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ADAPTIVE RESOURCE ALLOCATION METHOD
FOR DATA PROCESSING AND SECURITY IN CLOUD ENVIRONMENT

Abstract. Subject of research: methods of resource allocation of the cloud environment. The purpose of the research:
to develop a method of resource allocation that will improve the security of the cloud environment. At the same time, effective
data processing should be achieved. Method characteristics. The article discusses the method of adaptive resource allocation
in cloud environments, focusing on its significance for data processing and enhanced security. A notable feature of the method
is the consideration of external influences when calculating the characteristics of cloud resource requests and predicting
resource requests based on a time series test. The main idea of this approach lies in the ability to intelligently distribute
resources while considering real needs, which has the potential to optimize both productivity and confidentiality protection
simultaneously. Integrating adaptive resource allocation methods not only improves data processing efficiency in cloud
environments but also strengthens mechanisms against potential cyber threats. Research results. To ensure timely resource
allocation, the NSGA-II algorithm has been enhanced. This allowed reducing the resolution time of multi-objective
optimization tasks by 5%. Additionally, research results demonstrate that effective utilization of various types of resources
on a physical machine reduces resource losses by 1.2 times compared to SPEA2 and NSGA-1I methods.

Keywords: cloud environment; cloud resources; security; resource allocation; adaptability.

Introduction

The rapid advancement of cloud computing has
brought significant changes to the data processing and
security landscape, providing unprecedented scalability and
flexibility to enterprises and organizations. As cloud
environments continue to evolve, efficient resource
distribution and utilization become crucial for achieving
optimal productivity and reliable security measures. The
concept of adaptive resource allocation in clouds emerged
as a powerful strategy to address these challenges, enabling
dynamic parameter tuning to cater to diverse workloads,
data processing requirements, and security concerns.

The rapid growth of cloud computing, coupled with
increased data processing volumes and security demands,
poses challenges that necessitate novel approaches and
strategies. Resource allocation in cloud environments
emerges as a key problem, influencing both productivity
optimization and data security measures.

Traditional resource allocation methods often fail to
consider adjustments based on dynamic system loads, user
requirements, cybersecurity risks, and data integrity needs.
This results in inefficient resource usage, overloads, and
vulnerabilities from a cybersecurity perspective.

Moreover, the complexity arises from the multitude
of diverse data processing tasks with varying levels of
difficulty, each requiring different resources. Optimal
resource allocation needs to encompass this variability
and operate in real-time.

Furthermore, ensuring security in cloud computing
is a critical issue. With growing data volumes and
increasing attack possibilities, safeguarding confidential
information processed in cloud environments is
imperative. Adaptive resource allocation can impact
security levels, necessitating innovative approaches to
address these aspects. In this context, there is a need to
enhance resource allocation approaches and ensure their
adaptability to changing conditions and demands.

Literature Review Article [1] provides an overview of
current research in the field of adaptive resource allocation

in cloud computing. The authors analyze various approaches
to adaptive resource allocation, including dynamic resource
management, task scheduling, and quality of service
assurance. They also highlight challenges associated with
adaptive resource allocation, such as task diversity, speed
requirements, and data volume considerations. This
underscores the relevance of adaptive resource allocation for
data processing and security in the cloud.

In work [2], authors investigate approaches to
adaptive resource management in cloud computing. They
explore aspects such as load-based resource allocation,
load monitoring and forecasting, and resource
optimization for efficiency and cost savings. The paper
also sheds light on the key challenges of implementing
real-time adaptive resource management. Unfortunately,
security questions and the impact of cybersecurity risks
on resource allocation efficiency are not addressed.

Review [3] examines various approaches to dynamic
resource allocation in cloud computing. The authors
analyze different allocation algorithms, considering
factors like resource utilization efficiency, energy
efficiency, and computation costs. They also emphasize
the importance of adaptive resource allocation for optimal
cloud system functioning. However, similar to the
previous review, cybersecurity aspects are not covered.

Article [4] focuses on secure resource allocation in
cloud computing. The authors analyze different approaches
to ensuring security in adaptive resource allocation,
including data encryption, identification, and authentication.
Challenges and possible solutions for securing resources in
cloud environments are also discussed. However, the article
leans toward a more theoretical exploration, lacking
practical implementation examples.

Article [5] addresses load redistribution in
geographically distributed fog environments to achieve
virtual cluster load balance. The necessity and feasibility of
developing a universal and scientifically grounded approach
to load balancing are highlighted. Nevertheless, both this
article and the previous one seem more focused on theoretical
foundations rather than practical experimentation.
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In summary, these publications showcase various
aspects of adaptive resource allocation in cloud computing,
including dynamics, security, efficiency, and practical
considerations. Analyzing these sources contributes to a
deeper understanding of the issue and underscores the
relevance of developing an adaptive resource allocation
method for data processing and security in the cloud.

