
ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 4

41

UDC 004.9:004.56.57:025.4 doi: https://doi.org/10.20998/2522-9052.2023.4.05

Oleksandr Shmatko1, Oleksii Kolomiitsev1, Nataliia Rekova2, Nina Kuchuk1, Oleksandr Matvieiev2

1 National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
2 Technical University "Metinvest polytechnics", LLC, Zaporizhzhia, Ukraine

DESIGNING AND EVALUATING DL-MODEL

FOR VULNERABILITY DETECTION IN SMART CONTRACTS

Abstract . Task features. Smart-contracts are programs that are stored in a distributed registry and execute code written

in them in response to transactions addressed to them. Such smart- contracts are written in the Solidity programming

language, which has a specific structure and syntax. The language was developed for the Ethereum platform. Having a

specific structure, such languages are prone to certain vulnerabilities, the use of which can lead to large financial losses. Task

statement. In this paper, a Deep Learning (DL) model is used to detect the vulnerabilities. Using the chosen approach and a

properly specified input data structure, it is possible to detect complex dependencies between various program variables that

contain vulnerabilities and bugs. Research results. Using well-defined experiments, this approach was investigated to better

understand the model and improve its performance. The developed model classified vulnerabilities at the string level, using

the Solidity corpus of smart-contracts as input data. The application of the DL model allows vulnerabilities of varying

complexity to be identified in smart-contracts. Conclusions. Thus, the pipeline developed by us can capture more internal

code information than other models. Information from software tokens, although semantically incapable of capturing

vulnerabilities, increases the accuracy of models. The interpretability of the model has been added through the use of the

attention mechanism. Operator accounting has shown significant performance improvements.

Key words: blockchain; smart-contract; computer system; secure; vulnerability; deep learning.

Introduction

A software vulnerability is “the existence of a

design flaw, weakness, or implementation that could lead

to an unwanted event that compromises the operation of

a software application, computer system, network, or

protocol.” [1].

Since the popularity of smart-contracts and the

amount of software associated with it increases every

day, then the number of attacks and vulnerabilities that

affect the operation of this software increases in direct

proportion.

Such software must be protected to prevent

irreversible consequences both financially and for society

as a whole. Examples of such bugs are vulnerability

problems, including Decentralized Autonomous

Organization (DAO) [2, 3]. The harm from triggering

vulnerabilities is one of the reasons for their detailed and

thorough investigation. One of the causes of

vulnerabilities is the presence of complex interactions

between pieces of software code, and the mismatch

between what a program should do and what it actually

does. Since it is impossible to guarantee that

vulnerabilities are not present when the code is written,

methods or models must be developed to detect these

vulnerabilities.

Currently there are tools [4–9] for statistical

analysis that recognize bugs and vulnerabilities. Their

main drawback is that they only detect a limited number

of errors based on predefined rules. The results obtained

for the detected vulnerabilities require the presence of a

specialist who will analyze them. This often leads to

erroneous conclusions when assessing smart-contracts

for vulnerabilities.

Also, despite a lot of existing literature, which

describes the main vulnerabilities and methods for their

detection, there are still classes of vulnerabilities and

errors that are very difficult or impossible to recognize,

and therefore they continue to exist.

The object of the study is smart contracts in

healthcare [10, 11].

The subject of the study is models and tools for

vulnerability assessment of smart contracts.

The goal of the study is to improve the security of

smart-contracts by developing software for assessing

vulnerabilities using DL models.

The approach developed in this paper is based on

the use of a large amount of data in the form of open

source codes that located in repositories, as well as a

technique that uses a big amount of input data to detect

more vulnerabilities. As the initial data, the corpus of

programs is used to detect global patterns of error

manifestation, which cannot be done by static checking.

The developed approach will help to identify

vulnerabilities of varying complexity that arise in the

operation of smart-contracts, which will make it possible

to more accurately determine whether a smart-contract is

safe and suitable for execution or not.

A DL model was developed, which, using binary

classification, determines whether a smart contract

contains vulnerabilities and errors. The corpus of smart

contract programs developed in the Solidity

programming language was used as input data. The

corpus of smart-contract corpus was view as an Abstract

Syntax Tree (AST). The proposed model was considered

in detail in order to fully understand how it would react

to different types of input data under certain experimental

conditions.

Literature review and problem statement.

Research on error detection and software fixes has

recently been an important area of study and analysis [12,

13]. And now this issue is becoming more and more

important with the emergence of new programming

languages in some areas, such as cryptocurrency. To

achieve accurate predictions in the problem of detecting

vulnerabilities, two problematic factors must be solved:

first, the representation of the source code used as input

must reflect the internal structure of the program and the

© Shmatko O., Kolomiitsev O., Rekova N., Kuchuk N., Matvieiev O., 2023

Advanced Information Systems. 2023. Vol. 7, No. 4 ISSN 2522-9052

42

relationship between the variables in it. Second, the

model must be designed to take full advantage of the

proposed input data structure.

At first, thoughts came to mind about the best initial

data for solving problems with the detection of

vulnerabilities. Some researchers tried to use the source

code from Github.

Another way to look at the problem is to focus on

transactions made by smart contracts: in order to exploit

vulnerabilities, hackers mainly focus on functions that

create a mismatch between the actual transfer amount and

the amount reflected in the internal stored data. With the

development of DL, it has been proven that the best

source material for such a problem is a collection of

several codes containing some vulnerabilities. In [14], a

method for detecting vulnerabilities was developed,

which showed that learning from artificially created

errors allows one to obtain error detectors that are

effective in detecting errors in real code. Another

solution is to use existing detection tools, as done in [15].

In [16], a method was proposed based on the

representation of labels in order to be able to directly

interpret the source code. In [17], DL is used to take

advantage of the specific structure of the source code.

The shortcuts were also generated using a static analyzer.

With all this research in mind, our method was designed

to take advantage of this data-driven approach by

combining a corpus of code as input with DL. Most, if

not all, of the previously described methods fail to fully

construct relationships between variables, whereas this

research paper focuses on creating well-interpreted

methods that capture the interactions of variables. This

ability is key to creating accurate and interpretable

models. An AST view was used to successfully complete

this task.

The article [18], on combining DL using such a

view, confirms the feasibility of this approach, and in

[19], the advantages of this view are highlighted using

the structure of a “bag-of-paths” as input for training. In

[20], the Long Short-Term Memory (LSTM) mechanism

was used to investigate the internal structure of source

codes to detect errors. He has demonstrated a strong

ability to analyze functions to identify vulnerabilities.

