 

for p in range(d4): 
images[i][j][k][p] /= 255 
Implementation using NumPy functions: 

@jit 
def numba_numpy_version(images:np.ndarray) -> None: 
return np.divide(images, 255) 

The following function is based on the Numba 

interface, which was discussed earlier. In the example, a 

squaring function was implemented; now, a division by 

255 functions is implemented. Numba implementation 

using vectorization: 

@vectorize 
def numba_vectorize_version(x:float) -> float: 
return x / 255 

CUDA. In the CUDA implementation from Numba, 

the cuda.grid() function can return up to 3 values. In our 

task, the image array has four dimensions, which means 

using an additional loop to perform the task. However, 

CUDA is optimized for such constructions, unlike 

conditional branching. It is also essential to prevent an 

out-of-bounds error for each image, as the image size 
may vary (in NumPy, subarrays can have different sizes 

when dtype='object'). Implementation using the cuda.jit 

decorator: 

@cuda.jit() 
def cuda_version(images:np.ndarray) -> None: 

i1, i2, i3 = cuda.grid(3) 
if (i1 < images.shape[0] and 
i2 < images[i1].shape[0] and 

i3 < images[i1, i2].shape[0]): 
for i4 in range(images.shape[3]): 
images[i1][i2][i3][i4] /= 255 

Using the in-place division operator ensures 

changes to the array elements (CUDA works in this way, 

changing the state of the array). 

Layer activation using activation function. Next, 

we present implementations of functions that compute 

the value of the activation function (in our case – the 

sigmoid function, used in logistic regression). This is a 

vectorization task; however, unlike the previous task, we 

consider a row vector, not a 4-D array, and the 

calculations are somewhat more complex, as 

exponentiation from this point of view is much "heavier" 

than ordinary division. 

Python. In the Python implementation, the idea is 

simple: use a loop to iterate over the elements of the x 

array, replacing them with the value 1-x. The function 

works in place: 

pythonCopy code 
def python_version(values:list) -> None: 

for i in range(len(values)): 

values[i] = 1 / (1 + exp(-values[i])) 

NumPy. Using the u-func of the NumPy library, we 

can remove the iteration of elements and write a pure 

mathematical expression. Here, the function works with 

a return, as it is impossible to change the elements of the 

array in place in this way without using multiple 

constructions. However, using the return construction 

will not affect the execution time of the function. 

def numpy_version(values:np.ndarray) -> np.ndarray: 
return 1 / (1 + np.exp(-values)) 

Numba. As in the previous task, this subsection 
presents three implementations using different 

approaches and decorators. They have the same 

properties as the corresponding implementations without 

using just-in-time compilation. 

@jit('(f8[:])') 
def numba_python_version(values:np.ndarray) -> None: 

for i in range(len(values)): 
values[i] = 1 / (1 + exp(-values[i])) 
@jit('f8[:] (f8[:])') 

def numba_numpy_version (values:np.ndarray) -> np.ndarray: 
return 1 / (1 + np.exp(-values)) 

The function generated by the vectorize decorator 

also works: 

@vectorize 
def numba_vectorize_version(x:float) -> float: 
return 1 / (1 + np.exp(-x)) 

CUDA. In the implementation of calculations on 

the GPU, we select one index for the array element and 

change this element by index using the sigmoid function. 

pythonCopy code 
@cuda.jit() 
def cuda_version(values:np.ndarray) -> None: 

i:int = cuda.grid(1) 
if i < values.shape[0]: 
values[i] = 1 / (1 + exp(-values[i])) 

Results 

It should be noted in advance that for the purity of 

the experiment, all functions were implemented using 

Numba and Numba.Cuda is precompiled using a call. 

This is because the Numba interface allows you to save 

compiled functions to a separate source file, which can 

be imported and used in the future without compilation at 

the first call. Therefore, only the pure execution time 

should be evaluated.  
The nominal time must not interest us; the main 

object of analysis is the law of growth of execution time 

and the ratio between the indicators of different functions. 

