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EFFICIENCY OF SUPPLEMENTARY OUTPUTS
IN SIAMESE NEURAL NETWORKS

Abstract. In the world of image analysis, effectively handling large image datasets is a complex challenge that requires
using deep neural networks. Siamese neural networks, known for their twin-like structure, offer an effective solution to image
comparison tasks, especially when data volume is limited. This research explores the possibility of enhancing these models
by adding supplementary outputs that improve classification and help find specific data features. The article shows the results
of two experiments using the Fashion MNIST and PlantVillage datasets, incorporating additional classification, regression,
and combined output strategies with various weight loss configurations. The results from the experiments show that for
simpler datasets, the introduction of supplementary outputs leads to a decrease in model accuracy. Conversely, for more
complex datasets, optimal accuracy was achieved through the simultaneous integration of regression and classification
supplementary outputs. It should be noted that the observed increase in accuracy is relatively marginal and does not guarantee

a substantial impact on the overall accuracy of the model.
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Introduction

The realm of image processing is confronted with
the challenge of managing high-dimensional data,
necessitating the construction of neural networks
characterized by profound architectures for optimal
efficiency.

Yet, the efficacy of deep neural networks depends
on access to huge datasets [1]. Addressing this
conundrum, Siamese neural networks emerge as a partial
remedy, offering a solution to the data scarcity issue
inherent in the deployment of intricate neural
architectures.

Siamese neural networks constructed as paired
twins within a shared architecture, these networks excel
in capturing intricate data representations and discerning
nuanced dissimilarities, rendering them particularly
adept at tasks involving modest dataset sizes [2].

The architecture of Siamese neural networks
consists of a part with the encoding of input data and an
algorithm for their comparison [3].

After encoding the image into a multidimensional
model, it is possible to calculate the distance between
different encoded images [4].

The most common way of calculating the distance
between encoded data by the Siamese neural network is
the Euclidean distance [5], which is calculated by the
formula:

D (X1, Xz ) =1 Gy (X1) -Gy (X3)13,

where X; are input images, Gy is a transformation
function, in our case it is a neural network, Dy is the

distance between images.

This format of results requires a special function for
determining the error — contrastive loss. Contrastive loss
calculates the error in the received distance relative to the
expected one.

The error is calculated using the formula:

L(W.Y, Xy, X, ) =

1-Y

~L(Dw )’ + 5 (max(0,m- Dy )7,

where W are system parameters, Y is the expected
distance between images, m is the expected distance
between different images.

The architectural model simplifies image clustering
even with limited data, crucial for specialized domains;
however, accuracy drops can occur due to insufficient
domain knowledge and data. Without extra layers, the
neural network struggles to select vital domain-specific
features, but adding these layers can bolster hyperspace
robustness, emphasizing unique attributes. Fine-tuning
involves selecting a pre-trained model (preferably
domain-specific), freezing low-level abstraction layers,
and adding new layers suitable for the task before
training [7]; while this enhances outcomes, it doesn't
fully address feature and domain context placement
issues.

Problem statement. The primary objective of this
research paper is to improve the precision and
performance of models by strategically guiding their
attention toward supplementary features present within
comparison images. The existing problem stems from the
limitations of Siamese neural networks in effectively
utilizing supplementary information during training. To
address this issue, the research aims to design an
algorithm that enhances the training efficacy of Siamese
neural networks by introducing supplementary branches.
These supplementary branches will allow the model to
handle classification and regression challenges more
effectively. The research proposes the creation of variant
Siamese neural networks equipped with extra outputs
that specifically address both classification and
regression tasks. By incorporating these supplementary
branches and outputs, the research strives to achieve a
more comprehensive and accurate model capable of
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leveraging a wider range of information for improved
performance across various tasks.

Proposed approach

To enhance the training outcomes of Siamese neural
networks, we suggest integrating supplementary outputs
for classification or attribute-specific searches. Drawing
inspiration from the GoogLeNet model, which employed
supplementary outputs for classification to address the
challenge of inadequate error propagation in expansive
models [8].

