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DESIGNING AND EVALUATING DL-MODEL 

FOR VULNERABILITY DETECTION IN SMART CONTRACTS 
 

Abstract .  Task features. Smart-contracts are programs that are stored in a distributed registry and execute code written 

in them in response to transactions addressed to them. Such smart- contracts are written in the Solidity programming 

language, which has a specific structure and syntax. The language was developed for the Ethereum platform. Having a 

specific structure, such languages are prone to certain vulnerabilities, the use of which can lead to large financial losses. Task 

statement. In this paper, a Deep Learning (DL) model is used to detect the vulnerabilities. Using the chosen approach and a 

properly specified input data structure, it is possible to detect complex dependencies between various program variables that 

contain vulnerabilities and bugs. Research results. Using well-defined experiments, this approach was investigated to better 

understand the model and improve its performance. The developed model classified vulnerabilities at the string level, using 

the Solidity corpus of smart-contracts as input data. The application of the DL model allows vulnerabilities of varying 

complexity to be identified in smart-contracts. Conclusions. Thus, the pipeline developed by us can capture more internal 

code information than other models. Information from software tokens, although semantically incapable of capturing 

vulnerabilities, increases the accuracy of models. The interpretability of the model has been added through the use of the 

attention mechanism. Operator accounting has shown significant performance improvements. 
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Introduction 

A software vulnerability is “the existence of a 

design flaw, weakness, or implementation that could lead 

to an unwanted event that compromises the operation of 

a software application, computer system, network, or 

protocol.” [1].  

Since the popularity of smart-contracts and the 

amount of software associated with it increases every 

day, then the number of attacks and vulnerabilities that 

affect the operation of this software increases in direct 

proportion. 

Such software must be protected to prevent 

irreversible consequences both financially and for society 

as a whole. Examples of such bugs are vulnerability 

problems, including Decentralized Autonomous 

Organization (DAO) [2, 3]. The harm from triggering 

vulnerabilities is one of the reasons for their detailed and 

thorough investigation. One of the causes of 

vulnerabilities is the presence of complex interactions 

between pieces of software code, and the mismatch 

between what a program should do and what it actually 

does. Since it is impossible to guarantee that 

vulnerabilities are not present when the code is written, 

methods or models must be developed to detect these 

vulnerabilities. 

Currently there are tools [4–9] for statistical 

analysis that recognize bugs and vulnerabilities. Their 

main drawback is that they only detect a limited number 

of errors based on predefined rules. The results obtained 

for the detected vulnerabilities require the presence of a 

specialist who will analyze them. This often leads to 

erroneous conclusions when assessing smart-contracts 

for vulnerabilities.  

Also, despite a lot of existing literature, which 

describes the main vulnerabilities and methods for their 

detection, there are still classes of vulnerabilities and 

errors that are very difficult or impossible to recognize, 

and therefore they continue to exist. 

The object of the study is smart contracts in 

healthcare [10, 11]. 

The subject of the study is models and tools for 

vulnerability assessment of smart contracts. 

The goal of the study is to improve the security of 

smart-contracts by developing software for assessing 

vulnerabilities using DL models.  

The approach developed in this paper is based on 

the use of a large amount of data in the form of open 

source codes that located in repositories, as well as a 

technique that uses a big amount of input data to detect 

more vulnerabilities. As the initial data, the corpus of 

programs is used to detect global patterns of error 

manifestation, which cannot be done by static checking. 

The developed approach will help to identify 

vulnerabilities of varying complexity that arise in the 

operation of smart-contracts, which will make it possible 

to more accurately determine whether a smart-contract is 

safe and suitable for execution or not. 

A DL model was developed, which, using binary 

classification, determines whether a smart contract 

contains vulnerabilities and errors. The corpus of smart 

contract programs developed in the Solidity 

programming language was used as input data. The 

corpus of smart-contract corpus was view as an Abstract 

Syntax Tree (AST). The proposed model was considered 

in detail in order to fully understand how it would react 

to different types of input data under certain experimental 

conditions. 

Literature review and problem statement. 

Research on error detection and software fixes has 

recently been an important area of study and analysis [12, 

13]. And now this issue is becoming more and more 

important with the emergence of new programming 

languages in some areas, such as cryptocurrency. To 

achieve accurate predictions in the problem of detecting 

vulnerabilities, two problematic factors must be solved: 

first, the representation of the source code used as input 

must reflect the internal structure of the program and the 
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relationship between the variables in it. Second, the 

model must be designed to take full advantage of the 

proposed input data structure.  

At first, thoughts came to mind about the best initial 

data for solving problems with the detection of 

vulnerabilities. Some researchers tried to use the source 

code from Github.  

Another way to look at the problem is to focus on 

transactions made by smart contracts: in order to exploit 

vulnerabilities, hackers mainly focus on functions that 

create a mismatch between the actual transfer amount and 

the amount reflected in the internal stored data. With the 

development of DL, it has been proven that the best 

source material for such a problem is a collection of 

several codes containing some vulnerabilities. In [14], a 

method for detecting vulnerabilities was developed, 

which showed that learning from artificially created 

errors allows one to obtain error detectors that are 

effective in detecting errors in real code. Another 

solution is to use existing detection tools, as done in [15]. 