In the last section, we will discuss all aspects related to the 

results of execution, as there are many of them.  

Calculations were performed on a machine with the 

following configuration:  
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• AMD Ryzen 7 (8/16) 3.0-3.7 GHz (AM4 

Socket)  

• MSI GTX 1060 TI (3 GB)  

• SSD 256 GB 

Regression. A graph of the dependence of the 

execution time of various functions on the number of 

feature sets in the considered matrix is presented in 

Fig. 1. 

This graph shows that the function's implementation 

in pure Python is significantly faster than implementations 

in NumPy and its variations with just-in-time compilation. 

As expected, CUDA implementations are unparalleled in 

calculations (acceleration relative to Python is slightly less 

than a million times).  

Table 1 is presenting execution times for various 

tools, depending on the number of rows in the dataset. 

Table 1 – Regression task execution time 

Tool 
Number of samples in dataset 

5 000 50 000 100 000 150 000 200 000 

Python 0.13095 1.3231 2.5853 3.7579 5.1502 

Numba (Python) 0.00012 0.00100 0.00216 0.00304 0.00404 

Numba (NumPy) 0.00036 0.00668 0.01344 0.02245 0.02713 

NumPy 0.00024 0.00784 0.01668 0.02737 0.03421 

CUDA 7.932e-05 8.149e-05 8.355e-05 8.481e-05 8.566e-05 
 

 

Fig. 1. A graph of the dependence of the execution time of various functions  
on the number of feature sets in the considered matrix 

 

Image normalization. When normalizing images, 
as can be seen from the graph, Numba in any of its 

variations is better than NumPy, giving an acceleration 

of about six times. The execution speed of the function 

using CUDA practically does not change from the 

number of images in the array. A significant result is that 

we achieved acceleration of the function precisely with 

the implementation of Numba, based on standard Python 

constructions, which speaks of extremely high 

optimization of cyclic operations (Fig. 2).  

Table 2 shows the dependence of normalization 

execution time on the number of images in the set. 

Activation function. Let us analyze the execution 
results for calculating the activation function. This is an 

essential aspect, as such a task often arises in Machine 

Learning and Deep Learning spheres, where the speed of 

calculations plays a crucial role in the development 

process.  

A graph of the dependence of the execution time of 

various functions on the number of feature sets in the 

considered matrix is presented in Fig. 3. 

Table 3 shows the execution times for some 

amounts of values in one-dimensional arrays for which 

the activation function is calculated: 

Table 2 – Image normalization execution time 

Tool 
Number of samples in dataset 

500 2500 5000 7500 9500 

Python 0.28126 1.37804 2.78959 3.93409 4.99358 

Numba (Python) 0.00024 0.00131 0.00256 0.00376 0.0048 

Numba (NumPy) 0.00055 0.00292 0.00576 0.00908 0.01196 

Numba (vectorized) 0.00031 0.00232 0.00492 0.00772 0.01028 

NumPy 0.00035 0.00228 0.00496 0.00792 0.01044 

CUDA 3.999e-05 4.539e-05 5.236e-05 6.002e-05 6.34e-05 
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Fig. 2. A graph of the dependence of the execution time of various functions  

on the number of feature sets  the considered matrix 

Table 3 – Activation function execution time 

Tool 
Number of samples in dataset 

50000 250000 500000 750000 950000 

Python 0.03597 0.16328 0.32821 0.48553 0.63951 

Numba (Python) 0.00036 0.00194 0.00378 0.00574 0.00738 

Numba (NumPy) 0.00016 0.00108 0.0022 0.00356 0.00472 

Numba (vectorized) 0.00014 0.00112 0.00256 0.00364 0.00492 

NumPy 0.0007 0.00438 0.00854 0.01342 0.01748 

CUDA 4.038e-05 4.08e-05 4.218e-05 4.656e-05 4.997e-05 

 

 

Fig. 3. A graph of the dependence of the execution time of various functions  
on the number of feature sets in the considered matrix 

 

Discussion 

PyTorch [24] and Keras [25] can use both CPU and 

GPU for computations. Therefore, comparing CUDA and 

other implementations here is particularly meaningful 
(unlike the previous task, as the primary data 

preprocessing pipeline for models is performed on the 

CPU).  
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As we can see from the graph, implementations 

using Numba again increase execution speed compared 

to regular Python or NumPy.  

