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Abstract .  Subject of research: methods of resource allocation of the cloud environment. The purpose of the research: 

to develop a method of resource allocation that will improve the security of the cloud environment. At the same time, effective 

data processing should be achieved. Method characteristics. The article discusses the method of adaptive resource allocation 

in cloud environments, focusing on its significance for data processing and enhanced security. A notable feature of the method 

is the consideration of external influences when calculating the characteristics of cloud resource requests and predicting 

resource requests based on a time series test. The main idea of this approach lies in the ability to intelligently distribute 

resources while considering real needs, which has the potential to optimize both productivity and confidentiality protection 

simultaneously. Integrating adaptive resource allocation methods not only improves data processing efficiency in cloud 

environments but also strengthens mechanisms against potential cyber threats. Research results. To ensure timely resource 

allocation, the NSGA-II algorithm has been enhanced. This allowed reducing the resolution time of multi-objective 

optimization tasks by 5%. Additionally, research results demonstrate that effective utilization of various types of resources 

on a physical machine reduces resource losses by 1.2 times compared to SPEA2 and NSGA-II methods. 
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Introduction 

The rapid advancement of cloud computing has 

brought significant changes to the data processing and 

security landscape, providing unprecedented scalability and 

flexibility to enterprises and organizations. As cloud 

environments continue to evolve, efficient resource 

distribution and utilization become crucial for achieving 

optimal productivity and reliable security measures. The 

concept of adaptive resource allocation in clouds emerged 

as a powerful strategy to address these challenges, enabling 

dynamic parameter tuning to cater to diverse workloads, 

data processing requirements, and security concerns. 

The rapid growth of cloud computing, coupled with 

increased data processing volumes and security demands, 

poses challenges that necessitate novel approaches and 

strategies. Resource allocation in cloud environments 

emerges as a key problem, influencing both productivity 

optimization and data security measures. 

Traditional resource allocation methods often fail to 

consider adjustments based on dynamic system loads, user 

requirements, cybersecurity risks, and data integrity needs. 

This results in inefficient resource usage, overloads, and 

vulnerabilities from a cybersecurity perspective. 

Moreover, the complexity arises from the multitude 

of diverse data processing tasks with varying levels of 

difficulty, each requiring different resources. Optimal 

resource allocation needs to encompass this variability 

and operate in real-time. 

Furthermore, ensuring security in cloud computing 

is a critical issue. With growing data volumes and 

increasing attack possibilities, safeguarding confidential 

information processed in cloud environments is 

imperative. Adaptive resource allocation can impact 

security levels, necessitating innovative approaches to 

address these aspects. In this context, there is a need to 

enhance resource allocation approaches and ensure their 

adaptability to changing conditions and demands. 

Literature Review Article [1] provides an overview of 

current research in the field of adaptive resource allocation 

in cloud computing. The authors analyze various approaches 

to adaptive resource allocation, including dynamic resource 

management, task scheduling, and quality of service 

assurance. They also highlight challenges associated with 

adaptive resource allocation, such as task diversity, speed 

requirements, and data volume considerations. This 

underscores the relevance of adaptive resource allocation for 

data processing and security in the cloud. 

In work [2], authors investigate approaches to 

adaptive resource management in cloud computing. They 

explore aspects such as load-based resource allocation, 

load monitoring and forecasting, and resource 

optimization for efficiency and cost savings. The paper 

also sheds light on the key challenges of implementing 

real-time adaptive resource management. Unfortunately, 

security questions and the impact of cybersecurity risks 

on resource allocation efficiency are not addressed. 

Review [3] examines various approaches to dynamic 

resource allocation in cloud computing. The authors 

analyze different allocation algorithms, considering 

factors like resource utilization efficiency, energy 

efficiency, and computation costs. They also emphasize 

the importance of adaptive resource allocation for optimal 

cloud system functioning. However, similar to the 

previous review, cybersecurity aspects are not covered. 

Article [4] focuses on secure resource allocation in 

cloud computing. The authors analyze different approaches 

to ensuring security in adaptive resource allocation, 

including data encryption, identification, and authentication. 

Challenges and possible solutions for securing resources in 

cloud environments are also discussed. However, the article 

leans toward a more theoretical exploration, lacking 

practical implementation examples. 