Consequently, we aimed to evaluate the efficacy of
incorporating these supplementary outputs for attribute
computation in Siamese neural networks.

To produce these results, specific data alterations
are required to capture more overarching traits.
Consequently, the added outputs also undertake the role
of contrasting broader features or classification tasks.
This method demands extensive time for data
investigation, feature identification, and crafting intricate
datasets to train the model on multiple tasks
simultaneously. Through this training, the model is
compelled to identify essential features for additional

issues at a more basic level, enhancing its accuracy and
generalization capacities.

Concurrently, it's vital to monitor the weight
distribution across the model's outputs to ensure
supplementary branches don't disrupt the primary
training.

Experiment 1.
Training Siamese neural network with
supplementary classification output, using
varying loss weights on fashion MNIST dataset

For our initial experiment, we decided to utilize a
traditional dataset, comparing the foundational
architecture against its modified version enhanced with
extra outputs. We chose the Fashion MNIST dataset [9]
because it is a widely used benchmark in the field of
computer vision, serving as a modern alternative to the
traditional handwritten  digit recognition dataset
(MNIST).

Comprising 70,000 grayscale images spanning 10
different clothing categories, such as T-shirts, trousers,
and dresses, the dataset offers a diverse array of fashion
items for classification tasks as shown in Fig. 1.
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Fig. 1. Example of Fashion MNIST dataset samples
Algorithm 1. Compare training results for a Step 6. Train  Siamese neural network with

Siamese  neural network  with
classification output.
Input:
- Fashion Mnist dataset.
Output:
- Trained Siamese neural network
- Trained Siamese neural networks with
supplementary classification output, using varying loss
weights.
Procedure:
Step 1. Load the dataset and generate pairs for the
Siamese neural network.
Step 2. Calculate supplementary outputs.
Step 3. Split dataset to training, validation, and test
samples.
Step 4. Transform and augment training samples.

Step 5. Train Siamese neural network

supplementary

supplementary classification output, using varying loss
weights.

For the experiments, two rudimentary Siamese
neural networks were developed. The initial model
followed a traditional architecture, calculating the
distance between encoded images.

Conversely, the second model incorporated an
added output featuring a classifier at its termination as
shown in Fig. 2. Both architectures utilized identical
layers, a contrastive loss computation function used for
the base output, and RMSProp was selected as the
optimizer [10]. Based on experimental evaluations, 100
epochs were considered sufficient for the model to
achieve its optimal performance.

Initial comparisons indicated that the standalone
Siamese neural network outperformed in terms of faster
convergence and achieving an accuracy rate of 92.3%.
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Consequently, adjustments were made by
incorporating weights into the model's
error computation functions. Subsequent
tests, using weight multipliers of 0.5, 0.2,
and 0.1 for the supplementary output
(Table 1), revealed that reduced error
function weights produced superior
outcomes [11].

Table 1 — Comparison of training
results with auxiliary
classification task

Experiment 2. _
Training Siamese neural network
with supplementary outputs, T
using varying loss weights
on plantvillage dataset

For the subsequent experiment,
we decided to use a more intricate and
challenging dataset for our forthcoming
investigation. This decision stems from
the imperative to enhance the depth and
robustness of our study's outcomes, so
we utilized a subset of the PlantVillage
dataset [12]. This dataset comprises
approximately 20,000 images spread
across 15 recognition classes as shown
in Fig. 3. To identify extra features, the
dataset was segmented into
hypothetical groups. The first group
categorizes the plant type, resulting in
three distinct classes: "Pepper," "Potato," and "Tomato."
Another classification was based on the health status of
the plants — either healthy or diseased. Consequently, we
were able to generate supplementary outputs for
classifying plant types and a regression output indicating
the plant's health status.