Main Part

The strategy of active allocation of cloud resources
is aimed at prompt forecasting of future requests for
resources and timely adaptation of allocation procedures
to dynamic bursts (changes) of requests in the future.
This will effectively counter unpredictable or anomalous
situations, including cyber-dangerous incidents. A
particularly important place in this strategy is occupied
by the method of preventive allocation of resources, the
structural diagram of which is clearly presented in Fig. 1.

VM number
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number requests
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Fig. 1. Structural diagram
of the resource’s preventive allocation method

The essence of this method is the application of
adaptive forecasting procedures based on the analysis of
previous data and is based on the parameter R; (response
time). The main focus of the method is aimed at forming a
hybrid queue of requests for virtual machines. At the same
time, such a queue is formed taking into account current
requests, as well as anticipated future dynamic changes.

Suppose that the current sequence of virtual
machine requests is denoted by

Rec(t)=(reci(t),...,reci(t),...recs(t)), (€h)

where reci(t) represents the number of virtual machines
of type i at time t.

To estimate the future number of h main types of
requests for virtual machines at the time t+d, the
adaptive prediction algorithm APMRT is used, which
gives the following notation: Vi(t +d) represents the
number of requests of the i-th main type for virtual
machines at the time t + h.

The total number of requests to virtual machines
N(t) at time t can be formalized as the sum of the current
number of requests Rec(t) and the predicted number of
requests V(t+d):

V(t+d) = Va(t+d) + ... + Vi(t+d) + ... + Vio(t+d), (2)

where Vi(t+d) is the i-th main type of requests to virtual
machines at time t+d. The total number of requests for
virtual machines N(t) at time t should be equal to the sum
of the current number of requests for virtual machines
Rec(t) and the predicted number of requests for virtual
machines V(t + d):

N(W) = W(y) + V(t+ d)xC)xP(), @)

where W(t)= recl(t) + ... + reci(t) + ... + recn(t) — is the
current number of requests to virtual machines at time t.

If the expected number of requests for virtual
machines V(t+d) is not less than the threshold Nw, some
virtual machines must be allocated resources in advance.
C(t) should be equal to 1 and P(t) — is the percentage (for
example, 25%) of the virtual machine requests that should
be allocated resources in advance given the predicted
number of virtual machine requests V(t+d). Otherwise,
there is no need to provision virtual machines in advance,
i.e. C(t) = 0. After determining the predicted number of
requests for virtual machines V(t+d), the sequence of
requests for virtual machines should be established.

Assume that the predicted number of virtual
machine requests is ordered in descending order from the
first virtual machine type 1 to h. The largest virtual
machines requests (that is, requests of the first type) are
at the beginning of the request sequence, and the smallest
requests (that is, type h requests) are at the end of the
virtual machines request sequence. The intended
sequence of requests to virtual machines can be
expressed as follows:

reo}(t+d),rec§(t+d),...,
Rec(t+d)= recij(t+d),recij+1(t+d),..., . 4

rech (t+d)

where is recij (t+d) —the number of requests of the j-th

type of virtual machines. Thus, the sequence of requests
to virtual machines at time t can be expressed as follows:

recy (t),...,recy (t),
Rec'(t+d)= rec}(t+d),...,recij(t+d), , (5)

recij+l(t+d),...,recrr]‘1 (t+d)

Thus, the method of preventive allocation of

resources can be divided into several stages.
Stage 1. Predict future requests for
machines:

— using an adaptive forecasting method based on the
analysis of previous data and the R; parameter, determining
the predicted number of future main types of requests for
virtual machines for a certain time in the future t+d;

— designation of the number of requests Vi(t+d) of
the i-th main type of virtual machines at the moment of
time t+d;

— calculation of the total number of requests for
virtual machines N(t) at time t by adding the current
number of requests Res(t) and the predicted number of
requests V(t+d).

virtual
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Stage 2. Determination of the need to allocate
resources in advance:

— calculation of the current number of requests for
virtual machines W(t) at time t;

— if the predicted number of requests for virtual
machines V(t+d) is not less than the threshold value N,
issuing resources in advance for some virtual machines;

— setting the parameter C(t) and the parameter P(t),
which should be allocated in advance relative to the
predicted quantity V(t+d).