Article [5] addresses load redistribution in 

geographically distributed fog environments to achieve 

virtual cluster load balance. The necessity and feasibility of 

developing a universal and scientifically grounded approach 

to load balancing are highlighted. Nevertheless, both this 

article and the previous one seem more focused on theoretical 

foundations rather than practical experimentation. 
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In summary, these publications showcase various 

aspects of adaptive resource allocation in cloud computing, 

including dynamics, security, efficiency, and practical 

considerations. Analyzing these sources contributes to a 

deeper understanding of the issue and underscores the 

relevance of developing an adaptive resource allocation 

method for data processing and security in the cloud. 

Main Part 

The strategy of active allocation of cloud resources 

is aimed at prompt forecasting of future requests for 

resources and timely adaptation of allocation procedures 

to dynamic bursts (changes) of requests in the future. 

This will effectively counter unpredictable or anomalous 

situations, including cyber-dangerous incidents. A 

particularly important place in this strategy is occupied 

by the method of preventive allocation of resources, the 

structural diagram of which is clearly presented in Fig. 1. 
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Fig. 1. Structural diagram  

of the resource’s preventive allocation method 

 

The essence of this method is the application of 

adaptive forecasting procedures based on the analysis of 

previous data and is based on the parameter Ri (response 

time). The main focus of the method is aimed at forming a 

hybrid queue of requests for virtual machines. At the same 

time, such a queue is formed taking into account current 

requests, as well as anticipated future dynamic changes. 

Suppose that the current sequence of virtual 

machine requests is denoted by  

 Rec(t)=(rec1(t),...,reci(t),...recn(t)),  (1) 

where reci(t) represents the number of virtual machines 

of type i at time t.  

To estimate the future number of h main types of 

requests for virtual machines at the time t + d, the 

adaptive prediction algorithm APMRT is used, which 

gives the following notation:  Vi(t + d) represents the 

number of requests of the i-th main type for virtual 

machines at the time t + h.  

The total number of requests to virtual machines 

N(t) at time t can be formalized as the sum of the current 

number of requests Rec(t) and the predicted number of 

requests V(t+d): 

 V(t+d) = V1(t+d) + ... + Vi(t+d) + ... + Vh(t+d),  (2) 

where Vi(t+d) is the i-th main type of requests to virtual 

machines at time t+d. The total number of requests for 

virtual machines N(t) at time t should be equal to the sum 

of the current number of requests for virtual machines 

Rec(t) and the predicted number of requests for virtual 

machines V(t + d): 

 N(t) = W(t) + V(t + d)×C(t)×P(t),  (3) 

where W(t)= rec1(t) + ... + reci(t) + ... + recn(t) – is the 

current number of requests to virtual machines at time t. 

If the expected number of requests for virtual 

machines V(t+d) is not less than the threshold Ntd, some 

virtual machines must be allocated resources in advance. 

C(t) should be equal to 1 and P(t) – is the percentage (for 

example, 25%) of the virtual machine requests that should 

be allocated resources in advance given the predicted 

number of virtual machine requests V(t+d). Otherwise, 

there is no need to provision virtual machines in advance, 

i.e. C(t) = 0. After determining the predicted number of 

requests for virtual machines V(t+d), the sequence of 

requests for virtual machines should be established. 

Assume that the predicted number of virtual 

machine requests is ordered in descending order from the 

first virtual machine type 1 to h. The largest virtual 

machines requests (that is, requests of the first type) are 

at the beginning of the request sequence, and the smallest 

requests (that is, type h requests) are at the end of the 

virtual machines request sequence. The intended 

sequence of requests to virtual machines can be 

expressed as follows: 
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where is ( )i
jrec t d+  ̶  the number of requests of the j-th 

type of virtual machines. Thus, the sequence of requests 

to virtual machines at time t can be expressed as follows: 
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Thus, the method of preventive allocation of 

resources can be divided into several stages. 

Stage 1. Predict future requests for virtual 

machines: 

̶  using an adaptive forecasting method based on the 

analysis of previous data and the Ri parameter, determining 

the predicted number of future main types of requests for 

virtual machines for a certain time in the future t+d; 

̶  designation of the number of requests Vi(t+d) of 

the i-th main type of virtual machines at the moment of 

time t+d; 

̶  calculation of the total number of requests for 

virtual machines N(t) at time t by adding the current 

number of requests Res(t) and the predicted number of 

requests V(t+d). 
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Stage 2. Determination of the need to allocate 

resources in advance: 

̶  calculation of the current number of requests for 

virtual machines W(t) at time t; 

̶  if the predicted number of requests for virtual 

machines V(t+d) is not less than the threshold value Ntd, 

issuing resources in advance for some virtual machines; 

̶  setting the parameter C(t) and the parameter P(t), 

which should be allocated in advance relative to the 

predicted quantity V(t+d). 

