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PROBABILISTIC COUNTERFACTUAL CAUSAL MODEL
FOR A SINGLE INPUT VARIABLE IN EXPLAINABILITY TASK

Abstract. The subject of research in this article is the process of constructing explanations in intelligent systems
represented as black boxes. The aim is to develop a counterfactual causal model between the values of an input variable
and the output of an artificial intelligence system, considering possible alternatives for different input variable values, as
well as the probabilities of these alternatives. The goal is to explain the actual outcome of the system's operation to the
user, along with potential changes in this outcome according to the user's requirements based on changes in the input
variable value. The intelligent system is considered as a "black box." Therefore, this causal relationship is formed using
possibility theory, which allows accounting for the uncertainty arising due to the incompleteness of information about
changes in the states of the intelligent system in the decision-making process. The tasks involve: structuring the properties
of a counterfactual explanation in the form of a causal dependency; formulating the task of building a potential
counterfactual causal model for explanation; developing a possible counterfactual causal model. The employed
approaches include: the set-theoretic approach, used to describe the components of the explanation construction process
in intelligent systems; the logical approach, providing the representation of causal dependencies between input data and
the system's decision. The following results were obtained. The structuring of counterfactual causal dependency was
executed. A comprehensive task of constructing a counterfactual causal dependency was formulated as a set of subtasks
aimed at establishing connections between causes and consequences based on minimizing discrepancies in input data
values and deviations in the decisions of the intelligent system under conditions of incomplete information regarding the
functioning process of the system. A potential counterfactual causal model for a single input variable was developed.
Conclusions. The scientific novelty of the obtained results lies in the proposal of a potential counterfactual causal model
for a single input variable. This model defines a set of alternative connections between the values of the input variable
and the obtained result based on estimates of the possibility and necessity of using these variables to obtain a decision
from the intelligent system. The model enables the formation of a set of dependencies that explain to the user the

importance of input data values for achieving an acceptable decision for the user.
Keywords: artificial intelligence system; explanation; possibility; causality; cause-and-effect relationship.

Introduction

Modern artificial intelligence (Al) systems
commonly employ non-transparent methods for task
resolution. These systems utilize models trained on data
samples describing the subject domain. Typically, these
data reflect practical solutions to current tasks within the
domain [1]. However, due to the nature of the learning
process, resulting models often remain unclear to users.
Users are unable to directly access information about the
system's working algorithm or discern the reasons behind
the Al's decisions.

To address this issue, explanations are implemented
[2-5]. Explanations elucidate the causal relationships that
led to specific decisions for the user. These explanations
consider the interplay between input object properties in
the subject domain, events depicting property changes,
and the sequence of actions leading to a solution.
Through explanations, users can evaluate the actions
culminating in a particular outcome and accept or reject
Al recommendations [6].

An effective explanation within an Al system
should focus on crucial cause-and-effect connections
relevant to a specific decision, omitting extraneous
details. This approach reduces the multitude of possible
dependencies presented to the user. Therefore,
explanations can incorporate both primary, factual
connections among subject domain events and alternative
dependencies.

Counterfactual explanations aim to interpret an Al
system's decision by contrasting current outcomes with

potential alternatives [7]. In essence, this method reveals
decisions by describing necessary input data
modifications for obtaining different outcomes. For
example, if a banking Al system denies a user's loan
request, a counterfactual explanation identifies which
application data (such as current income, credit score,
borrower's assets) requires alteration to achieve loan
approval.

Alternative scenarios encompass data that is
conceptually plausible but deviates from the current state
of the subject domain [8]. For instance, in the loan
approval scenario, an alternative scenario might entail the
counterfactual assertion that "if the borrower had chosen
a different type of insurance, they would have saved 10%
on insurance payments."

Since machine learning algorithms render Al
systems as "black boxes," information regarding causal
relationships  during  decision-making is  often
incomplete. Consequently, considering alternatives for
counterfactual explanations takes place under conditions
of uncertainty, encompassing intermediate states and
subject domain events, as well as the decision-making
process.

This underscores the relevance of constructing sets
of  alternatives:  counterfactual  cause-and-effect
dependencies concerning decision-making processes
within Al systems.

Creating such alternatives under uncertainty
demands the application of a possibility approach,
particularly considering the potential impact of
alternative causes on Al decisions. This approach enables
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users to compare multiple Al system outcomes and adjust
input data to attain desired alternative solutions, thereby
enhancing the effectiveness of Al system.