The first algorithm was modified and additional steps
were added to enhance its capabilities. Specifically, in
Step 2, supplementary outputs were calculated for the
classification task based on the leaf type, and in Step 3,
supplementary outputs were calculated for the regression
task based on the health status of the leaf. These additional
steps were aimed at providing more comprehensive
information and guidance to the Siamese neural network
during training, enabling it to better distinguish specific
properties, e.g. leaf types and leaf health.

The ResNet50V2 model was selected due to its
prior training on the extensive Imagenet dataset,
encompassing millions of categorized images. This
pretraining bestows the model with robust generalization

Input 1

Auxilary
classification
task

Additional output

Categoracal
crossentropy
Main siamese \
network output ‘T‘

Contrastive loss Classification output

Additional outputs Accuracy
No additional outputs 92.3% Concatenate
Classification, 0 %,_
loss weights 100% 90,08%
Classification, N shared [ )
loss weights 50% 90,93% High level (ﬂght_S,{ High level
Classification, 91 7504 \ features ) | features )
loss weights 20% 970 ' T ' —T%
Classification, o ~ . )
0ss weights 10% 92,07%

shared ;
‘ ResNet50V2 }«ﬂgm—ﬁp ResNet50V2

W

Input 2

Fig. 2. Siamese neural network architecture
with supplementary classification branch

Fig. 3. Example of PlantVillage dataset samples

capabilities and a broad spectrum of visual feature
extraction. Additionally, the model stands out for its
rapid execution and minimal resource requirements [13].

Subsequent layers were incorporated to interpret
features derived from ResNet50V2, forming a vector for
a Siamese neural network. These vectors were then
directed to an Euclidean distance computation function,
with contrastive loss employed for error determination.
The model's training converged in a 96.54% accuracy
rate.

Progressing further, we applied supplementary
outputs, with the first supplementary output designed for
regression aiming to guide the model's focus toward leaf
conditions. A subsequent model iteration incorporated a
classifier as an extra output, targeting the model's
attention to letter categorizations.

In the final iteration, a dual-output model was
crafted, amalgamating both regression and classifier
recognition functionalities from the prior experiments as
shown in Fig. 4.
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Fig. 4. Siamese neural network architecture with supplementary classification and regression branches

During the model training, various distributions of
error function weights for supplementary branches were
explored. Initially, the model utilized a uniform weight
distribution, followed by adjustments where the
additional outputs influenced the training outcomes by
50%, 20%, and 10% compared to the error function
weights for the contrastive loss output. The refined
Siamese neural network model reports an accuracy of
96.54%.

Following the training, it was observed that the
supplementary branches had minimal impact on the
model's accuracy, with a mean decrease of 1.11%.

Notably, the most commendable performance came
from the model with two extra outputs, where their
weight influence on the error function was at 50%.

However, the accuracy only rose by 0.72%, which
might be attributed to a statistical anomaly. This
presumption of statistical error is reinforced by the results
from models with two extra outputs but with error
function weights of 20% and 10% - these models
exhibited accuracy variations of -0.34% and +0.36%,
compared to the singular output model (Table 2). Such
patterns indicate that, contrary to aiding the main model
in honing in on distinct features, the extra branches
seemingly degrade the training outcomes.

Conclusions

The paper investigates the potential advantages of
enhancing Siamese neural networks with supplementary

Table 2 — Comparison of training results with different
setups of supplementary tasks

Additional outputs Accuracy
No additional outputs 96.54%
Classification and regression, loss weights 100% | 95,19%
Classification and regression, loss weights 50% 97,26%
Classification and regression, loss weights 20% | 96,20%
Classification and regression, loss weights 10% 96,90%
Classification, loss weights 100% 91,00%
Classification, loss weights 50% 94,35%
Classification, loss weights 20% 95,43%
Classification, loss weights 10% 96,24%
Regression, loss weights 100% 93,92%
Regression, loss weights 50% 94,62%
Regression, loss weights 20% 96,61%
Regression, loss weights 10% 96,60%

outputs, drawing inspiration from the GoogLeNet model.
Two primary datasets were employed: Fashion MNIST
and a subset of the PlantVillage dataset.