This article presents a DL model composed of LSTM-

networks using an AST path as an input representation.

The main section

In process researching and analyzing existing

vulnerabilities in smart-contracts, the most common

types were identified.

Integer overflow [21, 22]: Label 1: Integer overflow

vulnerabilities arise when a computed value is too large

for a type that has been assigned a value. The operations

that can cause overflow are the instructions "add",

"subtract", "multiply" and "exponentiate". Thus, if this

operation is used in a conditional statement, the program

will have random behavior.

Unverified call return value [23, 24]: Label 2: An

external contract could take over control flow due to an

unverified call to the return value. The consequence of

this problem is that an attacker can cause the call to fail,

causing unexpected behavior in subsequent program

logic that could be exploited by the adversary. Since this

can lead to unwanted interactions between different

function calls, execution resumes even if the called

contract throws an exception.

Exception state (invariant assertion) [25, 26]: Label

3: The code flow must never reach an erroneous assertion

means it is not working as expected. In the event of this

problem, a statement invariant statement is not followed,

which means that there is an error in the contract or that

the statement is being used incorrectly.

Algorithm of actions for the development of the

proposed approach for detecting vulnerabilities in smart

contracts:

- A corpus of Solidity smart-contracts was created

and used as the source code.

- A code corpus view was presented as an AST for

understanding the complex dependencies between

variables in programs. This input structure uses an

abstract syntax tree view to model a combination of

control and data transformation paths.

- To evaluate the success of our approach and to

understand our models, tests were conducted using

various types of inputs to understand the operation and

behavior of our models.

- DL model was implemented to detect patterns that

cause vulnerabilities and to take full advantage of the

code corpus representation.

- A thorough study of the models we developed was

carried out to understand their behavior under various

experimental conditions. Models with different

architectures were tested in combination with input data

of different informativeness. The result was an

understanding of the causal relationship between the

accuracy of our models.

- The use of the attention mechanism in the DL

model, which is a kind of vector of importance, was also

necessary in order to be able to add interpretability to

prediction. This process allows us to understand the

pattern of the code responsible for creating the

vulnerability.
Fig. 1 illustrates architecture of the proposed model

for assessing vulnerabilities, taking the Solidity corpus of
contracts as input, were implemented for a successful
binary classification of the problem of detecting
vulnerabilities at a linear level. This means that one label
𝐿𝑖𝑗 is displayed for each line. As described earlier, the

AST path representation is used to create one path 𝑃𝑖𝑗𝑘𝑙

for each token 𝑇𝑖𝑗𝑘 belonging to each line 𝐿𝑖𝑗 for each

contract 𝐷𝑖 . This action is represented by steps 1 and 2.

The reason for using AST paths is to reflect the

interaction between tokens within the same line and

between tokens in previous lines, in order to emulate the

actual flow of program execution. However, our

approach should be designed to take full advantage of

this input. For this, the key point that makes our model

special is how the information from the previous row is

used to classify the current row. During the construction

of the described representation of the code, several pieces

of information are stored in each line. More precisely,

what are called endpoints stores indices that point to past

rows. These indexes are used to relate each token to its

previous use, which aims to add context to each line.

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 4

43

Fig. 1. Architecture of the proposed model for assessing vulnerabilities of smart contracts

Then, in step 3, the view created after step 2 is used

as an input to the LSTM- network in conjunction with the

layer point attention. The consistent properties of the text

were taken into account through the use of the LSTM-

network, as proven in [27]. In the model we have

developed, the attention layer invented in [29] plays a key

role during the learning process, and is also the building

block of the interpretability of our algorithm. The

purpose of this layer of attention is to mimic the human

attention mechanism. This step makes our model more

capable of learning the context and relationships between

tokens within the code.

A specific network using this concept of attention,

defined as N1, used in step 3, creates a token-level

embedding vector that is combined with endpoint

information to feed into a simple feed forward network.

The token-level attachments created in step 3 are a

distributed representation of the 𝑞 dimension and contain

information corresponding to the Control Data Paths

(CDP). The representations of each token 𝑅(𝑇𝑖𝑗𝑘)

forming a particular line of 𝐿𝑖𝑗 are pooled together as the

researchers did in [28]. This concatenation is then used

to create a linear representation of 𝑅(𝑇𝑖𝑗𝑘) using the

feedforward for the network defined in step 4.

This last row-level embedding is therefore used in

another feedforward network to reduce the size of the

vector to finally get one at a time binary label per line.

The N2 network learns the relationship between the line

and the assigned mark. Statistical analysis of attention

weights evokes causal insight into the patterns implicit in

vulnerabilities. So our models basically need two sources

of information: AST paths at the token level and stored

endpoint indices. They create two sets of inclusions in

models: token-level inclusions and row-level inclusions.

To create the latter, interspersed line level endpoints are

needed, which are simply already created interspersed

line level impregnations corresponding to past lines of

previous use of tokens that form the predicted line. In

terms of comparison with Natural Language Processing

(NLP) methods, our algorithm can be compared to

generating embeddings for each sentence and, ultimately,

each paragraph, since the NLP input consists of several

tokens per line, while a paragraph is a set of sentences. In

this case, paragraph-level inlining is used to display line-

level vulnerabilities.

The model based on the previous lines compares

only the current and the previous line, not taking into

account the lines several orders of magnitude higher.

Previous Line (PL) model is going through each

line of this program sequentially, from the first line of the

code to the last one. For each line, a collection of different

CDPs with a defined length corresponding to the tokens

forming the considered line is used as input. The

collection corresponds to the 2D matrix. This

representation is used in a bi-directional LSTM-network

with local, multiplicative attention. Thus, this first

network learns the different paths that can be associated

with tokens in the scope of a program. The output of this

first step is forming a line-level embedding of dimension

(1, 100). This created embedding is stored in a look-up

structure to be used if needed.

At that point, the model asks himself if the current

computed line has a link with the previous one. A link

exists to the previous line if at least one of the tokens used

in the current line was used in the previous line. To know

that, information was already processed during the path

creation and stored in an array corresponding to the end-

points data.

The model based on the endpoints (EP) is designed

in such a way that it defines relationships between the

tokens that are located in the lines several orders of

magnitude higher.

The only difference between the PL model and the

EP model is that the end-points information is not only

linking tokens to the previous line but also to all the

previous lines having dependencies in the entire code.