In [16], a method was proposed based on the 

representation of labels in order to be able to directly 

interpret the source code. In [17], DL is used to take 

advantage of the specific structure of the source code. 

The shortcuts were also generated using a static analyzer. 

With all this research in mind, our method was designed 

to take advantage of this data-driven approach by 

combining a corpus of code as input with DL. Most, if 

not all, of the previously described methods fail to fully 

construct relationships between variables, whereas this 

research paper focuses on creating well-interpreted 

methods that capture the interactions of variables. This 

ability is key to creating accurate and interpretable 

models. An AST view was used to successfully complete 

this task.  

The article [18], on combining DL using such a 

view, confirms the feasibility of this approach, and in 

[19], the advantages of this view are highlighted using 

the structure of a “bag-of-paths” as input for training. In 

[20], the Long Short-Term Memory (LSTM) mechanism 

was used to investigate the internal structure of source 

codes to detect errors. He has demonstrated a strong 

ability to analyze functions to identify vulnerabilities. 

This article presents a DL model composed of LSTM-

networks using an AST path as an input representation. 

The main section  

In process researching and analyzing existing 

vulnerabilities in smart-contracts, the most common 

types were identified.   

Integer overflow [21, 22]: Label 1: Integer overflow 

vulnerabilities arise when a computed value is too large 

for a type that has been assigned a value. The operations 

that can cause overflow are the instructions "add", 

"subtract", "multiply" and "exponentiate". Thus, if this 

operation is used in a conditional statement, the program 

will have random behavior.  

Unverified call return value [23, 24]: Label 2: An 

external contract could take over control flow due to an 

unverified call to the return value. The consequence of 

this problem is that an attacker can cause the call to fail, 

causing unexpected behavior in subsequent program 

logic that could be exploited by the adversary. Since this 

can lead to unwanted interactions between different 

function calls, execution resumes even if the called 

contract throws an exception.   

Exception state (invariant assertion) [25, 26]: Label 

3: The code flow must never reach an erroneous assertion 

means it is not working as expected. In the event of this 

problem, a statement invariant statement is not followed, 

which means that there is an error in the contract or that 

the statement is being used incorrectly. 

Algorithm of actions for the development of the 

proposed approach for detecting vulnerabilities in smart 

contracts:   

- A corpus of Solidity smart-contracts was created 

and used as the source code.  

- A code corpus view was presented as an AST for 

understanding the complex dependencies between 

variables in programs. This input structure uses an 

abstract syntax tree view to model a combination of 

control and data transformation paths.   

- To evaluate the success of our approach and to 

understand our models, tests were conducted using 

various types of inputs to understand the operation and 

behavior of our models.   

- DL model was implemented to detect patterns that 

cause vulnerabilities and to take full advantage of the 

code corpus representation.   

- A thorough study of the models we developed was 

carried out to understand their behavior under various 

experimental conditions. Models with different 

architectures were tested in combination with input data 

of different informativeness. The result was an 

understanding of the causal relationship between the 

accuracy of our models.   

- The use of the attention mechanism in the DL 

model, which is a kind of vector of importance, was also 

necessary in order to be able to add interpretability to 

prediction. This process allows us to understand the 

pattern of the code responsible for creating the 

vulnerability. 
Fig. 1 illustrates architecture of the proposed model 

for assessing vulnerabilities, taking the Solidity corpus of 
contracts as input, were implemented for a successful 
binary classification of the problem of detecting 
vulnerabilities at a linear level. This means that one label 
𝐿𝑖𝑗  is displayed for each line. As described earlier, the 

AST path representation is used to create one path 𝑃𝑖𝑗𝑘𝑙  

for each token 𝑇𝑖𝑗𝑘 belonging to each line 𝐿𝑖𝑗  for each 

contract 𝐷𝑖 . This action is represented by steps 1 and 2.  

The reason for using AST paths is to reflect the 

interaction between tokens within the same line and 

between tokens in previous lines, in order to emulate the 

actual flow of program execution. However, our 

approach should be designed to take full advantage of 

this input. For this, the key point that makes our model 

special is how the information from the previous row is 

used to classify the current row. During the construction 

of the described representation of the code, several pieces 

of information are stored in each line. More precisely, 

what are called endpoints stores indices that point to past 

rows. These indexes are used to relate each token to its 

previous use, which aims to add context to each line. 
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Fig. 1. Architecture of the proposed model for assessing vulnerabilities of smart contracts 

 

Then, in step 3, the view created after step 2 is used 

as an input to the LSTM- network in conjunction with the 

layer point attention. The consistent properties of the text 

were taken into account through the use of the LSTM-

network, as proven in [27]. In the model we have 

developed, the attention layer invented in [29] plays a key 

role during the learning process, and is also the building 

block of the interpretability of our algorithm. The 

purpose of this layer of attention is to mimic the human 

attention mechanism. This step makes our model more 

capable of learning the context and relationships between 

tokens within the code.  