The overarching approach to  providing
explanations is founded on interpreting causal
relationships. These relationships can be represented in
rule-based form [9].

Counterfactual causal dependencies accounting for
temporal event sequences [10], as well as probabilistic
aspects of causality for event chains, are considered in
works [11, 12]. The approach presented in these works
has certain limitations related to comparing factual and
alternative pairs: input data and resulting decisions in the
presence of data utilization for specific decisions. The
proposed approach for addressing this limitation is
detailed in works [9, 10]. This approach focuses on
leveraging event properties for determining causal
dependencies. Graph-based modeling is used for
representing causal relationships [13]. In this approach,
causes and effects are represented as graph nodes, while
causal connections are graph edges. These dependencies
incorporate probabilistic evaluations. However, when
forming counterfactual causal dependencies, only
boundary probability values are significant, indicating
the potential for achieving alternative outcomes.
Additionally, these dependencies possess a fuzzy nature
as explanations rely on knowledge about differences
between input event properties or similarity with user
background knowledge.

The mentioned aspect signifies the significance of
possible causality description while tackling the task of
constructing explanations. The importance of such
depiction lies in the ability to more precisely unveil the
interconnections between cause and effect within the
context of decision-making. This unveils opportunities
for users to comprehend the influence of input data
values on outcomes. Additionally, this facet holds
substantial importance in crafting more reliable and
accurate models, as incorporated causal dependencies
foster better alignment of the decision-making model
within the intelligent system to user needs. Such an
approach marks a pivotal stride towards enhancing the
quality of artificial intelligence systems' operations,
thereby facilitating a more informed approach to task
resolution.

The aim of the article is to develop a counterfactual
causal relationship model between the values of the input
variable and the output of an artificial intelligence
system, considering possible alternatives for different
values of the input variable, as well as the probability of
these alternatives. It needs to explain the user the actual
result of the system's operation, as well as possible
changes in this result according to the user's requirements
based on changes in the value of the input variable.

The intelligent system is considered as a "black
box." Therefore, this causal relationship is formed using
possibility theory, which allows accounting for the
uncertainty arising due to the incompleteness of
information about changes in the states of the intelligent
system in the decision-making process.

To achieve this goal, the following tasks are
addressed:

Structuring the properties of the counterfactual
explanation in the form of a causal relationship.

Formulating the task of constructing a possible
counterfactual causal relationship model for explanation.

Developing a possible counterfactual causal
relationship model.

In solving the first task, the properties of the cause
and effect of the causal relationship are determined,
which form the basis of the explanation.

In addressing the second task, conditions are
established that the cause and effect of the counterfactual
explanation must meet, so that the user can ascertain
which input data ensure the achievement of the intelligent
system's target decision.

Solving the third task provides the opportunity to
obtain a set of alternative possible relationships that
reflect user-interesting results of the artificial intelligence
system.

Structuring the properties
of the counterfactual explanation
in the form of a causal relationships

Counterfactual explanation is a way of explaining
the output of an artificial intelligence system by showing
how the input attributes could be changed to get a
different desired result.

This method helps to understand the causal
relationships between the input and the output of the
artificial intelligence system. Counterfactual explanation
focuses on a few attributes that have the most impact on
the output, making it easier for the human user of the
system to comprehend.

However, this method also has some limitations.
One of them is that it may not provide a complete and
accurate explanation of the output, because it considers
alternative, non-existing values of the input variables at
the current moment. It may ignore some important
factors that affect the output, or it may not explain why
those factors matter. This may lead to a lack of
justification or confidence in the output of the system in
some cases.

Therefore, to construct a counterfactual
explanation, it is necessary to define constraints on the
properties of its structural elements.

To evaluate a counterfactual explanation, it is
prudent to consider the properties inherent to
explanations of this nature, which characterize the cause
and the outcome realized within the intelligent system.

The distinctiveness of counterfactual explanations
regarding input data is entwined with accounting for the
uncertainty regarding the state of the subject domain and
the decision-making process in artificial intelligence
systems, as well as the significance of employing
alternative values of variables closely related to actual
input data.

When selecting input data for explanation, it's
crucial to utilize minimal deviation between the values of
alternative and factual input data.