Metrics for assessment results of experiment:

False_Positive_Rate corresponds to the probability

of falsely rejecting the null hypothesis for a particular

test. FP is False Positive and TN is True negative. The

ideal FPR is 0:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 . (1)

False_Negative_Rate corresponds to the proportion

of people with a known positive condition for whom the

test result is negative.

Advanced Information Systems. 2023. Vol. 7, No. 4 ISSN 2522-9052

44

TP is True Positive and FN is False-negative. The

ideal FNR is 0:

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 . (2)

True_Positive_Rate or Recall calculates the ability

of a model to find all the relevant cases within a dataset.

The ideal TPR is 1:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . (3)

Precision calculates how precise/accurate our model

is out of those who are actually positive. Ideal P is 1:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . (4)

F1 Score is needed when you want to seek a balance

between precision and recall scores and when there is an

unbalanced class distribution. The ideal F1 score is 1:

𝐹1 =
2 ∗ 𝑃 ∗ 𝑇𝑃𝑅

𝑇𝑃𝑅 + 𝑃
 . (5)

Average Precision = Area Under the Curve (AUC)

of the Precision-Recall curve. The ideal score is 1.

ROC score = AUC of ROC Curves. The ideal score

is 1.

Research questions that need to be answered in

order to understand whether the developed approach is

effective for detecting vulnerabilities in smart contracts.

Research results

RQ 1: Can a deep learning model work for the

problem of detecting vulnerabilities?

RQ 1.1: How does the proposed method behave

with the Solidity corpus of contracts as an input source?

Experimental hypothesis. The DL model does train

if the learning loss decreases with epochs, if the test loss

follows a similar evolution, and if the metric curves tend

to ideal values before the plateau.

Experiment setup. The dataset used contains a

sample of negative ones, which is a consequence of the

extremely unbalanced distribution of labels. The goal of

our model is to perform a row-level binary classification

to predict the presence or absence of a vulnerability.

The input is a code representation was developed,

where the main building blocks are the control data path

for each token. These inputs were randomly split into 3

sets: a test set corresponding to 30% of that data set. The

remaining 70% were further divided into 70%-30% of the

training and validation sets: thus, the training set

corresponds to 49%, and the validation set to 21%. the

entire dataset. The loss used during training is the

weighted cross-entropy loss, chosen for its ability to cope

with unbalanced inputs. Our models were implemented

using PyTorch version 1.0.

Results. As expected for a working DL model,

learning loss decreases, and validation loss behaves

similarly, but is noisier. By the definition of our

validation set, this experimental observation makes

sense. In addition, overfit is not observed. Thus, the first

figure shows the expected shape of the learning curve.

The last two graphs in Fig. 2 show the evolution of

the various metrics used to evaluate the performance of

our model over an epoch.

Again, thanks to these visualizations, we can

observe good learning behavior of our model. The rates

rise rapidly during the first epoch and continue to rise at

a slower rate in subsequent eras.

This means that our model is trained to discriminate

between lines with and without vulnerabilities. The

fourth graph shows other metrics that also have the

expected behavior.

The FNR remains extremely low as our dataset is

imbalanced. This specific metric illustrates the possible

problems that you may encounter in work performed on

a non-uniform dataset.

Fig. 2. Learning curves and estimates at the training stage of the EP model for the training and test set

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 4

45

Fig. 3. ROC-curve of the EP model and Scores curves determined depending on the classification threshold

In conclusion, the graphs presented in Fig. 2 and 3

illustrate the skillful behavior of our model. These curves

prove that our model is able to understand the input data

and is able to learn statistical patterns in order to

distinguish lines with vulnerabilities from lines without

problems those that don't have any problems.

Fig. 3 is mainly due to the fact that our model predicts

the probabilities for each class and then uses them in the

softmax function to turn them into binary labels with a

default threshold of 0.5. However, probabilities can be

interpreted using different thresholds. Changing this

parameter can change performance. The first graph in Fig.

3 shows TPR versus FPR. This Receiver Operation

Characteristics (ROC) curve illustrates the trade-off

between both metrics for a predictive model using

different likelihood thresholds. The second graph shows

the F1, precision and recall metrics versus threshold.

Finally, the graphs presented in Fig. 2 and 3

illustrate the skillful behavior of our model. These curves

prove that our model is able to understand the input data

and is able to learn statistical patterns to distinguish lines

with vulnerabilities from lines that have no problems.

RQ 1.2: How does it scale if more information is

added to the input dataset?

Experimental hypothesis. If the proposed DL

algorithm works well, then the performance of the model

on a richer dataset in terms of the amount of information

should achieve more accurate predictions than on the

standard input source.

This will confirm that the proposed approach is able

to learn the context from the code.

Experiment setup: A new set of inputs is created.

This input set qualifies as extended because more

information is added to it.

Operators also act as tokens. In this new

configuration, the operators simply become paths of

length one, where the string that makes up the path is just

the operator itself.

Padding is then used for formatting, since all CDPs

require constant length. Our EP model is trained using a

new extended data source to analyze the impact of this

addition of information. To understand the changes

caused by the addition of operators as tokens, a statistical

survey of the CDP is being conducted.

Results. Tabl. 1 shows the impact of treating

operators as tokens in terms of the number of tokens per

line of code.

In fact, thanks to this change, the average number

of tokens per row increased by 36%.

From the table shown in Tabl. 2, it can be seen that

the amount of information presented in the data remains

low, but more than for the default input data without

operators. This also means that as more information is

added, the difference in performance should also

increase. Thus, one of the easy ways to improve the

performance of the model is to account for more tokens.

Tabl. 3 shows the performance of our models tested

on default and extended datasets.