The study presents the software implementation of 

solutions for three applied tasks from the field of Data 

Science, using Python, NumPy, Numba, and 

Numba.Cuda. Based on the execution of the 

implemented programs, correspondences of the 
program's runtime, using one or another tool, were 

compiled depending on the amount of data to be 

processed. An analysis was carried out on the rationality 

of using various tools for a specific task using the 

obtained data presented in the work in the form of graphs 

and tables. 

Even though computations on video cards are the 

fastest option for calculations, they should be used in 

specific situations.  

With a small dataset, due to the memory exchange 

between the main processor and the graphic processor, 

the computation speed may be the same as when 
performed on the main processor. Computations on video 

cards should be used in high-load systems or with a large 

dataset (sufficiently large means a high difference 

between the execution speed on the processor and the 

graphic processor).  

It is also worth considering the economic aspect of 

the issue. Graphic processors on the modern market are 

expensive, and even old models (for example, video 

cards up to the RTX generation at NVidia) may seem 

overpriced for some users.  

However, based on the experiment results, using 
Numba seems optimal for calculations on the CPU, as it 

practically does not require anything from the user. In the 

regression task, we achieved a speed increase using the 

for...in construction compared to NumPy. Unfortunately, 

not all NumPy functions work accelerated when 

combined with Numba, so using the latter library is 

useful with a very good understanding of the developer's 

specific task.  

It is worth considering separately the possibility of 

implementing multithreaded data processing, which, in 

this case, can significantly accelerate the data processing 
process itself.  

Parallel calculations in Python without external 

libraries can be done using several modules: threading – 

which provides the ability to manage threads; queue - 

which is responsible for organizing queues; and 

multiprocessing – which manages processes. In this case, 

we are mainly interested in the first module. To start 

working with it, you need to import the class: 

from threading import Thread 

After the import, the Thread() function will be 

available – with its help, we will create threads.  

For example, like this: 

variable = Thread(target=function_name, args=(arg1, arg2,))  

For convenience and to avoid confusion during 

debugging, assigning a name to the threads is advisable. 

To perform calculations in this case, creating a separate 

class that inherits from Thread from the threading module 

is advisable. Moreover, prescribe the program of actions 

in the run() method. This need is dictated by the fact that 

the thread's behavior will be quite complex. The 

implementation can be as follows: 

import threading 
class MyThread(threading.Thread): 
def __init__(self, num): 

super().__init__(self, name="threddy" + num) 
self.num = num 
def run(self): 

print ("Thread ", self.num), 
thread1 = MyThread("1") 
thread2 = MyThread("2") 

thread1.start() 
thread2.start() 
thread1.join() 

thread2.join() 

A similar implementation is found in many 

languages.  

For calculations using multithreading, and not on 
the CPU, but on the GPU, the NUMBA library is used in 

conjunction with NumPy. Considering the computing 

power of modern GPUs and their ability to work in 

multithreading mode, we will get a multiple reduction in 

the time required for processing.  

Suppose it is necessary to implement the addition of 

one-dimensional arrays, element by element. Let us 

implement it like this: 

def arr_sum (x , y):  
result_arr = nupmy.empty_like ( x) 
for i in range (len (x)) :  
result_arr [i ] = x[i ] + y[i ]  

return result_arr 

To speed up the execution of the code, it makes 

sense to import the jit class from the numba module and 

add the @jit annotation at the beginning of the code: 

from numba import jit @jit def arr_sum(x,y) 

Thus, the processing will be significantly 

accelerated.  
However, multithreading in the program can have 

negative consequences, with incorrect implementation or 

suboptimal use.  