Explanations should incorporate the plausible
nature of input data, rooted in the probability of their
utilization in  decision-making within artificial
intelligence systems. The peculiarities of counterfactual
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explanations concerning the results obtained within a
system are connected to the fact that, firstly, it must
uncover the decisions across several distinct yet crucial
aspects. Secondly, explanations are intended to enable
users to achieve a target (or near-target) result with slight
alterations in the input data of the intelligent system. The
resulting counterfactual explanation should be
multifaceted, enabling users to comprehensively analyze
the reasons for both the obtained and desired decisions.

Explanations should ensure minimal deviation
between the resulting counterfactual decision and the
projected (desired for the user of the intelligent system)
outcome. The culmination of the discussed
characteristics of counterfactual explanations is
presented in the table.

Let's consider examples of counterfactual
explanations with the properties listed in the table within
various domains: banking, recommendation systems,
medicine, and intelligent management systems.

For instance, an explanation concerning the
decision to reject a loan application at a bank indicates
the reason as a low credit score of the borrower.
Counterfactual explanation: to achieve the desired
outcome (loan approval), the credit score should be
increased using credit cards. In this case, the requirement
to minimize the deviation of an alternative input variable
from the actual value lies in determining the minimum
score the user needs to reach for loan approval.

In the medical field, an explanation for a proposed
diagnosis involves an imprecise value of the patient's age.
Counterfactual dependency: specifying the accurate age
might lead to a cancellation of the diagnosis. This
example considers a deviation in a single variable — the
patient's age.

In a recommendation system, a high-priced
smartphone is recommended based on a high camera
resolution. Counterfactual explanation: to meet a budget
constraint, the requirements for camera quality need to be
lowered to a specific resolution value.

Here, the scenario sets a minimal deviation of the
Al system's output (the cost of the recommended
smartphone) from the actual device cost (the
consequence) through a minimal change in the input
variable — camera resolution (the cause). It's important to
note that this example results in multiple alternative
outcomes, as several smartphones may fit the price
constraint with the specified camera quality.

Another case, related to traffic management
systems, involves the reason for delays on a route being
the alignment of travel time with the most probable peak
traffic period.

An alternative approach: changing the travel time to
the evening or morning could reduce travel time.
Selecting the best time of day involves determining a
time interval with minimal probability of heavy traffic
while adhering to constraints, linked to the acceptable
deviation from the target arrival time compared to the
actual one (particularly constrained by working hours).

Thus, in this example, minimal deviations in both
input and output of the Al system are considered,
alongside the boundary probabilities of using specific
input values.

Overall, the provided examples illustrate the
significance of using structural elements of causal
explanations as presented in the Table 1. It's important to
note that while constructing counterfactual explanations,
as seen in the examples, boundary probabilities of using
particular input and output variable values are employed.

Table 1 — Structural Elements of Counterfactual Causal Explanation

Structural Requirements Comment
elements
Minimal deviation of alternative values from the Ml_n_lmlzatlon of deV|at|ons_ Is aimed at simplifying the
transition from the actual solution to the target that represents
actual values . -
value for the user of the intelligent system
The reason Tt|1e ma}dr;]wur_n anddminimumdvalues of p_robabiflit:es for the
Using the limit values of the probabilities of va lrjfs Oht fe Input al:a ;;ror\]/l eha compfarlson_tc;_I_a_ternatrl]\_/ers]
using input data within the ramework o the tl eory of possi ||t|_es, whic
creates conditions for the construction of alternative causal
relationships.
Multi-alternativeness as a condition of The user can use one of the alternatives, which is consistent
h agreement with knowledge of the subject area with his knowledge of the subject area
e - - -
consequence | Minimal deviation of the counterfactual decision | S1"C€ the counterfactual solution is targeted to the user, the
explanation should reveal changes in the input data that
from the actual one - .
provide a result that is closest to the expected one.

This aspect enables the formalization of causal
dependencies in counterfactual explanations using the
theory of possibilities.

This theory utilizes boundary probabilities to assess
the possibility of using those values, further integrating
trustworthiness evaluation of the possibility measure.

The combined estimation of possibility and
trustworthiness for alternative input variable values and
outcomes can be employed to establish causal

dependencies that form counterfactual explanations
within artificial intelligence systems.