Table 1 – Collected statistics on the number of tokens per line in raw input and extended dataset

 Mean Median Std

Dataset considering only variables as tokens 2.1 2.0 1.2

Dataset considering variables and operators as tokens 2.86 2.0 1.91

Advanced Information Systems. 2023. Vol. 7, No. 4 ISSN 2522-9052

46

Table 2 – The collection statistics of CDP aggregates corresponding to 4 tokens in each row are implied

in negative and/or positive labels for the extended dataset, considering operators as tokens

Vulnerability
Number of Aggr.

of 4 CDP Paths
Number of Unique Aggregations of 4 CDP Paths

Lable 0 80944 12232

Lable 1 1614 420

Lable 2 441 257

Lable 3 1228 186

Intersection of paths aggregation

implied in Positive Labels
316

(over 186 maximum possible paths); ~0.8% of the union of

positive data are common between the 3 vulnerabilities type

Union of paths aggregation implied in

Positive Labels
3283 819; (over 863 maximum possible paths)

Intersection of paths aggregation

implied in Positive and Negative Labels
2512

324; (over 819 maximum possible paths); ~39% of the data

implied in positive labels are also implied in negative labels

Table 3 – Comparison of the results obtained using the EP model on the raw input and

on the augmented dataset considering operators as a tokens

Model Type Max Var F1 Std on F1 Score Precision Recall

Endpoints with Operators 4 0.53 1.8% 0.54 0.50

Endpoints to compare 4 0.47 1.8% 0.46 0.48

Endpoints with Operators 8 0.59 1.6% 0.59 0.60

Endpoints to compare 8 0.53 1.5% 0.51 0.55

RQ 1.3: Is the information added in the middle of

the model using the endpoint data (corresponding to the

previous lines) useful?

Experimental hypothesis. If information remains

only at the endpoints of the corresponding rows, and if

the rest of the information contained in the data is

destroyed, the proposed DL approach should be able to

classify a set of vulnerabilities proportional to the amount

of information provided by the end user. indicates lines.

According to our approach, the best results should be

obtained using all the information from the previous

lines.

Experiment setup. To answer this question, a

synthetic dataset was created. The idea behind this new

input source is to keep the same structure as our raw data,

but change the amount of information encoded internally.

To construct it, the raw input is modified during the

formation of our view.

The method used is simple: the actual raw data is

copied, the rows are fetched according to their labels, and

the transformation is applied at the CDP scale, that is, at

the token level. The endpoint indices remain unchanged

so that they can be used to convey the same usual amount

of information. The main purpose of this manipulation is

to put information in one specific category and,

accordingly, to study the behavior of our models.

An analysis of the behavior of the proposed method

on the input, where the information remains only inside

the endpoints, was performed by designing a special

experiment. All paths to all inputs were randomized. This

manipulation leads to the destruction of all information

contained in the data. Iterations were then performed for

each line of the program, and a constant pattern was

introduced into the endpoints associated with the

positively labeled current line, according to line labels

(only positively labeled lines were converted),

representing some kind of constant list of paths. This

action allows the information to remain only on the paths

that correspond to the end lines. Note that this process

generates the current line only in random paths. In

addition, the developed experiment distinguished

between previous and subsequent lines.

The previous line represents short dependencies

(using a token twice in two adjacent lines) between

tokens, while farther lines represent long-term

dependencies (calling a variable into another function)

(Tabl. 4).

Table 4 – Experimental Procedure used to build

the different synthetic datasets

Settings
Previous

Line

Father

Away Lines

Previous Line Experiment Pattern1 Random

Both Method Experiment Pattern1 Pattern1

Farther Away Lines Experiment Random Pattern1

Noise Experiment Random Random

Results. Before analyzing the performance of the

model, a study of the distribution of endpoints is carried

out to understand the amount of information they bring.

Tabl.5 shows the relationship of the paths implicit in the

various end-cases.

This analysis is critical to understanding the results

of the various simulations. The line consists of 4 markers,

and each of them refers to one endpoint index. This link

is called endpoint information.

If the index matches the previous line, the

corresponding path leads to the of the previous line

category. If the index matches a previous line that is not

the previous line, it jumps to the case of subsequent lines.

If index is 0, it goes to zero register.

In Tabl. 5, you can observe the unbalanced property

of the dataset. In addition, the empty proportion is about

60% within the positive set, which means that the amount

of information encoded into the endpoints is small. The

last interesting fact is that the proportion of cases of the

previous lines is twice as large as the cases of the far line.

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 4

47

Table 5 – Distribution of the end-points paths, which means at a token level, on the raw dataset

Subset of Data Specific Case of Endpoints information Count % inside the positive set % in the entire set

Positive Farther lines cases 4506 12.41% 0.46%

Positive Previous lines cases 10386 28.61% 1.06%

Positive Null cases 21412 58.98% 2.19%

Positive Number of total positive Endpoints cases 36304 100.00% 3.71%

Negative Total number of Negative Endpoints cases 941276 96.29%

Tot Total number of Endpoints 977580 100.00%

Table 6 – Experimental results coming from EP model

trained on the different synthetic datasets

Experiment F1
Std on F1

Score

Preci-

sion
Recall

Previous Line Experiment 0.23 1.2% 0.35 0.17

Both method Experiment 0.28 2.1% 0.33 0.21

Farther Away Lines

Experiment
0.25 1.7% 0.37 0.19

Noise experiment 0 0% 0 0

Tabl. 6 shows the results of various experiments.

The first observation is that the estimate obtained in the

experiment on the far line is higher than in the experiment

on the previous line. This means that the endpoints of

farther lines contain more information than information

about the previous line, even if the set of indices

corresponding to the farthest lines is half the size. Long-

term dependencies form easier patterns to recognize. In

addition, based on the structure of our model, it is

assumed that the EP model captures more contextual

information and thus should overcome the characteristics

PL modeled using Experiment with previous line. As

shown in Tabl. 6, both methods experiment gets better

results than the far line experiment and the previous line

experiment. This observation is consistent with the

expected behavior described in the experimental

hypothesis. There is little difference between estimates

obtained from both sources compared to estimates

obtained with only one piece of endpoint information.

This fact can be explained by overlapping information,

which causes a lot of similarity within the main body of

context brought by both sets. It can be concluded that the

EP model works better with paternal line information,

and because it is even better when the entire set of

endpoints is specified, the information provided by the

endpoints is definitely useful and allows for a better

understanding of the code.

One way to improve the performance of our method

would be to increase the proportion of endpoint

information encoded in the input.

RQ 1.4: Does the model make interpretable results?

Experimental hypothesis. An interpretable model is

a model that can explain its predictions. Therefore, in our

case, if the model is interpretable, it should be able to

identify some of the causes of the predicted

vulnerabilities.

Experiment setup. In this experiment, attention

weights were collected that correspond to the weights

created by the attention layer within the model. To be

precise, for each token within the 3 highest weights line,

up to 3 nodes of the AST path were selected. Knowing

that the maximum number of tokens in a row is 4, this

means that for each row a number from 1 to 12 weights

have been selected and tied to the node they represent

using a dictionary.