A specific network using this concept of attention, 

defined as N1, used in step 3, creates a token-level 

embedding vector that is combined with endpoint 

information to feed into a simple feed forward network. 

The token-level attachments created in step 3 are a 

distributed representation of the 𝑞 dimension and contain 

information corresponding to the Control Data Paths 

(CDP). The representations of each token 𝑅(𝑇𝑖𝑗𝑘) 

forming a particular line of 𝐿𝑖𝑗  are pooled together as the 

researchers did in [28]. This concatenation is then used 

to create a linear representation of 𝑅(𝑇𝑖𝑗𝑘) using the 

feedforward for the network defined in step 4.  

This last row-level embedding is therefore used in 

another feedforward network to reduce the size of the 

vector to finally get one at a time binary label per line. 

The N2 network learns the relationship between the line 

and the assigned mark. Statistical analysis of attention 

weights evokes causal insight into the patterns implicit in 

vulnerabilities. So our models basically need two sources 

of information: AST paths at the token level and stored 

endpoint indices. They create two sets of inclusions in 

models: token-level inclusions and row-level inclusions. 

To create the latter, interspersed line level endpoints are 

needed, which are simply already created interspersed 

line level impregnations corresponding to past lines of 

previous use of tokens that form the predicted line. In 

terms of comparison with Natural Language Processing 

(NLP) methods, our algorithm can be compared to 

generating embeddings for each sentence and, ultimately, 

each paragraph, since the NLP input consists of several 

tokens per line, while a paragraph is a set of sentences. In 

this case, paragraph-level inlining is used to display line-

level vulnerabilities.  

The model based on the previous lines compares 

only the current and the previous line, not taking into 

account the lines several orders of magnitude higher.  

Previous Line (PL) model is going through each 

line of this program sequentially, from the first line of the 

code to the last one. For each line, a collection of different 

CDPs with a defined length corresponding to the tokens 

forming the considered line is used as input. The 

collection corresponds to the 2D matrix. This 

representation is used in a bi-directional LSTM-network 

with local, multiplicative attention. Thus, this first 

network learns the different paths that can be associated 

with tokens in the scope of a program. The output of this 

first step is forming a line-level embedding of dimension 

(1, 100). This created embedding is stored in a look-up 

structure to be used if needed. 

At that point, the model asks himself if the current 

computed line has a link with the previous one. A link 

exists to the previous line if at least one of the tokens used 

in the current line was used in the previous line. To know 

that, information was already processed during the path 

creation and stored in an array corresponding to the end-

points data. 

The model based on the endpoints (EP) is designed 

in such a way that it defines relationships between the 

tokens that are located in the lines several orders of 

magnitude higher. 

The only difference between the PL model and the 

EP model is that the end-points information is not only 

linking tokens to the previous line but also to all the 

previous lines having dependencies in the entire code. 

Metrics for assessment results of experiment: 

False_Positive_Rate corresponds to the probability 

of falsely rejecting the null hypothesis for a particular 

test. FP is False Positive and TN is True negative. The 

ideal FPR is 0: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 .                         (1) 

False_Negative_Rate corresponds to the proportion 

of people with a known positive condition for whom the 

test result is negative.  
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TP is True Positive and FN is False-negative. The 

ideal FNR is 0: 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 .                          (2) 

True_Positive_Rate or Recall calculates the ability 

of a model to find all the relevant cases within a dataset. 

The ideal TPR is 1:  

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 .                          (3) 

Precision calculates how precise/accurate our model 

is out of those who are actually positive. Ideal P is 1: 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 .                              (4) 

F1 Score is needed when you want to seek a balance 

between precision and recall scores and when there is an 

unbalanced class distribution. The ideal F1 score is 1: 

𝐹1 =  
2 ∗ 𝑃 ∗ 𝑇𝑃𝑅

𝑇𝑃𝑅 + 𝑃
 .                         (5) 

Average Precision = Area Under the Curve (AUC) 

of the Precision-Recall curve. The ideal score is 1.  

ROC score = AUC of ROC Curves. The ideal score 

is 1. 

Research questions that need to be answered in 

order to understand whether the developed approach is 

effective for detecting vulnerabilities in smart contracts.  

Research results 

RQ 1: Can a deep learning model work for the 

problem of detecting vulnerabilities?  

RQ 1.1: How does the proposed method behave 

with the Solidity corpus of contracts as an input source?  

Experimental hypothesis. The DL model does train 

if the learning loss decreases with epochs, if the test loss 

follows a similar evolution, and if the metric curves tend 

to ideal values before the plateau.  

Experiment setup. The dataset used contains a 

sample of negative ones, which is a consequence of the 

extremely unbalanced distribution of labels. The goal of 

our model is to perform a row-level binary classification 

to predict the presence or absence of a vulnerability.  