Stage 3. Establishing a sequence of requests to 

virtual machines: 

̶  taking into account the predicted number of 

requests for virtual machines V(t+d) and establishing the 

sequence of requests; 

̶  assumption that the predicted number of virtual 

machine requests is ordered in descending order from the 

first virtual machine type to h, mapping the largest 

requests at the beginning of the sequence and the smallest 

requests at the end; 

̶  finding the predicted sequence of requests to 

virtual machines and the sequence of requests to virtual 

machines at time t. 

Model of multi-objective  

distribution of resources 

The multi-objective resource allocation model is a 

mathematically and structurally formalized set of 

algorithms and procedures that focus on task planning 

and resource load balancing. The model consists of three 

main parts for the formalization of tasks. The first part 

creates a stack table containing information about all 

cloud requests and their execution time on available 

virtual machines, as shown in Fig. 2.  

 

H=1

Provide the Required Parameters

Until the Limit H is Not Exceeded

Yes

No

W=1

Is W less than or equal to j?

Yes

No

N=1H=H+1

Is N less than or equal to k?

Yes No

W=W+1

Ykj = (cloud task size k) / 

(Million Instructions Per Second  

of device j)

N=N+1

Start the function msn-min

Start the function max-min

Start the "suffrage" function

 
Fig. 2. Block diagram of stack table formation 
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In the second part, the task of minimizing resources 

for serving all requests is solved using three scheduling 

methods: min-min, max-min, and genetic, as shown in 

Fig. 3, 4 and 5 respectively. 

 

H=1

Is H less than or equal to k?

Yes

No

W=1

Is W less than or equal to j?

Yes

No

Tk as the minimum of Ykjmin Tk

Assign the value of Yk to Vj

Exclude the value of Yk from the list 

for all j values.

Update the value of Yk

Return the scheduled list with 

the highest Yk value.

Start the function min-min

W=W+1

H=H+1

 
Fig. 3. Block diagram of the resource minimization procedure 

for serving all requests using the "min-min" method 

 

The work [6–11] presents the various methods of 

multi-criteria allocation of resources. This method is 

based on the construction of a multicriteria function with 

minimization of the number of used physical machines 

,min i j
S

x
 
 
 
 
  and minimizing the overall resource 

performance mismatch between virtual and physical 

machines ,min i j
S

WV
 
 
 
 
  where xij denotes the mapping 

element between the virtual machine vi and the physical 

machine pj. If the virtual machine vi is placed on the 

physical machine pj, then xij is equal to 1. Otherwise, xij 

is equal to 0. Therefore, the expression formalizes 

,i j
S

x  the total number of physical machines used 

within the solution S. 

H=1

Is H less than or equal to k?

Yes

No

W=1

Is W less than or equal to j?

Yes

No

Tk as the minimum of Ykjmax Tk

Assign the value of Yk to Vj

Exclude the value of Yk from the list 

for all j values.

Update the value of Yk

Return the scheduled list with 

the highest Yk value.

Start the function max-min

W=W+1

H=H+1

 
Fig. 4. Block diagram of the resource minimization procedure 

for serving all requests using the "max-min" method 

 

In the expression to match resource performance  

( )
4 2

, , ,
1

i j i k j k
k

WV y v y p

=

=  −   

a normalized virtual machine performance indicator is 

used vi – ,i ky v . 

The normalized virtual machine performance 

indicator vi - and the corresponding physical machine 

performance normalization indicator pj – ,j ky p  (y is 

the normalization factor).  

Also, in this expression, k=1, 2, 3 formulates the 

availability of CPU, memory, disk, protection system 

(firewall) resources, respectively. 

To eliminate the shortcomings associated with the 

inefficient use of physical resources, it is proposed to 

improve the method of resource allocation based on the 

prediction of virtual machine requests. If the ratio of 

different types of resources in the request of the virtual 

machine is closer to the available resources of the 

physical machine, that is, the closer the ratio of resources 

vi1:vi2:vi3:vi4  of the virtual machine vi  to pj1:pj2:pj3:pj4  of 

the physical machine pj is, the less likely it is to lose 

resources for of this physical machine. 
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Calculate Tk as the difference 

between the second smallest value of 

Ckj and the first smallest value of Ckj

min Tk

Assign the value of Yk to Vj

Exclude the value of Yk from the list 

for all j values.