In addition, the entire set of coefficients has been

saved in another dictionary.

Thanks to this, the normalization of the weights was

achieved. Each attention weight obtained during the

testing phase of our model was divided by its total in the

entire dataset. In fact, all quantities used by to obtain

results are of relative importance. This method allowed

for more importance to be given to tokens, which are less

common in each type of vulnerability, while tokens that

are always present are subject to more penalties.

This means that if a token is often present in all data,

it will be less important than a token present only 10

times. In this process, more importance is attached to rare

tokens. able to create vulnerability only because of their

presence. Another selection criterion was established by

examining the distribution of the entire set of weights: the

minimum value that should have been achieved by the

weights to be selected. This threshold was set at 0,075.

The purpose of this manipulation was to filter out

meaningless weights. Then a classical statistical analysis

was carried out on the collected collections.

Results. The histograms A, B, C represent the

relative importance of the Top10 tokens implied for each

vulnerability type (Fig. 4 and Fig. 5).

This means that from these graphs you can get a

general idea of what tokens are causing and what types

of vulnerabilities. Therefore, these 3 graphs summarize

the causes of each vulnerability type, allowing the model

to be interpreted. Indeed, some reasons can be identified:

type 1 is mainly associated with expressions and root

nodes, type 2 is mainly associated with trueBody nodes,

and type 3 is mainly associated with statement nodes and

parameters. In addition, a comparison was made of the

relative importance of each token specified in the 0 label

(which means no vulnerability). All tokens are mostly

implied in label 0, which makes sense due to the

unbalanced dataset.

This means that the causes found need to be detailed,

as the markers identified by to create vulnerabilities are

also building blocks of well-functioning code. This

observation is logical because it corresponds to the

intrinsic properties of the vulnerability discovery process

and is the reason why this problem is difficult to solve.

In addition, investigation into the significance of

certain tokens simultaneously for several types of

vulnerabilities.

Histogram D illustrates this search, displaying a

counter corresponding to the vulnerability type for each

token (Fig. 5). This counter represents the number of

times each token has been involved in the vulnerability.

This means that the maximum rating that the token can

Advanced Information Systems. 2023. Vol. 7, No. 4 ISSN 2522-9052

48

have is 3, which means that this token is one of the

reasons for three different types of vulnerabilities studied

at the same time. If the counter is 2, it means that the

token is implied in two types of vulnerabilities, so it can

be implied in types 1 and 2, or types 1 and 3, or types 2

and 3. From this search, the importance of the identifier

nodes is underlined in three types simultaneously.

In addition, by performing the same analysis for

only two types of vulnerabilities, it is possible to identify

some common causes for both types: the more important

common causes of types 1 and 2 are operators and event

call nodes of types 1 and 3.

Operator nodes and types 2 and 3 are the

rigthExpression argument and expression.

Fig. 4. Attention Weitghs Analysis Results on Histogram A and Histogram B

Fig. 5. Attention Weights Analysis Results on Histogram C and Histogram D

RQ 2: How can you improve the performance of

your model?

RQ 2.1: How does the proposed program

representation with an appropriate deep learning model

affect the problem of detecting vulnerabilities? An

equivalent question is to ask how does the EP model

compare to baseline and similar vulnerability classifiers?

Experimental hypothesis: if the proposed method

provides better performance than the baselines, the

proposed program representation with the corresponding

DL model has a positive effect on the vulnerability

detection task.

Experiment setup. To answer this research question,

the performance of our two models, PL and EP, is

compared with different initial estimates. In fact,

demonstrating that our developed models perform better

than the baseline ones for the same task will prove the

advantage of using our described method, created with an

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 4

49

AST based input representation mixed with endpoint

information injected inside models. Several baselines

have been tested on different types of inputs. Baselines

studied and compared used to classify vulnerabilities

were logistic regression model, random forest model,

decision tree classifier, Gaussian naive Bayesian model.

Results show only the best results for these baselines. The

best performance is always achieved by a decision tree

classifier. The ratings corresponding to each base model

can be found in the appendix section. In conjunction with

the baseline, two different input sources were used:

Bag of words is Path nodes (BOW node): The

simplest input baseline under consideration was

constructed using the set of tokens in each line, which

means that a dictionary of all the unique nodes that make

up the CDP was used. In this basic scenario, the input was

only raw CDP information. There is no time frame to

measure interest in time-related data [29].

Bag of Words is Paths (BOW-Path): Another input

source is the same as BOW-Node one. However, instead of

using a dictionary of all unique nodes, a dictionary

containing all the unique paths of all strings appearing in the

training set was used. This process measures the value of the

CDP information in terms of its temporal structure. The

BOW-Node is created at the node level and the BOW-Path

is created at the path level. This can give us a general idea

of the amount of information contained only in path objects.

A third baseline was also created to assess the skills

of our model: Vulcan No end-points is Vul-NoEP: This

model matches the pipeline we designed without using

the information from the previous lines. Thus, it only

matches the DL model, which consists of a bi-LSTM

layer with an attention layer.

Results are shown in Tabl. 7.

Table 7 – Scores comparison between implemented

baselines on the BOW-Node input

Baseline F1
Preci-

sion

Re-

call

#0

labels

#1

labels

Logistic regression 0.17 0.10 0.71 54731 18588

Random forrest 0 0 0 73319 0

Decision Tree 0.41 0.56 0.32 71833 1486

Gaussian NB 0.07 0.03 0.98 3716 69603

The first conclusion to be drawn is that most

baselines perform poorly with the BOW-Node input

source (Tabl. 7), while one baseline stands out: the

decision tree classifier. In fact, the F1 score of this model

is quite high for the baseline. This means that a certain

amount of information is contained in AST nodes even

without temporary dependencies and is well understood

by this basic classifier. However, this is not enough to

develop a reliable tool. Tabl. 8 shows a comparison of the

baseline estimates for each input source and the

performance achieved with the EP and PL models. It can

be concluded that the baseline, even if a richer set of

words is used as input, is significantly superior to our EP

and PL models. In addition, the Vul-NoEP score is, as

expected, lower than the estimates for the PL and EP

models. The positive value of our approach, taking into

account the flow of information between different lines

of code, as a consequence, is proven. Thus, the approach

we developed, combining presentation with CDP and DL

model, provides more information.