The input is a code representation was developed, 

where the main building blocks are the control data path 

for each token. These inputs were randomly split into 3 

sets: a test set corresponding to 30% of that data set. The 

remaining 70% were further divided into 70%-30% of the 

training and validation sets: thus, the training set 

corresponds to 49%, and the validation set to 21%. the 

entire dataset. The loss used during training is the 

weighted cross-entropy loss, chosen for its ability to cope 

with unbalanced inputs. Our models were implemented 

using PyTorch version 1.0. 

Results. As expected for a working DL model, 

learning loss decreases, and validation loss behaves 

similarly, but is noisier. By the definition of our 

validation set, this experimental observation makes 

sense. In addition, overfit is not observed. Thus, the first 

figure shows the expected shape of the learning curve.  

The last two graphs in Fig. 2 show the evolution of 

the various metrics used to evaluate the performance of 

our model over an epoch.  

Again, thanks to these visualizations, we can 

observe good learning behavior of our model. The rates 

rise rapidly during the first epoch and continue to rise at 

a slower rate in subsequent eras.  

This means that our model is trained to discriminate 

between lines with and without vulnerabilities. The 

fourth graph shows other metrics that also have the 

expected behavior.  

The FNR remains extremely low as our dataset is 

imbalanced. This specific metric illustrates the possible 

problems that you may encounter in work performed on 

a non-uniform dataset. 

 

Fig. 2. Learning curves and estimates at the training stage of the EP model for the training and test set 
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Fig. 3. ROC-curve of the EP model and Scores curves determined depending on the classification threshold 

 

In conclusion, the graphs presented in Fig. 2 and 3 

illustrate the skillful behavior of our model. These curves 

prove that our model is able to understand the input data 

and is able to learn statistical patterns in order to 

distinguish lines with vulnerabilities from lines without 

problems those that don't have any problems.  

Fig. 3 is mainly due to the fact that our model predicts 

the probabilities for each class and then uses them in the 

softmax function to turn them into binary labels with a 

default threshold of 0.5. However, probabilities can be 

interpreted using different thresholds. Changing this 

parameter can change performance. The first graph in Fig. 

3 shows TPR versus FPR. This Receiver Operation 

Characteristics (ROC) curve illustrates the trade-off 

between both metrics for a predictive model using 

different likelihood thresholds. The second graph shows 

the F1, precision and recall metrics versus threshold.  

Finally, the graphs presented in Fig. 2 and 3 

illustrate the skillful behavior of our model. These curves 

prove that our model is able to understand the input data 

and is able to learn statistical patterns to distinguish lines 

with vulnerabilities from lines that have no problems. 

RQ 1.2: How does it scale if more information is 

added to the input dataset?  

Experimental hypothesis. If the proposed DL 

algorithm works well, then the performance of the model 

on a richer dataset in terms of the amount of information 

should achieve more accurate predictions than on the 

standard input source.  

This will confirm that the proposed approach is able 

to learn the context from the code.  

Experiment setup: A new set of inputs is created. 

This input set qualifies as extended because more 

information is added to it.  

Operators also act as tokens. In this new 

configuration, the operators simply become paths of 

length one, where the string that makes up the path is just 

the operator itself.  

Padding is then used for formatting, since all CDPs 

require constant length. Our EP model is trained using a 

new extended data source to analyze the impact of this 

addition of information. To understand the changes 

caused by the addition of operators as tokens, a statistical 

survey of the CDP is being conducted. 

Results. Tabl. 1 shows the impact of treating 

operators as tokens in terms of the number of tokens per 

line of code.  

In fact, thanks to this change, the average number 

of tokens per row increased by 36%. 

From the table shown in Tabl. 2, it can be seen that 

the amount of information presented in the data remains 

low, but more than for the default input data without 

operators. This also means that as more information is 

added, the difference in performance should also 

increase. Thus, one of the easy ways to improve the 

performance of the model is to account for more tokens. 

Tabl. 3 shows the performance of our models tested 

on default and extended datasets. 

 
Table 1 – Collected statistics on the number of tokens per line in raw input and extended dataset 

 Mean Median Std 

Dataset considering only variables as tokens 2.1 2.0 1.2 

Dataset considering variables and operators as tokens 2.86 2.0 1.91 



Advanced Information Systems. 2023. Vol. 7, No. 4 ISSN 2522-9052 

46 

Table 2 – The collection statistics of CDP aggregates corresponding to 4 tokens in each row are implied  

in negative and/or positive labels for the extended dataset, considering operators as tokens 

Vulnerability 
Number of Aggr. 

of 4 CDP Paths 
Number of Unique Aggregations of 4 CDP Paths 

Lable 0 80944 12232 

Lable 1 1614 420 

Lable 2 441 257 

Lable 3 1228 186 

Intersection of paths aggregation 

implied in Positive Labels 
316 

(over 186 maximum possible paths); ~0.8% of the union of 

positive data are common between the 3 vulnerabilities type 

Union of paths aggregation implied in 

Positive Labels 
3283 819; (over 863 maximum possible paths) 