The Siamese network's foundational architecture
was juxtaposed against modified versions, including
additional outputs targeting classification, regression, or
both.

Experiments utilized the ResNet50V2 model for its
efficiency and generalization capabilities, with results
suggesting that while the supplementary outputs
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marginally influenced accuracy, the added complexity
didn't always translate to superior performance. Notably,
the model with dual outputs, where error function
weights of the supplementary branches were set at 50%,

yielded the most promising results. However, the overall
impact of additional outputs on accuracy was
inconsistent, highlighting the need for further exploration
into their optimal integration.
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EdekTUBHiICTH BUKOPHCTAHHS T10AATKOBHX BUXOIiB
y ciaMCBKHX HePOHHHX MepexKax

A. B. Menbauuenko, K. A. 310p

AHoTanisi. Y ramy3i KOMI I0TepPHOT0 30py eheKTHBHA 00pOoOKa BETHKOT KiJIbKOCTI 300pakeHb € KOMIJIGKCHOIO 3a/1aueio,
sIKa BUMAarae BUKOPUCTaHHs TIMOOKUX HeWpOHHUX Mepex. CiaMChbKi HEHpOHHI Mepexi, BiZIOMi CBO€IO [3ePKaIBLHOIO CTPYKTYPOIO,
HPOTOHYIOTh e()eKTHBHE BUPILICHHS 33124 IIOPiBHAHHS 300paXkeHb, 0COOIMBO 0OMEKeHOT0 00’ eMy TaHUX. Y IIOMY JOCIIKEHH]
PO3TISIIAETHCST MOXKIIMBICTh MOKPALICHHST [IUX MOJeJeil IUIIXOM JI0JaBaHHs JOTMOMDKHHUX BHUXOJIB, SIKi HOJIMIIYIOTH TOYHICTH
knacugikaii i BHABICHHS KOHKPETHHX OCOOJIMBOCTEH NaHHWX. B cTarTi po3rismacTbesi pe3yibTaTH JIBOX EKCIEPHMEHTIB 3
BuKopucTaHHsaM paracetiB Fashion MNIST i PlantVillage, 3 BkimroueHHAM qoAaTKOBOI Kinacudikamnii, perpecii Ta koMOIHOBaHUX
cTpaTeriit BUXO/y 3 pi3HUMH KOH(DIryparismMu BTpaTi Bard. Pe3ynpTaTi eKCIepUMEHTIB POAEMOHCTPYBAITH, 1O JJIs HPOCTILINX
JlaTaceTiB BBEJICHHS JOAATKOBUX BHUXIHUX JaHHUX NMPHU3BOJHUTH JO 3HIKCHHS TOYHOCTI Mojeni. | HaBmak, Ul CKJAQIHIMINX
JlaTaceTiB ONTHMalbHA TOYHICTH OyJa JOCATHYTa 3a PaXyHOK OJHOYACHOI iHTerparii IOJaTKOBHX BHXOMIB 3 perpecicio Ta
kiacudikamiero. Ciix 3a3HAYUTH, 1110 OTPUMAHE ITiIBULIEHHS TOYHOCTI € BI/IHOCHO HE3HAYHKM 1 HE TapaHTye CYyTTEBHH BIUIUB Ha
3arajbHy TOYHICTh MOJIEITI.

KawuoBi ciaoBa: koM 1oTepHUH 3ip; HEHPOHHI Mepexi; ciaMChKi HSHPOHHI MepeKi; po3Ii3HaBaHHS 300paKEeHb.

53


mailto:artemxl@gmail.com
http://orcid.org/0000-0002-2862-438X
http://orcid.org/0000-0002-2862-438X
mailto:kostya9919moonlight@gmail.com
http://orcid.org/0000-0002-2862-438X
http://orcid.org/0000-0002-2862-438X