Table 8 – Scores comparison between the implemented

baselines on the different input sources and

between the EP and PL models

Model F1 Std

Only Negative Prediction 0 0%

BOW-Node F1 Logistic Regression 0..17 0.8%

BOW-Node F1 Decision Tree 0.41 0.9%

BOW-Path F1 Logistic Regression 0.32 0.9%

BOW-Path F1 Decision Tree 0.43 1.1%

Vulcan-No Endpoints (Vul-NoEP) 0.47 1.3%

Previous Line Model (PL) 0.52 1.6%

Endpoints (EP) 0.53 1.8%

RQ 2.2: Is it useful to increase the complexity of the

model with a default set of inputs? In other words, is the

increase in complexity worth using the EP model, or

should the PL model be used instead?

Experimental hypothesis: Is the increase in model

complexity worthwhile? Thus, the performance of the EP

model should be significantly higher than the estimates

obtained with the PL model. If it is not, it means that the

input data source is not is optimally structured to take

advantage of the EP model.

Experiment setup: To answer this question, a CDP

study is being conducted. We used the results of a

statistical study conducted in RQ1.2 on the number of

tokens in a row and the aggregation of unique paths on

the input source, taking into account operators. In

addition, the default simulations described in RQ1.1 are

used to obtain the performance of EP and PL models. The

run of each model was repeated 5 times so that the

standard deviation of the characteristics could be

calculated. Thanks to this pipeline, metrics and standard

deviation F1 were obtained for both models. In this way,

a reliable comparison becomes possible and the answer

to the research question can be described.

Results are shown in Tabl. 9.

Table 9 – Comparison of estimates between PL model and

EP model on simulations made with default

settings in an extended dataset

Model F1 Std of F1 Score

PL Model 0.52 1.6%

EP Model 0.53 1.8%

Both models are equally accurate when used with

our operator-aware input source. Thus, it can be

concluded that the increase in complexity due to the use

of the EP model instead of the PL model is not worth it.

Hence, these different observations showed that the

same information creates negative and positive labels,

making our data extremely difficult to discern, even for a

smart model. The overlapping information explains the

similar performance of the PL and EP models. In fact, the

amount of information added by the EP model is small

because of the inherent similar data contained in the

dataset. In conclusion, even when an extended dataset

that is richer than the default is used as input, it is useless

to use the EP model and therefore add complexity over

the PL model. In fact, the current dataset does not have

Advanced Information Systems. 2023. Vol. 7, No. 4 ISSN 2522-9052

50

sufficient discriminatory power. Thus, the described

research method allows the user to know when the EP

model can be used in optimal conditions. This is really

useful for tradeoffs between complexity and precision.

Finally, adding information to the dataset can easily

improve the performance of the model. The EP model

can be used with some Domain Specific Language (DSL)

that satisfies the described requirements (large number of

tokens per line and variety in the path). In this case, our

proposed pipeline can work very well.

Conclusions

This work represents an important first step in

detecting vulnerabilities in domain-specific languages

and analyzing programs written in Solidity. The

presented method of semantically rich functions captures

complex control and data dependencies and successfully

classifies 3 types of vulnerabilities. The presentation

presented using AST paths combined with a model using

endpoint information has been shown to outperform the

baseline. Endpoint information was proven with an

experimental design using synthetic data and raw data.

This allows you to better understand the natural structure

of your code. Thus, the pipeline developed by us can

capture more internal code information than other

models. Information from software tokens, although

semantically incapable of capturing vulnerabilities,

increases the accuracy of models. The interpretability of

the model has been added through the use of the attention

mechanism. Operator accounting has shown significant

performance improvements. This observation leads to the

fact that as you add even more information to the data

(for example, taking into account the function name as

tokens), the difference in performance should also

increase. Another way to increase the amount of sensitive

data within the input is to use the encoding once method.

In fact, operators are just paths of length one, where the

string that makes up the path is just the operator itself.

REFERENCES

1. (2020), “Vulnerabilities and Exploits”, European Union Agency for Cybersecurity, available at:

https://www.enisa.europa.eu/topics/incident-response/glossary/vulnerabilities-and-exploits

2. Luu, L., Chu, D.-H., Olickel, H., Saxena, P. and Hobor A. (2016), “Making smart contracts smarter”, Proc. of the 2016 ACM

SIGSAC Conf. on Computer and Comm. Security, ACM, pp. 254–269, doi: https://doi.org/10.1145/2976749.2978309
3. Mozhaev, O., Kuchuk, H., Kuchuk, N., Mykhailo, M. and Lohvynenko, M. (2017), “Multiservice network security metric”,

2nd International Conference on Advanced Information and Communication Technologies, AICT 2017 – Proceedings, pp.

133–136, doi: https://doi.org/10.1109/AIACT.2017.8020083
4. (2017), “Mythril”, ConsenSys, 2 available at: https://github.com/ConsenSys/mythril

5. Kalra, S., Goel, S., Dhawan, M. and Sharma, S. (2018), “Zeus: Analyzing safety of smart contracts”, Network and Distributed

System Security Symposium, doi: https://doi.org/10.14722/ndss.2018.23092

6. Raskin, L., Sukhomlyn, L., Sokolov, D. and Vlasenko, V. (2023), “Evaluation of system controlled parameters informational

importance, taking into account the source data inaccuracy”, Advanced Information Systems, Vol. 7, no. 1, pp. 29–35, doi:

https://doi.org/10.20998/2522-9052.2023.1.05

7. Mackey, T.K., Kuo, T.T., Gummadi, B., Clauson, K.A., Church, G., Grishin, D., Obbad, K., Barkovich, R. and Palombini, M.