Possibility Counterfactual Causal Model

Based on the analysis of the structure of a
counterfactual explanation, the results of which are
presented in the table, we will formulate the task of
constructing  causal  dependencies for  such
explanations.
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Considering the properties of the cause and effect,
this task can be divided into two subtasks.

Subtask 1: Minimization of the deviation of
alternative values of the input variable from the actual
ones, while achieving constraints on the target decision
of the artificial intelligence system.

Subtask 2: Minimization of the deviation of the
counterfactual result from the actual result on a given set
of input data values.

According to the given formulation, the
counterfactual causal model includes a set of alternative
cause-and-effect relationships between the values of the
input variable and the system's decision, with the
following characteristics:

Minimal deviation from the specified constraint
regarding the difference between the actual and
alternative outcomes of the intelligent system; the actual
outcomes reflect previous decision implementations
based on a set of known input variable values.

The constraints define a set of target outcomes for
the user of the intelligent system.

The minimal possible deviation across a subset of
input variable values, which ensures minimal deviation
from the constraints on the outcome.

Deviation in input data is considered based on the
probability of using input variable and outcome values
using indicators of possibility and necessity.

The last characteristic is associated with uncertainty
regarding the components and dependencies of the
decision-making process in the intelligent system. The
key idea is to find the most probable values of the
variable, the potential influence of which on the system's
outcome is maximal. These potential input data values
should ensure the target outcome with the highest degree
of confidence.

It should be noted that the possibility index [14]
allows determining the probability deviation of the
impact of input variable values on the outcome.
Comparing the possibility indices for different variable
values helps select the value with the minimum
deviation.

The necessity index [14] in a generalized manner
determines the degree of confidence in the obtained
dependency.

This index demonstrates confidence through
minimal probability of deviation from the system's
outcome constraints (or deviation from the actual
result).

Let's consider a formal possible counterfactual
causal model by a single variable according to the
provided description.

The input variable X has a set of possible values
{xi}

The resulting impact (usually, probability of
impact) of the input variable values on the system's
decision is determined by normalized assessments
7(x; ), which map each value x;jto [0,1].

The set of values X includes subsets Xj . Each of

these subsets consists of values of the variable that were
used during the decision-making process of the

intelligent system at moments t;; within a certain time

N
period T;:

XZ{Xj:VijiEXthLiETj}. (1)

Since the intelligent system, when making similar
decisions at different time intervals, can use the same

input data, identical values x;; can be part of different

subsets Xp, = X .

The distribution of assessments 7Z'(iji ) DX € X

is defined by an ordered set P; :

(1) (Xj )
I\ e mmacn(g) )

The possibility IT; of impact for any value
Xj,i € X corresponds to the upper bound of this subset,

meaning it can be defined as the maximum element of the
subset:

I :m?x”(xj'i). ?3)

The possibility assessment for several subsets,
obviously, will be equal to the maximum element of the
union of these subsets.

Similarly, the possibility assessment is defined for
the output data of the intelligent system.

According to (3), minimizing the input deviations
A{m between the actual value of variable x;; and the

alternative value x;, € X; of in the counterfactual

causal relationship cd{(" explaining the result y, €Y,

takes the form:

A}::.ﬂ:mr;n‘ﬂ'(xj"i)—ﬂ'(xj”m)‘ (4)

\acp,cg .

According to equation (4), the minimization of
deviations for input occurs for two dependencies - the
actual and the counterfactual, if they explain the same
result yy , or the result with minimal deviation from the

actual.

The index Al

jm contains a normalized deviation

assessment. Therefore, in general, the set of such indices
AV = {1—A}”:n} can be considered as a set of possibility

assessments for using data to construct
counterfactual explanations.

Accordingly, the maximum element of this set
determines this possibility. In other words, the maximum
element defines the most possible counterfactual
explanation.

Then, the counterfactual explanation C, should
contain an ordered set of alternative causal dependencies

input
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cp' explaining the same result, sorted by the deviation

values of input variables, and differing within the
threshold value ¢:

Al =min Xii)=7(Xims
pmel =00 ‘”( ii)=7(Ximu) ©)

Xjmt € X\ X matoers X maia}-

Each subsequent deviation is calculated for the
current subset of values from which elements with
previous, smaller deviations have been excluded:

A}::ml = mrTi]n‘zr(ij )—ﬂ'(xj,mH)

(6)

Xjmet € X\ X matoees Xj meta}-

The set of alternative causal dependencies (5)
explains counterfactual results if for similar input data,
the intelligent system proposed the same or a result close
to the actual decision Y.