Intersection of paths aggregation 

implied in Positive and Negative Labels 
2512 

324; (over 819 maximum possible paths); ~39% of the data 

implied in positive labels are also implied in negative labels 

 
Table 3 – Comparison of the results obtained using the EP model on the raw input and  

on the augmented dataset considering operators as a tokens 

Model Type Max Var F1 Std on F1 Score Precision Recall 

Endpoints with Operators 4 0.53 1.8% 0.54 0.50 

Endpoints to compare 4 0.47 1.8% 0.46 0.48 

Endpoints with Operators 8 0.59 1.6% 0.59 0.60 

Endpoints to compare 8 0.53 1.5% 0.51 0.55 

 

RQ 1.3: Is the information added in the middle of 

the model using the endpoint data (corresponding to the 

previous lines) useful?  

Experimental hypothesis. If information remains 

only at the endpoints of the corresponding rows, and if 

the rest of the information contained in the data is 

destroyed, the proposed DL approach should be able to 

classify a set of vulnerabilities proportional to the amount 

of information provided by the end user. indicates lines. 

According to our approach, the best results should be 

obtained using all the information from the previous 

lines. 

Experiment setup. To answer this question, a 

synthetic dataset was created. The idea behind this new 

input source is to keep the same structure as our raw data, 

but change the amount of information encoded internally. 

To construct it, the raw input is modified during the 

formation of our view.  

The method used is simple: the actual raw data is 

copied, the rows are fetched according to their labels, and 

the transformation is applied at the CDP scale, that is, at 

the token level. The endpoint indices remain unchanged 

so that they can be used to convey the same usual amount 

of information. The main purpose of this manipulation is 

to put information in one specific category and, 

accordingly, to study the behavior of our models.  

An analysis of the behavior of the proposed method 

on the input, where the information remains only inside 

the endpoints, was performed by designing a special 

experiment. All paths to all inputs were randomized. This 

manipulation leads to the destruction of all information 

contained in the data. Iterations were then performed for 

each line of the program, and a constant pattern was 

introduced into the endpoints associated with the 

positively labeled current line, according to line labels 

(only positively labeled lines were converted), 

representing some kind of constant list of paths. This 

action allows the information to remain only on the paths 

that correspond to the end lines. Note that this process 

generates the current line only in random paths. In 

addition, the developed experiment distinguished 

between previous and subsequent lines.  

The previous line represents short dependencies 

(using a token twice in two adjacent lines) between 

tokens, while farther lines represent long-term 

dependencies (calling a variable into another function) 

(Tabl. 4). 
 

Table 4 – Experimental Procedure used to build  

the different synthetic datasets 

Settings 
Previous 

Line 

Father 

Away Lines 

Previous Line Experiment Pattern1 Random 

Both Method Experiment Pattern1 Pattern1 

Farther Away Lines Experiment Random Pattern1 

Noise Experiment Random Random 

 

Results. Before analyzing the performance of the 

model, a study of the distribution of endpoints is carried 

out to understand the amount of information they bring. 

Tabl.5 shows the relationship of the paths implicit in the 

various end-cases. 

This analysis is critical to understanding the results 

of the various simulations. The line consists of 4 markers, 

and each of them refers to one endpoint index. This link 

is called endpoint information. 

If the index matches the previous line, the 

corresponding path leads to the of the previous line 

category. If the index matches a previous line that is not 

the previous line, it jumps to the case of subsequent lines. 

If index is 0, it goes to zero register. 

In Tabl. 5, you can observe the unbalanced property 

of the dataset. In addition, the empty proportion is about 

60% within the positive set, which means that the amount 

of information encoded into the endpoints is small. The 

last interesting fact is that the proportion of cases of the 

previous lines is twice as large as the cases of the far line. 
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Table 5 – Distribution of the end-points paths, which means at a token level, on the raw dataset 

Subset of Data Specific Case of Endpoints information Count % inside the positive set % in the entire set 

Positive Farther lines cases 4506 12.41% 0.46% 

Positive Previous lines cases 10386 28.61% 1.06% 

Positive Null cases 21412 58.98% 2.19% 

Positive Number of total positive Endpoints cases 36304 100.00% 3.71% 

Negative Total number of Negative Endpoints cases 941276  96.29% 

Tot Total number of Endpoints 977580  100.00% 
 

Table 6 – Experimental results coming from EP model 

trained on the different synthetic datasets 

Experiment F1 
Std on F1 

Score 

Preci-

sion 
Recall 

Previous Line Experiment 0.23 1.2% 0.35 0.17 

Both method Experiment 0.28 2.1% 0.33 0.21 

Farther Away Lines 

Experiment 
0.25 1.7% 0.37 0.19 

Noise experiment 0 0% 0 0 

 

Tabl. 6 shows the results of various experiments. 