(2019), “‘Fit-for-purpose?’—Challenges and opportunities for applications of blockchain technology in the future of

healthcare”, BMC Med., 17, Article number 68, doi: https://doi.org/10.1186/s12916-019-1296-7

8. Dun, B., Zakovorotnyi, O. and Kuchuk, N. (2023), “Generating currency exchange rate data based on Quant-Gan model”,

Advanced Information Systems, Vol. 7, no. 2, pp. 68–74, doi: https://doi.org/10.20998/2522-9052.2023.2.10

9. (2018), “Manticore”, Trailofbits, available at: https://github.com/trailofbits/manticore

10. Adomavicius, G. and Tuzhilin A. (2005), “Toward the Next Generation of Recommender Systems: A Survey of the State-of-

the-Art and Possible Extensions”, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 6, pp. 734–749, doi:
https://doi.org/10.1109/TKDE.2005.99

11. Hlavcheva, D., Yaloveha, V., Podorozhniak, A. and Kuchuk, H. (2021), “Comparison of CNNs for Lung Biopsy Images

Classification”, 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering, UKRCON 2021 – Proceedings,

pp. 1–5, doi: https://doi.org/10.1109/UKRCON53503.2021.9575305

12. Burke, R. (2002), “Hybrid Recommender Systems: Survey and Experiments”, User Modeling and User-Adapted Interaction,

Vol. 12, 4 (2002), pp. 331–370, doi: https://doi.org/10.1023/A:1021240730564

13. Kovalenko, A., Kuchuk, H., Kuchuk, N. and Kostolny, J. (2021), “Horizontal scaling method for a hyperconverged network”,

2021 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, doi:

https://doi.org/10.1109/IDT52577.2021.9497534

14. Amatriain, X., Pujol, J.M., Tintarev, N. and Oliver, N. (2009), “Rate it again: Increasing recommendation accuracy by user re-

rating”, Proc. of the 3rd Conf. on Recom. Syst., ACM Press, NY, pp. 173–180, doi: https://doi.org/10.1145/1639714.1639744
15. Basilico, J. and Hofmann, T. (2004), “Unifying collaborative and content-based filtering”, Proceedings of the 21st International

Conference on Machine Learning (ICML’04). ACM Press, New York, NY, 9, doi: https://doi.org/10.1145/1015330.1015394
16. Kuchuk, N., Mozhaiev, O., Mozhaiev, M. and Kuchuk, H. (2017), “Method for calculating of R-learning traffic peakedness”,

2017 4th International Scientific-Practical Conference Problems of Infocommunications Science and Technology, PIC S and

T 2017 – Proceedings, pp. 359–362, doi: https://doi.org/10.1109/INFOCOMMST.2017.8246416

17. Bostandjiev, S., O’Donovan, J. and Hollerer, T. (2012), “TasteWeights: A Visual Interactive Hybrid Recommender System”,

Proc. of the 6th ACM Conference on Recommender Systems (RecSys). 35–42, doi: https://doi.org/10.1145/2365952.2365964

18. Lin, W., Li, Y., Feng, S. and Wang, Y. (2014), “The optimization of weights in weighted hybrid recommendation algorithm”,

Proc. of the 2014 IEEE/ACIS 13th Int. Conf. on Comp. and Inf. Sc. (ICIS) pp 415-18, doi: https://doi.org/10.1109/ICIS.2014.6912169
19. Sarwar, B., Karypis, J., Konstan, J., and Riedl, R. (2001), “Item-based Collaborative Filtering Recommendation Algorithms”,

Proc. of the 10th International Conference on World Wide Web, pp. 285-95, doi: https://doi.org/10.1145/371920.372071

20. Wu, H.T. and Tsai, C.W. (2018), “Toward blockchains for health-care systems: Applying the bilinear pairing technology to ensure

privacy protection and accuracy in DS”, IEEE Consum. Electron. Mag. 7, 65–71, doi: https://doi.org/10.1109/MCE.2018.2816306

https://www.enisa.europa.eu/topics/incident-response/glossary/vulnerabilities-and-exploits
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/AIACT.2017.8020083
https://github.com/ConsenSys/mythril
https://doi.org/10.14722/ndss.2018.23092
https://doi.org/10.20998/2522-9052.2023.1.05
https://doi.org/10.1186/s12916-019-1296-7
https://doi.org/10.20998/2522-9052.2023.2.10
https://github.com/trailofbits/manticore
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://www.scopus.com/authid/detail.uri?authorId=57211758694
https://www.scopus.com/authid/detail.uri?authorId=57211756298
https://www.scopus.com/authid/detail.uri?authorId=57202229410
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/record/display.uri?eid=2-s2.0-85118942379&origin=resultslist&sort=plf-f
https://www.scopus.com/record/display.uri?eid=2-s2.0-85118942379&origin=resultslist&sort=plf-f
https://doi.org/10.1109/UKRCON53503.2021.9575305
https://doi.org/10.1023/A:1021240730564
https://ieeexplore.ieee.org/author/37085679144
https://ieeexplore.ieee.org/author/37086422142
https://ieeexplore.ieee.org/author/37086151403
https://ieeexplore.ieee.org/author/37088923311
https://ieeexplore.ieee.org/xpl/conhome/9497502/proceeding
https://doi.org/10.1109/IDT52577.2021.9497534
https://doi.org/10.1109/IDT52577.2021.9497534
https://doi.org/10.1145/1639714.1639744
https://doi.org/10.1145/1015330.1015394
https://doi.org/10.1109/INFOCOMMST.2017.8246416
https://doi.org/10.1145/2365952.2365964
http://dx.doi.org/10.1109/ICIS.2014.6912169
http://dx.doi.org/10.1145/371920.372071
https://doi.org/10.1109/MCE.2018.2816306

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 4

51

21. Khezr, S., Moniruzzaman, M., Yassine, A. and Benlamri, R. (2019), “Blockchain technology in healthcare: A comprehensive

review and directions for future research”, Appl. Sci. 2019, 9, 1736, doi: https://doi.org/10.3390/app9091736

22. Zakharchenko, A. and Stepanets, O. (2023), “Digital twin value in intelligent building development”, Advanced Information

Systems, Vol. 7, no. 2, pp. 75–86, doi: https://doi.org/10.20998/2522-9052.2023.2.11

23. Vora, J., Nayyar, A., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S. and Rodrigues, J.J. (2018), “BHEEM: A Blockchain-

Based Framework for Securing Electronic Health Records”, Proceedings of the 2018 IEEE Globecom Workshops (GC

Wkshps), Abu Dhabi, UAE, 9–13 December 2018, doi: https://doi.org/10.1109/GLOCOMW.2018.8644088

24. Datsenko, S. and Kuchuk, H. (2023), “Biometric authentication utilizing convolutional neural networks”, Advanced

Information Systems, Vol. 7, no. 2, pp. 87–91, doi: https://doi.org/10.20998/2522-9052.2023.2.12

25. Zhang, P., Schmidt, D.C., White, J. and Lenz, G. (2018), “Blockchain Technology Use Cases in Healthcare”, Advances in

Computers, Elsevier: Amsterdam, Netherlands, Vol. 111, pp. 1–41, doi: https://doi.org/10.1016/bs.adcom.2018.03.006