Stage 3. Establishing a sequence of requests to
virtual machines:

— taking into account the predicted number of
requests for virtual machines V(t+d) and establishing the
sequence of requests;

— assumption that the predicted number of virtual
machine requests is ordered in descending order from the

first virtual machine type to h, mapping the largest
requests at the beginning of the sequence and the smallest
requests at the end;

— finding the predicted sequence of requests to
virtual machines and the sequence of requests to virtual
machines at time t.

Model of multi-objective
distribution of resources

The multi-objective resource allocation model is a
mathematically and structurally formalized set of
algorithms and procedures that focus on task planning
and resource load balancing. The model consists of three
main parts for the formalization of tasks. The first part
creates a stack table containing information about all
cloud requests and their execution time on available
virtual machines, as shown in Fig. 2.

Provide the Required Parameters

Until the Limit H is Not Exceeded

w=1

No

Is W less than or equal to j?

H=H+1 N=1

Yes

Ykj = (cloud task size k) /
(Million Instructions Per Second
of device j)

N=N+1

Is N less than or equal to k?

No
Start the function msn-min
Yes
Start the function max-min
Start the "suffrage" function
No
W=wW+1

Fig. 2. Block diagram of stack table formation
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In the second part, the task of minimizing resources
for serving all requests is solved using three scheduling
methods: min-min, max-min, and genetic, as shown in
Fig. 3, 4 and 5 respectively.

Start the function min-min

Is H less than or equal to k?

Yes

No

Is W less than or equal to j?

min Tk Tk as the minimum of Ykj

Assign the value of Yk to Vj W=W+1

Update the value of Yk

Return the scheduled list with
the highest Yk value.

Exclude the value of Yk from the list
for all j values.

H=H+1

Fig. 3. Block diagram of the resource minimization procedure
for serving all requests using the "min-min" method

The work [6-11] presents the various methods of
multi-criteria allocation of resources. This method is
based on the construction of a multicriteria function with
minimization of the number of used physical machines

min in,j and minimizing the overall resource
S

performance mismatch between virtual and physical

machines min ZWVi,j where x;; denotes the mapping
S
element between the virtual machine v; and the physical
machine p;. If the virtual machine v; is placed on the
physical machine pj, then x;; is equal to 1. Otherwise, X;
is equal to 0. Therefore, the expression formalizes
ZXU the total number of physical machines used
S
within the solution S.

Start the function max-min

No
Is H less than or equal to k?

Yes

w=1

No
Is W less than or equal to j?

max Tk Tk as the minimum of Ykj

Assign the value of Yk to Vj W=W+1

Update the value of Yk

Return the scheduled list with
the highest Yk value.

Exclude the value of Yk from the list
forall j values.

H=H+1

Fig. 4. Block diagram of the resource minimization procedure
for serving all requests using the "max-min" method

In the expression to match resource performance

4
2
WV, j = Z(yXVi,k —yx pj,k)
k=1
a normalized virtual machine performance indicator is
used Vi— Y XV .

The normalized virtual machine performance
indicator vi - and the corresponding physical machine
performance normalization indicator pj — yx pj (y is

the normalization factor).

Also, in this expression, k=1, 2, 3 formulates the
availability of CPU, memory, disk, protection system
(firewall) resources, respectively.

To eliminate the shortcomings associated with the
inefficient use of physical resources, it is proposed to
improve the method of resource allocation based on the
prediction of virtual machine requests. If the ratio of
different types of resources in the request of the virtual
machine is closer to the available resources of the
physical machine, that is, the closer the ratio of resources
Vi1:Vi2:Via:Vis OF the virtual machine vi to pji:pj2:pj3:pjs Of
the physical machine pj is, the less likely it is to lose
resources for of this physical machine.
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Start the "suffrage” function

Is H less than or equal to k?

Ww=1

No
IS W less than or equal to j?

Calculate Tk as the difference
between the second smallest value of
Cij and the first smallest value of Ckj

min Tk

Assign the value of Yk to Vj W=W+1

Update the value of Yk

Return the scheduled list with
the highest Yk value.

Exclude the value of Yk from the list
forall j values.

H=H+L

Fig. 5. Block diagram of the resource minimization procedure
for serving all requests using the genetic method

Here, vi1, Viz, and viz represent the requested number
of CPU cores, memory, and disk size of virtual machine
vi, respectively; and pji, pj2, pjs, and pjz denote the
available number of CPU cores, memory size, disk size,
and firewall resource of physical machine p,
respectively.