The first observation is that the estimate obtained in the 

experiment on the far line is higher than in the experiment 

on the previous line. This means that the endpoints of 

farther lines contain more information than information 

about the previous line, even if the set of indices 

corresponding to the farthest lines is half the size. Long-

term dependencies form easier patterns to recognize. In 

addition, based on the structure of our model, it is 

assumed that the EP model captures more contextual 

information and thus should overcome the characteristics 

PL modeled using Experiment with previous line. As 

shown in Tabl. 6, both methods experiment gets better 

results than the far line experiment and the previous line 

experiment. This observation is consistent with the 

expected behavior described in the experimental 

hypothesis. There is little difference between estimates 

obtained from both sources compared to estimates 

obtained with only one piece of endpoint information. 

This fact can be explained by overlapping information, 

which causes a lot of similarity within the main body of 

context brought by both sets. It can be concluded that the 

EP model works better with paternal line information, 

and because it is even better when the entire set of 

endpoints is specified, the information provided by the 

endpoints is definitely useful and allows for a better 

understanding of the code. 

One way to improve the performance of our method 

would be to increase the proportion of endpoint 

information encoded in the input. 

RQ 1.4: Does the model make interpretable results?  

Experimental hypothesis. An interpretable model is 

a model that can explain its predictions. Therefore, in our 

case, if the model is interpretable, it should be able to 

identify some of the causes of the predicted 

vulnerabilities. 

Experiment setup. In this experiment, attention 

weights were collected that correspond to the weights 

created by the attention layer within the model. To be 

precise, for each token within the 3 highest weights line, 

up to 3 nodes of the AST path were selected. Knowing 

that the maximum number of tokens in a row is 4, this 

means that for each row a number from 1 to 12 weights 

have been selected and tied to the node they represent 

using a dictionary.  

In addition, the entire set of coefficients has been 

saved in another dictionary.  

Thanks to this, the normalization of the weights was 

achieved. Each attention weight obtained during the 

testing phase of our model was divided by its total in the 

entire dataset. In fact, all quantities used by to obtain 

results are of relative importance. This method allowed 

for more importance to be given to tokens, which are less 

common in each type of vulnerability, while tokens that 

are always present are subject to more penalties.  

This means that if a token is often present in all data, 

it will be less important than a token present only 10 

times. In this process, more importance is attached to rare 

tokens. able to create vulnerability only because of their 

presence. Another selection criterion was established by 

examining the distribution of the entire set of weights: the 

minimum value that should have been achieved by the 

weights to be selected. This threshold was set at 0,075.  

The purpose of this manipulation was to filter out 

meaningless weights. Then a classical statistical analysis 

was carried out on the collected collections. 

Results. The histograms A, B, C represent the 

relative importance of the Top10 tokens implied for each 

vulnerability type (Fig. 4 and Fig. 5).  

This means that from these graphs you can get a 

general idea of what tokens are causing and what types 

of vulnerabilities. Therefore, these 3 graphs summarize 

the causes of each vulnerability type, allowing the model 

to be interpreted. Indeed, some reasons can be identified: 

type 1 is mainly associated with expressions and root 

nodes, type 2 is mainly associated with trueBody nodes, 

and type 3 is mainly associated with statement nodes and 

parameters. In addition, a comparison was made of the 

relative importance of each token specified in the 0 label 

(which means no vulnerability). All tokens are mostly 

implied in label 0, which makes sense due to the 

unbalanced dataset.  

This means that the causes found need to be detailed, 

as the markers identified by to create vulnerabilities are 

also building blocks of well-functioning code. This 

observation is logical because it corresponds to the 

intrinsic properties of the vulnerability discovery process 

and is the reason why this problem is difficult to solve.  

In addition, investigation into the significance of 

certain tokens simultaneously for several types of 

vulnerabilities.  

Histogram D illustrates this search, displaying a 

counter corresponding to the vulnerability type for each 

token (Fig. 5). This counter represents the number of 

times each token has been involved in the vulnerability. 

This means that the maximum rating that the token can 
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have is 3, which means that this token is one of the 

reasons for three different types of vulnerabilities studied 

at the same time. If the counter is 2, it means that the 

token is implied in two types of vulnerabilities, so it can 

be implied in types 1 and 2, or types 1 and 3, or types 2 

and 3. From this search, the importance of the identifier 

nodes is underlined in three types simultaneously.  

In addition, by performing the same analysis for 

only two types of vulnerabilities, it is possible to identify 

some common causes for both types: the more important 

common causes of types 1 and 2 are operators and event 

call nodes of types 1 and 3.  

Operator nodes and types 2 and 3 are the 

rigthExpression argument and expression. 

 

 
Fig. 4. Attention Weitghs Analysis Results on Histogram A and Histogram B 

 

 
Fig. 5. Attention Weights Analysis Results on Histogram C and Histogram D 

 

RQ 2: How can you improve the performance of 

your model?  

RQ 2.1: How does the proposed program 

representation with an appropriate deep learning model 

affect the problem of detecting vulnerabilities? An 

equivalent question is to ask how does the EP model 

compare to baseline and similar vulnerability classifiers?  