26. Kovalenko, A. and Kuchuk, H. (2022), “Methods to Manage Data in Self-healing Systems”, Studies in Systems, Decision and

Control, Vol. 425, pp. 113–171, doi: https://doi.org/10.1007/978-3-030-96546-4_3

27. Kumar, T., Ramani, V., Ahmad, I., Braeken, A., Harjula, E. and Ylianttila, M. (2018), “Blockchain Utilization in Healthcare:

Key Requirements and Challenges”, Proceedings of the 2018 IEEE 20th International Conference on e-Health Networking,

Applications and Services (Healthcom), Ostrava, Czech Republic, https://doi.org/10.1109/HealthCom.2018.8531136
28. Salnikov, D., Karaman, D. and Krylova, V. (2023), “Highly reconfigurable soft-cpu based peripheral modules design”,

Advanced Information Systems, Vol. 7, no. 2, pp. 92–97, doi: https://doi.org/10.20998/2522-9052.2023.2.13

29. Luu, L., Chu, D.-H., Olickel, H., Saxena, P. and Hobor, A. (2016), “Making smart contracts smarter”, Proc. of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pp. 254–269, doi: https://doi.org/10.1145/2976749.2978309

Received (Надійшла) 30.08.2023

Accepted for publication (Прийнята до друку) 15.11.2023

ABOUT THE AUTHORS / ВІДОМОСТІ ПРО АВТОРІВ

Шматко Олександр Віталійович – доктор філософії, доцент, доцент кафедри Програмної інженерії та інтелектуальних

технологій управління, Національний технічний університет «Харківський політехнічний інститут», Харків, Україна;

Oleksandr Shmatko – Doctor of Philosophy, Associate Professor, Associate Professor of Software Engineering and Intelligent

Management Technologies Department, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine;

e-mail: oleksandr.shmatko@khpi.edu.ua; ORCID ID: https://orcid.org/0000-0002-2426-900X.

Коломійцев Олексій Володимирович –доктор технічних наук, професор, професор кафедри Національного технічного

університету «Харківський політехнічний інститут», Харків, Україна;

Oleksii Kolomiitsev – Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming

Department, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine;

e-mail: аlexus_k@ukr.net; ORCID ID: https://orcid.org/0000-0001-8228-8404.

Рекова Наталія Юріївна – доктор економічних наук, професор, професор кафедри Цифрових технологій та проєктно-

аналітичних рішень, ТОВ Технічний університет «Метінвест політехніка», Запоріжжя, Україна;

Nataliia Rekova – Doctor of Economics, Professor, Professor Department of Analysis and Project Decisions Department,

Technical University "Metinvest Polytechnics", LLC, Zaporizhzhia, Ukraine;

e-mail: natarekova@gmail.com; ORCID ID: https://orcid.org/0000-0002-5961-3616.

Кучук Ніна Георгіївна – доктор технічних наук, професор, професор кафедри обчислювальної техніки та програмування,

Національний технічний університет “Харківський політехнічний інститут”, Харків, Україна;

Nina Kuchuk – Doctor of Technical Sciences, Professor, Professor of Computer Engineering and Programming Department,

National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: nina_kuchuk@ukr.net; ORCID ID: http://orcid.org/0000-0002-0784-1465.

Матвєєв Олександр Миколайович – доктор філософії, доцент, доцент кафедри Цифрових технологій та проєктно-

аналітичних рішень, ТОВ Технічний університет «Метінвест політехніка», Запоріжжя, Україна;

Oleksandr Matvieiev – Doctor of Philosophy, Associate Professor, Associate Professor Department of Analysis and Project

Decisions Department, Technical University "Metinvest olytechnics", LLC, Zaporizhzhia, Ukraine;

e-mail: matwei1970@gmail.com; ORCID ID: https://orcid.org/0000-0001-5907-3771.

Проектування та оцінка DL-моделі для виявлення вразливості в смарт-контрактах

О. В. Шматко, О. В. Коломійцев, Н. Ю. Рекова, Н. Г. Кучук, О. М. Матвєєв

Анотація . Особливості завдання. Смарт-контракти — це програми, які зберігаються в розподіленому реєстрі та

виконують написаний у них код на відповідь на адресовані їм транзакції. Такі смарт-контракти написані на мові

програмування Solidity, яка має специфічну структуру та синтаксис. Мова розроблена для платформи Ethereum. Маючи

специфічну структуру, такі мови схильні до певних уразливостей, використання яких може призвести до великих

фінансових втрат. Постановка завдання. У цій статті для виявлення вразливостей використовується модель глибокого

навчання (DL). Використовуючи обраний підхід і правильно задану структуру вхідних даних, можна виявити складні

залежності між різними програмними змінними, які містять вразливості та помилки. Результати дослідження.

Використовуючи чітко визначені експерименти, цей підхід було досліджено, щоб краще зрозуміти модель і покращити її

продуктивність. Розроблена модель класифікувала вразливості на рівні рядків, використовуючи як вхідні дані корпус

смарт-контрактів Solidity. Застосування моделі DL дозволяє виявляти в смарт-контрактах уразливості різної складності.

Висновки. Таким чином, розроблений підхід може фіксувати більше інформації про внутрішній код, ніж інші моделі.

Інформація з програмних токенів, хоча семантично нездатна зафіксувати вразливі місця, підвищує точність моделей.

Інтерпретативність моделі додана за рахунок використання механізму уваги.

Ключові слова: блокчейн; смарт-контракт; комп’ютерна система; безпека; вразливість; глибоке навчання.

https://doi.org/10.3390/app9091736
https://doi.org/10.20998/2522-9052.2023.2.11
https://doi.org/10.1109/GLOCOMW.2018.8644088
https://doi.org/10.20998/2522-9052.2023.2.12
https://doi.org/10.1016/bs.adcom.2018.03.006
javascript:void(0)
javascript:void(0)
https://doi.org/10.1007/978-3-030-96546-4_3
https://doi.org/10.1109/HealthCom.2018.8531136
https://doi.org/10.20998/2522-9052.2023.2.13
https://doi.org/10.1145/2976749.2978309
mailto:oleksandr.shmatko@khpi.edu.ua
https://orcid.org/0000-0001-9596-0669
mailto:аlexus_k@ukr.net
https://orcid.org/0000-0001-8754-7444
https://orcid.org/0000-0001-9596-0669
mailto:matwei1970@gmail.com
https://orcid.org/0000-0001-9596-0669