Therefore, a model of matching the proportions of
resources is created:

2
4 W
PWV; j = Z[[y—X Pk I'1—)/><Vi,k]RkJ . (6)

k=1 Pja

where pjc— is the available capacity of resource type k for
physical machine pj;; vik — is the requested resource
capacity of virtual machine v;; R¢ — is a balancing factor
that regulates the value of the complex parameter

YXPjk XVi1
{#—yxw,kj (7
Pj1

for different types of resources.

For example, if the result of solving the expression
(7) for memory resources and firewall resources are 1
and 100, respectively, consideration of firewall resources
becomes a more important factor. Therefore, Ry for
firewall resources should be set lower than for memory

resources, for example, Ry = 1 for memory resources and
Ry = 0.1 for firewall resources.

Thus, we formulate the multi-objective problem of
optimizing resources taking into account cyber security
risks as follows. Allocation based on the number of

virtual machines used Z X; j » the total distance between
S

virtual and physical machine resources ZWVL j »and
S

the total distance between resource ZPWVL j shares
S

requires:

min{in’jJ , (8)

S
min[ZWVi‘jj , (9)

s
min[z PWVi’J-]. (10)

S

The primary goal of the multi-objective

optimization problem (8) for resource allocation is to
minimize the total number of physical machines used.
This objective depends on the values of the individual
mapping elements x;; between the virtual machine v; and
the physical machine p; within the solution S. The second
objective of problem (9) — is to minimize the total
distance between the resources of the virtual machines
and physical machines within the solution S. This
objective depends on the distance between resources

ZWVi, j between virtual machine vi and physical
S

machine p;. The third goal of problem (10) - is to
minimize the total distance between the resource shares
of virtual machines and physical machines within the
solution S.

This goal is based on the total distance between the
resource PWV; ; shares between the virtual machine vi

and the physical machine p;.

The total resources of processors, memory, disk
capacity, and firewall resources requested by the virtual
machines hosted on the physical machine p; are less than
the available resources of pjap. Therefore, the constraints
of the optimization problem can be formulated as
follows:

ZVLJ- XXi,j < pj,l , (11)
S
DVi2 XX j < Pj2 (12)
S
Zvi,3><xi,j < pj13 . (13)
S

(14)

ZViAXXi,j < pj14 .
S

The next optimization task is to improve the
solution algorithm to speed up the solution speed of the
multi-objective optimization function. For this, we will
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use the classical algorithm for solving the multi-objective
optimization problem - NSGA-II [12, 13].

NSGA-II  (Nondominated  Sorting  Genetic
Algorithm I1) is an evolutionary optimization algorithm
used to solve multi-criteria problems. This algorithm
belongs to the family of genetic algorithms and is
designed to solve problems where there are several
conflicting objectives that need to be optimized
simultaneously.

NSGA-II is based on the idea of ranking non-
dominated solutions (i.e., solutions that cannot be
improved in one objective without deterioration in other
objectives) and divides the population into Pareto fronts
(a set of non-dominated solutions). The main goal of
NSGA-II is to find an optimal approximation of the
Pareto front, i.e., the set of solutions that best represent
the various trade-offs between conflicting objectives.

The main steps of NSGA-II operation include
generating an initial population, applying crossover and
mutation operators to create new individuals, ranking
solutions using non-dominated sorting and criterion
ranking, sampling non-dominated solutions for the next
population, and applying an archive to store non-
dominated solutions and their alternative distributions.

As a genetic algorithm of multi-objective sorting
algorithm, this algorithm is widely used to solve multi-
objective optimization problems and shows good
performance. However, the NSGA-II algorithm has a
drawback: the computation time of fitness values (ie,
objective functions) is often long, which may threaten the
timeliness of resource allocation. In addition, it is
necessary to calculate the fitness value for a large number
of individuals in the evolution of the population. Thus,
we propose to improve the NSGA-11 algorithm to speed
up the solution process by computing the fitness function
in parallel. We use multi-core processors to compute
fitness values for individuals in parallel, which
accelerates the convergence of the proposed algorithm.
The fitness values for each individual are calculated as

follows:
fl(Ek):ZXi,j s (15)
S
f2 (B ) =2 WV j (16)
S
(17)

fa(Ek)=§,PWVi,j :

Thus, the third part of the modeling is devoted to
the formalization and coding of data within the genetic
algorithm for resource load balancing.

The block diagram of the algorithm is presented in
Fig. 7.

Conducted comparative studies with the SPEA2
[14] and NSGA-I11 algorithms showed that with 4 threads,
the SPEA2 method achieves CPU utilization at the level
of 59% and memory at the level of 61%, NSGA-II
achieves CPU utilization at the level of 64% and memory

at 66%, while the proposed method achieves CPU
utilization of 63% and memory utilization of 65%.