Otherwise, if the information about decision
similarity is inaccurate or the decisions are slightly
different, the necessity index N from possibility theory
is used. This index defines the value of trust for possible
(practically realized) subsets of the intelligent artificial
system's decisions:

N(Y)=inf N|(Yq

| %

(Yq#D.Yq Y.
q

Then, the user should trust the counterfactual in the
form of a limit, or a threshold value, or an acceptable
deviation from the actual result of the intelligent system,
in the case of similar or higher trust in the counterfactual
compared to trust in the actual result. Such a comparison
makes sense because the level of trust is based on the
minimum probability of using a specific result.

According to (8), the decision closest to the user's
needs will be the one whose possibility of
implementation in the intelligent system significantly
exceeds the trust level in the system's decisions as a
whole.

The counterfactual causal model based on the
possibility theory contains cause-and-effect
dependencies that satisfy the requirements (4) and (8):

j,m i jm+l |5 A T

c JA . C JA A :
q.k jmemEgk q.k =2 jm+l
:Vl,m,lAj:erl <eg

This approach allows building possible causal
dependencies without delving into the specifics of the
subject area.

Conclusions
The structuring of the counterfactual causal
dependency has been performed. It has been

demonstrated that such dependencies are multivariate,
involving minimal changes in input data compared to
actual values, as well as slight adjustments to the
outcome in order to satisfy constraints that were not met
in the actual decision.

A comprehensive task of constructing the
counterfactual causal dependency as a set of subtasks for
establishing the link between causes and effects based on
the minimization of deviations in input data and
deviations in the intelligent system's decisions has been
formulated.

This is carried out in conditions of incomplete
information about the functioning process of the
intelligent system.

A possible counterfactual causal model has been
developed for a single input variable, which defines a set
of alternative connections between the values of the input
variable and the obtained outcome based on the
assessments of possibility and necessity for using these
variables to derive the intelligent system's decision.

This model enables the formation of a set of
dependencies that explain to the user which values of

ai _ _ input data are crucial for achieving an acceptable
Agk _mn"f,lx(”(yq*) N(Y))' ®) decision for the user.
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Mo:xnuBicHa KOHTpGaKTyaIbHA MOJENb Kay3aJIbHOI 32/1€KHOCTI
1o ojHiii BXinHii 3mMiHHiil B 3a1a4i m00y10BU MOsSICHEHD