For example, when using multithreading, it is not 

advisable to use more threads than processor cores 

available for use; it should be noted that some processors 

have different virtualization and parallelization 

technologies.  

Interrelated calculations will add dependency 

between data streams, leading to performance problems 

and, in case of an error, to the program's termination. 

Conclusions 

The study aimed to analyze the performance of 

various computational tools, including Python, NumPy, 

Numba, and Numba.Cuda, in the context of Data Science 

applications.  

The experiment used the tools above to implement 
solutions for three applied tasks: regression analysis, 

image normalization, and activation function computation. 

The performance of each tool was evaluated based on the 

execution time for different data sizes. 

The main results indicate that while computations 

on video cards (GPUs) are the fastest, they are most 

effective in high-load systems or with a sufficiently large 
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dataset. Specifically, the use of Numba.Cuda showed 

significant speed improvements compared to traditional 

Python or NumPy implementations. However, the 

experiment also highlighted that GPUs may not always 

be the most efficient approach, especially for small 

datasets, due to the memory exchange between the main 

and graphic processors. Additionally, the study revealed 

that using Numba seems optimal for CPU calculations as 
it does not require significant modifications to the 

existing Python code and provides a notable speed 

increase compared to NumPy. 

The contribution of this study to the field lies in its 

comprehensive analysis of the performance of different 

computational tools in specific Data Science 

applications. It provides valuable insights into the 

optimal use of these tools based on the size of the dataset 

and the nature of the computations involved. Moreover, 

the study sheds light on the potential benefits and 

limitations of using multithreading and GPU 

computations in Python. This can guide researchers and 
practitioners in selecting the most appropriate tools for 

their tasks. 

Future work should focus on expanding the scope 

of the experiment to include additional computational 

tasks and tools.  

Moreover, it would be beneficial to explore the 

impact of different hardware configurations on the 

performance of the tools analyzed in this study. 

Additionally, further research is needed to investigate 

multithreading's potential negative consequences and 
develop strategies for optimizing its use in different 

applications.  

Ultimately, a more comprehensive understanding of 

the performance characteristics of various computational 

tools will contribute to developing more efficient and 

effective solutions in the field of Data Science. 
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Оцінка продуктивності бібліотек Python  

для обробки даних з використанням багатопотоковості 

С. О. Кривцов, Ю. Л. Парфенюк, К. О. Базілевич, Є. С. Меняйлов, Д. І. Чумаченко 

Анотація .  Актуальність. Швидке зростання даних у різних доменах потребує розробки ефективних інструментів 
та бібліотек для обробки та аналізу даних. Python, популярна мова програмування для аналізу даних, пропонує кілька 

бібліотек, таких як NumPy та Numba, для чисельних обчислень. Однак, існує нестача всебічних досліджень, які 
порівнюють продуктивність цих бібліотек у різних задачах та з різними розмірами даних. Мета дослідження. Це 
дослідження має на меті заповнити цей пробіл, порівнюючи продуктивність Python, NumPy, Numba та Numba.Cuda в 
різних задачах та з різними розмірами даних. Крім того, воно оцінює вплив багатопотоковості та використання GPU на 
швидкість обчислень. Результати дослідження. Результати вказують, що Numba та Numba.Cuda значно оптимізують 
продуктивність додатків Python, особливо для функцій, що включають цикли та операції з масивами. Більше того, 
використання GPU та багатопотоковості в Python додатково підвищує швидкість обчислень, хоча і з певними 
обмеженнями та міркуваннями. Висновок. Це дослідження вносить вклад у галузь, надаючи цінні висновки щодо 
продуктивності різних бібліотек Python та ефективності використання GPU та багатопотоковості в Python, тим самим 

допомагаючи дослідникам та практикам у виборі найбільш підходящих інструментів для їхніх обчислювальних потреб. 

Ключові слова:  машинне навчання; Python; GPU; багатопотоковість; оптимізація чисельних обчислень. 
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