Update the value of Yk

Return the scheduled list with 

the highest Yk value.

Start the "suffrage" function

W=W+1

H=H+1

 
Fig. 5. Block diagram of the resource minimization procedure 

for serving all requests using the genetic method 

 
Here, vi1, vi2, and vi3 represent the requested number 

of CPU cores, memory, and disk size of virtual machine 

vi, respectively; and pj1, pj2, pj3, and pj4 denote the 

available number of CPU cores, memory size, disk size, 

and firewall resource of physical machine pj, 

respectively. 

Therefore, a model of matching the proportions of 

resources is created: 
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where pjk – is the available capacity of resource type k for 

physical machine pj; vik – is the requested resource 

capacity of virtual machine vi; Rk – is a balancing factor 

that regulates the value of the complex parameter 
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for different types of resources. 

For example, if the result of solving the expression 

(7) for memory resources and firewall resources are 1 

and 100, respectively, consideration of firewall resources 

becomes a more important factor. Therefore, Rk for 

firewall resources should be set lower than for memory 

resources, for example, Rk = 1 for memory resources and 

Rk = 0.1 for firewall resources. 

Thus, we formulate the multi-objective problem of 

optimizing resources taking into account cyber security 

risks as follows. Allocation based on the number of 

virtual machines used ,i j
S

x , the total distance between 

virtual and physical machine resources ,i j
S

WV , and 

the total distance between resource ,i j
S

PWV shares 

requires: 

 ,min i j
S

x
 
 
 
 
 ,  (8) 

 ,min i j
S

WV
 
 
 
 
 ,  (9) 

 ,min i j
S

PWV
 
 
 
 
 .  (10) 

The primary goal of the multi-objective 

optimization problem (8) for resource allocation is to 

minimize the total number of physical machines used. 

This objective depends on the values of the individual 

mapping elements xij between the virtual machine vi and 

the physical machine pj within the solution S. The second 

objective of problem (9) – is to minimize the total 

distance between the resources of the virtual machines 

and physical machines within the solution S. This 

objective depends on the distance between resources 

,i j
S

WV  between virtual machine vi and physical 

machine pj. The third goal of problem (10) - is to 

minimize the total distance between the resource shares 

of virtual machines and physical machines within the 

solution S.  

This goal is based on the total distance between the 

resource ,i jPWV  shares between the virtual machine vi 

and the physical machine pj. 

The total resources of processors, memory, disk 

capacity, and firewall resources requested by the virtual 

machines hosted on the physical machine pj are less than 

the available resources of pjdop. Therefore, the constraints 

of the optimization problem can be formulated as 

follows: 

 , , ,1i j i j j
S

v x p  ,   (11) 

 ,2 , ,2i i j j
S

v x p  ,   (12) 

 ,3 , ,3i i j j
S

v x p  .   (13) 

 ,4 , ,4i i j j
S

v x p  .   (14) 

The next optimization task is to improve the 

solution algorithm to speed up the solution speed of the 

multi-objective optimization function. For this, we will 
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use the classical algorithm for solving the multi-objective 

optimization problem - NSGA-II [12, 13]. 

NSGA-II (Nondominated Sorting Genetic 

Algorithm II) is an evolutionary optimization algorithm 

used to solve multi-criteria problems. This algorithm 

belongs to the family of genetic algorithms and is 

designed to solve problems where there are several 

conflicting objectives that need to be optimized 

simultaneously. 

NSGA-II is based on the idea of ranking non-

dominated solutions (i.e., solutions that cannot be 

improved in one objective without deterioration in other 

objectives) and divides the population into Pareto fronts 

(a set of non-dominated solutions). The main goal of 

NSGA-II is to find an optimal approximation of the 

Pareto front, i.e., the set of solutions that best represent 

the various trade-offs between conflicting objectives. 

The main steps of NSGA-II operation include 

generating an initial population, applying crossover and 

mutation operators to create new individuals, ranking 

solutions using non-dominated sorting and criterion 

ranking, sampling non-dominated solutions for the next 

population, and applying an archive to store non-

dominated solutions and their alternative distributions. 