Generate a population of n
chromosomes using the obtained
minimum value

Set H = 1, where W represents
the number of solutions to
generate

F(i) = (C(i) / Total completion
time) * Million Instructions Per
Second (i)

F(i) = F(i) / Summ F(i)

Generate a random value k
within the range of 0 to 1

No

Is k less than or equal to
the crossover probability?

Generate the n-th solution
through crossover

Generate the n-th solution
through the process of cloning

Apply mutation using the given
mutation probability

No
Is W equal to H?

Display the load-balanced

H=H=1
outcome

Fig. 7. Block diagram of the genetic algorithm
for resource load balancing

Conclusions

Thus, a method of adaptive distribution of cloud
resources has been developed.

A distinctive feature of the method is the
consideration of external influences when calculating
the features of requests for cloud resources and
forecasting requests for resources based on the series
sequence test.

The NSGA-II algorithm has been improved to
ensure timely allocation of resources. This made it
possible to reduce the time of solving the multi-objective
optimization problem to 5%.

Also, the results of the study showed that the
effective use of different types of resources on a physical
machine reduces resource losses up to 1.2 times
compared to the SPEA2 and NSGA-11 methods.
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AnanTuBHMII MeTO pPo3MOaiTy pecypcin
17151 00POOKHU TaHUX i MiTBUIEHHS (e3MeKH XMAaPHOT0 cepe10BHINA

I. YO. ITetpoBcbka, I'. A. Kyuyk

AnoTtaunis. I[lpexMer AOCTITKEHHS: METOIU PO3IONALTY PpECypciB XMapHOTO cepemoBuina. MeTa dOCTiIKEHHS:
PO3pOOUTH METOJ| PO3MOIITY pecypciB, II0 JTO3BOJHTH MiABUIIMTH O€3MeKy XMapHOro cepenoBuiia. [Ipu ipoMy oBHHHA OyTH
JocsrHeHa edeKTuBHa 00poOKa JaHuX. XapaKTePUCTHKH PO3POOKHU. Y CTATTI PO3MIIAAETHCS METOJ aJalTHBHOTO PO3IOJILIY
pecypciB y XMapHHX cepeioBHIIax. PO3rIssHYTHI METO/I 30Cepe/KY€EThCs Ha HOTo 3Ha4YeHHI A1t 0OpOOKH JaHHX Ta ITiJABUICHHS
Oe3nexn. BakinBoo 0COONMBICTIO METO/Ty € BpaXyBaHHS 30BHILIHIX BIUIMBIB IPH PO3PaxXyHKY XapaKTePHUCTHK 3aMHUTIB HA XMapHi
pecypcH Ta MpOTHO3YBaHHS 3alUTIB Ha PECypCcH Ha OCHOBI IepeBipkM 4acoBUX psdiB. OCHOBHA ifies LBOTO MiAXOIy IOJIArae B
3[aTHOCTI PO3YMHO DO3IOALIATH PECYpCH 3 YpaxyBaHHSIM pealbHHX MOTPeO, IO Mae TMOTEeHIHal Uil ONTHMi3alii sK
MPOAYKTHBHOCTI, TaK 1 3aXUCTy KOH(DINCHIIITHOCTI OHOYacHO. [HTerpalis afanTHBHUX METOMIB PO3MOALTY peCypCiB HE TUTHKU
miABHIIY€E e()EeKTHBHICTh 0OPOOKH JaHUX Y XMapHUX CEPEIOBHINAX, aJle i 3MIIHIOE MEXaHI3MH MPOTH MOTEHIIIHNX Kidep3arpos.
PesyabraTu pocaimxenns. s 3abe3nedeHHs: cBO€UacHOTro po3mnoainy pecypcei anmroputM NSGA-II Gyno Brockonaneno. 1e
JIO3BOJIMJIO CKOPOTUTH Yac PO3B’si3aHHS 3aBIaHb OaraToKkpuTepiaibHOi onTuMizanil Ha 5%. Kpim Toro, pe3ysabraTté JOCIiHKEHHS
JEMOHCTPYIOTb, 1110 €()eKTHBHE BUKOPHCTAHHS Pi3HUX THIIB pecypciB Ha (i3nyHii MalnHi 3MeHIIye BTpaTH pecypciB y 1,2 pasu
nopiBHsiHO 3 Metogamu SPEA2 i NSGA-II.

KawuoBi cioBa: xmMapHe cepefoBulIlie, XMapHi pecypcH, Oe3meka, po3moaii pecypciB; afanTHBHICTb.
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