Experimental hypothesis: if the proposed method 

provides better performance than the baselines, the 

proposed program representation with the corresponding 

DL model has a positive effect on the vulnerability 

detection task. 

Experiment setup. To answer this research question, 

the performance of our two models, PL and EP, is 

compared with different initial estimates. In fact, 

demonstrating that our developed models perform better 

than the baseline ones for the same task will prove the 

advantage of using our described method, created with an 
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AST based input representation mixed with endpoint 

information injected inside models. Several baselines 

have been tested on different types of inputs. Baselines 

studied and compared used to classify vulnerabilities 

were logistic regression model, random forest model, 

decision tree classifier, Gaussian naive Bayesian model. 

Results show only the best results for these baselines. The 

best performance is always achieved by a decision tree 

classifier. The ratings corresponding to each base model 

can be found in the appendix section. In conjunction with 

the baseline, two different input sources were used:  

Bag of words is Path nodes (BOW node): The 

simplest input baseline under consideration was 

constructed using the set of tokens in each line, which 

means that a dictionary of all the unique nodes that make 

up the CDP was used. In this basic scenario, the input was 

only raw CDP information. There is no time frame to 

measure interest in time-related data [29].  

Bag of Words is Paths (BOW-Path): Another input 

source is the same as BOW-Node one. However, instead of 

using a dictionary of all unique nodes, a dictionary 

containing all the unique paths of all strings appearing in the 

training set was used. This process measures the value of the 

CDP information in terms of its temporal structure. The 

BOW-Node is created at the node level and the BOW-Path 

is created at the path level. This can give us a general idea 

of the amount of information contained only in path objects.  

A third baseline was also created to assess the skills 

of our model: Vulcan No end-points is Vul-NoEP: This 

model matches the pipeline we designed without using 

the information from the previous lines. Thus, it only 

matches the DL model, which consists of a bi-LSTM 

layer with an attention layer. 

Results are shown in Tabl. 7. 
 

Table 7 – Scores comparison between implemented 

baselines on the BOW-Node input 

Baseline F1 
Preci-

sion 

Re-

call 

#0 

labels 

#1 

labels 

Logistic regression 0.17 0.10 0.71 54731 18588 

Random forrest 0 0 0 73319 0 

Decision Tree 0.41 0.56 0.32 71833 1486 

Gaussian NB 0.07 0.03 0.98 3716 69603 

 

The first conclusion to be drawn is that most 

baselines perform poorly with the BOW-Node input 

source (Tabl. 7), while one baseline stands out: the 

decision tree classifier. In fact, the F1 score of this model 

is quite high for the baseline. This means that a certain 

amount of information is contained in AST nodes even 

without temporary dependencies and is well understood 

by this basic classifier. However, this is not enough to 

develop a reliable tool. Tabl. 8 shows a comparison of the 

baseline estimates for each input source and the 

performance achieved with the EP and PL models. It can 

be concluded that the baseline, even if a richer set of 

words is used as input, is significantly superior to our EP 

and PL models. In addition, the Vul-NoEP score is, as 

expected, lower than the estimates for the PL and EP 

models. The positive value of our approach, taking into 

account the flow of information between different lines 

of code, as a consequence, is proven. Thus, the approach 

we developed, combining presentation with CDP and DL 

model, provides more information. 
 

Table 8 – Scores comparison between the implemented 

baselines on the different input sources and 

between the EP and PL models 

Model F1 Std 

Only Negative Prediction 0 0% 

BOW-Node F1 Logistic Regression 0..17 0.8% 

BOW-Node F1 Decision Tree 0.41 0.9% 

BOW-Path F1 Logistic Regression 0.32 0.9% 

BOW-Path F1 Decision Tree 0.43 1.1% 

Vulcan-No Endpoints (Vul-NoEP) 0.47 1.3% 

Previous Line Model (PL) 0.52 1.6% 

Endpoints (EP) 0.53 1.8% 
 

RQ 2.2: Is it useful to increase the complexity of the 

model with a default set of inputs? In other words, is the 

increase in complexity worth using the EP model, or 

should the PL model be used instead?  

Experimental hypothesis: Is the increase in model 

complexity worthwhile? Thus, the performance of the EP 

model should be significantly higher than the estimates 

obtained with the PL model. If it is not, it means that the 

input data source is not is optimally structured to take 

advantage of the EP model. 

Experiment setup: To answer this question, a CDP 

study is being conducted. We used the results of a 

statistical study conducted in RQ1.2 on the number of 

tokens in a row and the aggregation of unique paths on 

the input source, taking into account operators. In 

addition, the default simulations described in RQ1.1 are 

used to obtain the performance of EP and PL models. The 

run of each model was repeated 5 times so that the 

standard deviation of the characteristics could be 

calculated. Thanks to this pipeline, metrics and standard 

deviation F1 were obtained for both models. In this way, 

a reliable comparison becomes possible and the answer 

to the research question can be described. 

Results are shown in Tabl. 9. 
 