As a genetic algorithm of multi-objective sorting 

algorithm, this algorithm is widely used to solve multi-

objective optimization problems and shows good 

performance. However, the NSGA-II algorithm has a 

drawback: the computation time of fitness values (ie, 

objective functions) is often long, which may threaten the 

timeliness of resource allocation. In addition, it is 

necessary to calculate the fitness value for a large number 

of individuals in the evolution of the population. Thus, 

we propose to improve the NSGA-II algorithm to speed 

up the solution process by computing the fitness function 

in parallel. We use multi-core processors to compute 

fitness values for individuals in parallel, which 

accelerates the convergence of the proposed algorithm. 

The fitness values for each individual are calculated as 

follows: 

 ( )1 ,k i j
S

f E x= , (15) 

 ( )2 ,k i j
S

f E WV= , (16) 

 ( )3 ,k i j
S

f E PWV= .   (17) 

Thus, the third part of the modeling is devoted to 

the formalization and coding of data within the genetic 

algorithm for resource load balancing.  

The block diagram of the algorithm is presented in 

Fig. 7. 

Conducted comparative studies with the SPEA2 

[14] and NSGA-II algorithms showed that with 4 threads, 

the SPEA2 method achieves CPU utilization at the level 

of 59% and memory at the level of 61%, NSGA-II 

achieves CPU utilization at the level of 64% and memory 

at 66%, while the proposed method achieves CPU 

utilization of 63% and memory utilization of 65%. 
 

Set H = 1, where W represents 

the number of solutions to 

generate

Is k less than or equal to 

the crossover probability?

Yes

No

Generate the n-th solution 

through crossover

Is W equal to H?

Yes

No

Display the load-balanced 

outcome
H=H=1

Generate a population of n 

chromosomes using the obtained 

minimum value

F(i) = (C(i) / Total completion 

time) * Million Instructions Per 

Second (i)

F(i) = F(i) / Summ F(i)

Generate a random value k 

within the range of 0 to 1

Apply mutation using the given 

mutation probability

Generate the n-th solution 

through the process of cloning

 
Fig. 7. Block diagram of the genetic algorithm  

for resource load balancing 

Conclusions 

Thus, a method of adaptive distribution of cloud 

resources has been developed.  

A distinctive feature of the method is the 

consideration of external influences when calculating 

the features of requests for cloud resources and 

forecasting requests for resources based on the series 

sequence test. 

The NSGA-II algorithm has been improved to 

ensure timely allocation of resources. This made it 

possible to reduce the time of solving the multi-objective 

optimization problem to 5%.  

Also, the results of the study showed that the 

effective use of different types of resources on a physical 

machine reduces resource losses up to 1.2 times 

compared to the SPEA2 and NSGA-II methods. 
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Адаптивний метод розподілу ресурсів  

для обробки даних і підвищення безпеки хмарного середовища 

І. Ю. Петровська, Г. А. Кучук 

Анотація .  Предмет дослідження: методи розподілу ресурсів хмарного середовища. Мета дослідження: 

розробити метод розподілу ресурсів, що дозволить підвищити безпеку хмарного середовища. При цьому повинна бути 

досягнена ефективна обробка даних. Характеристики розробки. У статті розглядається метод адаптивного розподілу 

ресурсів у хмарних середовищах. Розглянутий метод зосереджується на його значенні для обробки даних та підвищення 

безпеки. Важливою особливістю методу є врахування зовнішніх впливів при розрахунку характеристик запитів на хмарні 

ресурси та прогнозування запитів на ресурси на основі перевірки часових рядів. Основна ідея цього підходу полягає в 

здатності розумно розподіляти ресурси з урахуванням реальних потреб, що має потенціал для оптимізації як 

продуктивності, так і захисту конфіденційності одночасно. Інтеграція адаптивних методів розподілу ресурсів не тільки 

підвищує ефективність обробки даних у хмарних середовищах, але й зміцнює механізми проти потенційних кіберзагроз. 

Результати дослідження. Для забезпечення своєчасного розподілу ресурсів алгоритм NSGA-II було вдосконалено. Це 

дозволило скоротити час розв’язання завдань багатокритеріальної оптимізації на 5%. Крім того, результати дослідження 

демонструють, що ефективне використання різних типів ресурсів на фізичній машині зменшує втрати ресурсів у 1,2 рази 

порівняно з методами SPEA2 і NSGA-II. 

Ключові  слова : хмарне середовище, хмарні ресурси, безпека,  розподіл ресурсів; адаптивність. 
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