C. @. Yamuii, B. O. Jlemuucbkuii

Anortanisn. IIpenmeTroM BHBUEHHS B CTaTTi € NpOIEC MOOYIOBH MOSICHEHb B IHTENEKTYalbHUX CHCTEMax,
MPEACTABICHUX K YOpHA CKpHHBKA. MeToI € po3poOka KOHTpadaKkTHOI MOIeNi MPHIUHHO-HACIIIKOBOI 3aJIEKHOCTI MiXK
3HaYCHHSAMHU BXiJHOI 3MiHHOT Ta BMXOJOM CHCTEMH LITYYHOTO iHTEJEKTY 3 ypaXyBaHHSM MOXJIUBUX aJbTEPHATHUB MIJIS
Pi3HMX 3HaYeHb BXITHOT 3MIHHOI, a TAKOXX HMOBIPHOCTI IIUX AJIBTEPHATHB 3 THM, 1100 MOSCHUTH KOPUCTYBa4YeBi pakTHUHUH
pe3ynbraT poOOTH CHUCTEMH, a TaK0X MOJJIMBI 3MiHM LOTO pPE3yJbTaTy 3TiJJHO BUMOI KOPHCTyBaua Ha OCHOBI 3MiHH
3Ha4YeHHS BXiJHOT 3MiHHOI. |[HTeNeKTyalbHa CHCTEMa PO3TIIAAAETHCS SIK «IOPHUN SIUK». ToMy naHa Kay3anbHa 3aJIeXKHICT
($hopMy€eThCS 3 BUKOPUCTaHHAM TEOPii MOXIMBOCTI, IO JO3BOJSE BpaXyBaTH HEBHU3HAUCHICTH, IO BHHHUKAE BHACITIIOK
HEMOBHOTH iH(pOpMAIii I0OJ0 3MiHM CTaHIB IHTENEKTyalbHOI CHCTEMH Y MpOIeci NPUHHATTS pimeHHA. 3aBJaHHS:
CTPYKTypH3allis BIACTHBOCTEH KOHTP(HAKTHYHOTO NMOsICHEHHS y GpopMi Kay3abpHOT 3a51eKHOCTI; YOPMYITFOBAHHS TOCTAHOBKH
3a1a4i MOOYIOBM MOKIIUBICHOT KOHTP(GAKTHYHOI MOJEN Kay3allbHOI 3aJIeKHOCTI JJIs MOOYIOBU MOSICHEHHS; pO3poOKa
MOYKJIMBICHOT KOHTP()aKTHYHOI MO/IeJi IPUYMHHO-HACIIAKOBOT 3aJI€)KHOCTI. BUKOpHUCTOBYBaHMMHU MiAX0JaMHU €: TEOPETHKO-
MHOXHHHHUH, SKHH 3aCTOCOBYETBCS AJISI OMKCY CKIQJOBUX Hpoliecy MoOyJOBH MOSCHEHb B iHTENEKTYaJbHHX CHCTEMax;
JIOTIYHMHU MigXi1, AKUH 3a0e3edye npeCTaBIeHHs Kay3albHIX 3aJIe)KHOCTEH MiXkK BX1THUMH IaHUMH Ta PilICHHSIM CHCTEMHU.
OTprMaHi HacTynHi pe3yJbTaTH. BUKOHaHO CTPYKTypH3auilo KOHTp(hakTHOI Kay3aiabHOi 3anexHocTi. ChopMynboBaHO
KOMIUIEKCHY 3aa4y MmoOyJIoBH KOHTP(GAKTHYHOI Kay3albHOI 3aJeKHOCTI K CYKYyITHOCTI MmiA3amad moOyJaOBH 3B'A3KYy Mik
NMpUYMHAMH Ta HacJliJKaMl Ha OCHOBI MiHIMi3amii BigXWJIEHb 3HAUYE€Hb BXIAHUX JaHUX Ta BIIXWICHb pIMICHHS
IHTEJIeKTyallbHOT CHCTEMH B yMOBaX HEMOBHOTH iH(OpMalii moo mnpouecy GyHKIIOHYBaHHS 1€l cuctemu. Po3pobiieHo
MOIIMBICHY KOHTP(aKTHYHY MOJENb Kay3albHOI 3aJIeXHOCTI MO OJAHIHM BXigHii 3MiHHIN BucHoBku. HaykoBa HOBU3HA
OTPUMAHHX pPE3yJbTATIB MOJSAra€ B HACTYIHOMY. 3alpolOHOBAaHO MOXJIHMBICHY KOHTP(AaKTHYHY MOJAEIb Kay3aJbHOI
3aJIe)KHOCTI IO OJHIHM BXiAHIH 3MiHHIH, sKa 3a/1a€ MHOXKUHY aJbTepHATHBHUX 3aB'I3KiB MiXK 3HAYCHHSMH BXiJHOI 3MiHHOI Ta
OTPUMAHUM pe3yJIbTATOM Ha OCHOBI OLIHOK MOXJHMBOCTI Ta HEOOXiJHOCTI BUKOPUCTAHHS LUX 3MIHHUX JAJSI OTPUMAaHHS
pilICHHs iHTENeKTyaJabHOI cHcTeMH. MoJenb Aae MOXIUBICTh CHOPMYyBaTH MHOXKHHY 3aJI€KHOCTEH, IO MOSICHIOIOTH
KOPHUCTYBa4eBi, iKi 3HAUCHHS BXiHUX JaHUX € BXXJIUBUMH JUIs JOCATHEHHS MPUIHHATHOTO JUI KOPUCTYBa4a PillICHHS.

Kaw4oBi cioBa: cucremMa IITYYHOrO iHTEJIEKTY; MOSCHEHHS; MOXKIJIUBICTh; Kay3aJdbHICTh; PHUYUHHO-HACIIJKOBHIA
3B'SI30K.

59


https://doi.org/10.24963/ijcai.2019/876
https://doi.org/10.20998/2522-9052.2020.3.16
https://link.springer.com/book/10.1007/978-3-662-43505-2
http://orcid.org/0000-0002-6446-5523