Table 9 – Comparison of estimates between PL model and 

EP model on simulations made with default 

settings in an extended dataset 

Model F1 Std of F1 Score 

PL Model 0.52 1.6% 

EP Model 0.53 1.8% 
 

Both models are equally accurate when used with 

our operator-aware input source. Thus, it can be 

concluded that the increase in complexity due to the use 

of the EP model instead of the PL model is not worth it. 

Hence, these different observations showed that the 

same information creates negative and positive labels, 

making our data extremely difficult to discern, even for a 

smart model. The overlapping information explains the 

similar performance of the PL and EP models. In fact, the 

amount of information added by the EP model is small 

because of the inherent similar data contained in the 

dataset. In conclusion, even when an extended dataset 

that is richer than the default is used as input, it is useless 

to use the EP model and therefore add complexity over 

the PL model. In fact, the current dataset does not have 
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sufficient discriminatory power. Thus, the described 

research method allows the user to know when the EP 

model can be used in optimal conditions. This is really 

useful for tradeoffs between complexity and precision. 

Finally, adding information to the dataset can easily 

improve the performance of the model. The EP model 

can be used with some Domain Specific Language (DSL) 

that satisfies the described requirements (large number of 

tokens per line and variety in the path). In this case, our 

proposed pipeline can work very well. 

Conclusions 

This work represents an important first step in 

detecting vulnerabilities in domain-specific languages 

and analyzing programs written in Solidity. The 

presented method of semantically rich functions captures 

complex control and data dependencies and successfully 

classifies 3 types of vulnerabilities. The presentation 

presented using AST paths combined with a model using 

endpoint information has been shown to outperform the 

baseline. Endpoint information was proven with an 

experimental design using synthetic data and raw data. 

This allows you to better understand the natural structure 

of your code. Thus, the pipeline developed by us can 

capture more internal code information than other 

models. Information from software tokens, although 

semantically incapable of capturing vulnerabilities, 

increases the accuracy of models. The interpretability of 

the model has been added through the use of the attention 

mechanism. Operator accounting has shown significant 

performance improvements. This observation leads to the 

fact that as you add even more information to the data 

(for example, taking into account the function name as 

tokens), the difference in performance should also 

increase. Another way to increase the amount of sensitive 

data within the input is to use the encoding once method. 

In fact, operators are just paths of length one, where the 

string that makes up the path is just the operator itself. 
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Проектування та оцінка DL-моделі для виявлення вразливості в смарт-контрактах 

О. В. Шматко, О. В. Коломійцев, Н. Ю. Рекова, Н. Г. Кучук, О. М. Матвєєв  

Анотація .  Особливості завдання. Смарт-контракти — це програми, які зберігаються в розподіленому реєстрі та 

виконують написаний у них код на відповідь на адресовані їм транзакції. Такі смарт-контракти написані на мові 

програмування Solidity, яка має специфічну структуру та синтаксис. Мова розроблена для платформи Ethereum. Маючи 

специфічну структуру, такі мови схильні до певних уразливостей, використання яких може призвести до великих 

фінансових втрат. Постановка завдання. У цій статті для виявлення вразливостей використовується модель глибокого 

навчання (DL). Використовуючи обраний підхід і правильно задану структуру вхідних даних, можна виявити складні 

залежності між різними програмними змінними, які містять вразливості та помилки. Результати дослідження. 

Використовуючи чітко визначені експерименти, цей підхід було досліджено, щоб краще зрозуміти модель і покращити її 

продуктивність. Розроблена модель класифікувала вразливості на рівні рядків, використовуючи як вхідні дані корпус 

смарт-контрактів Solidity. Застосування моделі DL дозволяє виявляти в смарт-контрактах уразливості різної складності. 

Висновки. Таким чином, розроблений підхід може фіксувати більше інформації про внутрішній код, ніж інші моделі. 

Інформація з програмних токенів, хоча семантично нездатна зафіксувати вразливі місця, підвищує точність моделей. 

Інтерпретативність моделі додана за рахунок використання механізму уваги. 

Ключові  слова:  блокчейн; смарт-контракт; комп’ютерна система; безпека; вразливість; глибоке навчання. 

https://doi.org/10.3390/app9091736
https://doi.org/10.20998/2522-9052.2023.2.11
https://doi.org/10.1109/GLOCOMW.2018.8644088
https://doi.org/10.20998/2522-9052.2023.2.12
https://doi.org/10.1016/bs.adcom.2018.03.006
javascript:void(0)
javascript:void(0)
https://doi.org/10.1007/978-3-030-96546-4_3
https://doi.org/10.1109/HealthCom.2018.8531136
https://doi.org/10.20998/2522-9052.2023.2.13
https://doi.org/10.1145/2976749.2978309
mailto:oleksandr.shmatko@khpi.edu.ua
https://orcid.org/0000-0001-9596-0669
mailto:аlexus_k@ukr.net
https://orcid.org/0000-0001-8754-7444
https://orcid.org/0000-0001-9596-0669
mailto:matwei1970@gmail.com
https://orcid.org/0000-0001-9596-0669

