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Abstract . In the world of image analysis, effectively handling large image datasets is a complex challenge that requires 

using deep neural networks. Siamese neural networks, known for their twin-like structure, offer an effective solution to image 

comparison tasks, especially when data volume is limited. This research explores the possibility of enhancing these models 

by adding supplementary outputs that improve classification and help find specific data features. The article shows the results 

of two experiments using the Fashion MNIST and PlantVillage datasets, incorporating additional classification, regression, 

and combined output strategies with various weight loss configurations.  The results from the experiments show that for 

simpler datasets, the introduction of supplementary outputs leads to a decrease in model accuracy. Conversely, for more 

complex datasets, optimal accuracy was achieved through the simultaneous integration of regression and classification 

supplementary outputs. It should be noted that the observed increase in accuracy is relatively marginal and does not guarantee 

a substantial impact on the overall accuracy of the model. 
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Introduction 

The realm of image processing is confronted with 

the challenge of managing high-dimensional data, 

necessitating the construction of neural networks 

characterized by profound architectures for optimal 

efficiency.  

Yet, the efficacy of deep neural networks depends 

on access to huge datasets [1]. Addressing this 

conundrum, Siamese neural networks emerge as a partial 

remedy, offering a solution to the data scarcity issue 

inherent in the deployment of intricate neural 

architectures. 

Siamese neural networks constructed as paired 

twins within a shared architecture, these networks excel 

in capturing intricate data representations and discerning 

nuanced dissimilarities, rendering them particularly 

adept at tasks involving modest dataset sizes [2]. 

The architecture of Siamese neural networks 

consists of a part with the encoding of input data and an 

algorithm for their comparison [3].  

After encoding the image into a multidimensional 

model, it is possible to calculate the distance between 

different encoded images [4].  

The most common way of calculating the distance 

between encoded data by the Siamese neural network is 

the Euclidean distance [5], which is calculated by the 

formula: 

( ) ( ) ( )1 2 1 2 2,    W W WD X X G X G X= −‖ ‖ , 

where iX  are input images, WG  is a transformation 

function, in our case it is a neural network, WD  is the 

distance between images. 

This format of results requires a special function for 

determining the error – contrastive loss. Contrastive loss 

calculates the error in the received distance relative to the 

expected one.  

The error is calculated using the formula: 
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where W are system parameters, Y is the expected 

distance between images, m is the expected distance 

between different images. 

The architectural model simplifies image clustering 

even with limited data, crucial for specialized domains; 

however, accuracy drops can occur due to insufficient 

domain knowledge and data. Without extra layers, the 

neural network struggles to select vital domain-specific 

features, but adding these layers can bolster hyperspace 

robustness, emphasizing unique attributes. Fine-tuning 

involves selecting a pre-trained model (preferably 

domain-specific), freezing low-level abstraction layers, 

and adding new layers suitable for the task before 

training [7]; while this enhances outcomes, it doesn't 

fully address feature and domain context placement 

issues. 

Problem statement. The primary objective of this 

research paper is to improve the precision and 

performance of models by strategically guiding their 

attention toward supplementary features present within 

comparison images. The existing problem stems from the 

limitations of Siamese neural networks in effectively 

utilizing supplementary information during training. To 

address this issue, the research aims to design an 

algorithm that enhances the training efficacy of Siamese 

neural networks by introducing supplementary branches. 

These supplementary branches will allow the model to 

handle classification and regression challenges more 

effectively. The research proposes the creation of variant 

Siamese neural networks equipped with extra outputs 

that specifically address both classification and 

regression tasks. By incorporating these supplementary 

branches and outputs, the research strives to achieve a 

more comprehensive and accurate model capable of 
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leveraging a wider range of information for improved 

performance across various tasks. 

Proposed approach 

To enhance the training outcomes of Siamese neural 

networks, we suggest integrating supplementary outputs 

for classification or attribute-specific searches. Drawing 

inspiration from the GoogLeNet model, which employed 

supplementary outputs for classification to address the 

challenge of inadequate error propagation in expansive 

models [8].  

Consequently, we aimed to evaluate the efficacy of 

incorporating these supplementary outputs for attribute 

computation in Siamese neural networks. 

To produce these results, specific data alterations 

are required to capture more overarching traits. 

Consequently, the added outputs also undertake the role 

of contrasting broader features or classification tasks. 

This method demands extensive time for data 

investigation, feature identification, and crafting intricate 

datasets to train the model on multiple tasks 

simultaneously. Through this training, the model is 

compelled to identify essential features for additional 

issues at a more basic level, enhancing its accuracy and 

generalization capacities.  

Concurrently, it's vital to monitor the weight 

distribution across the model's outputs to ensure 

supplementary branches don't disrupt the primary 

training. 

Experiment 1.  

Training Siamese neural network with 

supplementary classification output, using 

varying loss weights on fashion MNIST dataset 

For our initial experiment, we decided to utilize a 

traditional dataset, comparing the foundational 

architecture against its modified version enhanced with 

extra outputs. We chose the Fashion MNIST dataset [9] 

because it is a widely used benchmark in the field of 

computer vision, serving as a modern alternative to the 

traditional handwritten digit recognition dataset 

(MNIST).  

Comprising 70,000 grayscale images spanning 10 

different clothing categories, such as T-shirts, trousers, 

and dresses, the dataset offers a diverse array of fashion 

items for classification tasks as shown in Fig. 1. 

 

 

Fig. 1. Example of Fashion MNIST dataset samples 

 

Algorithm 1. Compare training results for a 

Siamese neural network with supplementary 

classification output. 

 Input: 

- Fashion Mnist dataset. 

 Output: 

- Trained Siamese neural network 

- Trained Siamese neural networks with 

supplementary classification output, using varying loss 

weights. 

 Procedure: 

Step 1. Load the dataset and generate pairs for the 

Siamese neural network. 

Step 2. Calculate supplementary outputs. 

Step 3. Split dataset to training, validation, and test 

samples. 

Step 4. Transform and augment training samples. 

Step 5. Train Siamese neural network 

Step 6. Train Siamese neural network with 

supplementary classification output, using varying loss 

weights. 

For the experiments, two rudimentary Siamese 

neural networks were developed. The initial model 

followed a traditional architecture, calculating the 

distance between encoded images.  

Conversely, the second model incorporated an 

added output featuring a classifier at its termination as 

shown in Fig. 2. Both architectures utilized identical 

layers, a contrastive loss computation function used for 

the base output, and RMSProp was selected as the 

optimizer [10]. Based on experimental evaluations, 100 

epochs were considered sufficient for the model to 

achieve its optimal performance. 

Initial comparisons indicated that the standalone 

Siamese neural network outperformed in terms of faster 

convergence and achieving an accuracy rate of 92.3%. 
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Consequently, adjustments were made by 

incorporating weights into the model's 

error computation functions. Subsequent 

tests, using weight multipliers of 0.5, 0.2, 

and 0.1 for the supplementary output 

(Table 1), revealed that reduced error 

function weights produced superior 

outcomes [11]. 
 

Table 1 – Comparison of training  

results with auxiliary 

classification task 

Additional outputs Accuracy 

No additional outputs 92.3% 

Classification,  

loss weights 100% 
90,08% 

Classification,  

loss weights 50% 
90,93% 

Classification,  

loss weights 20% 
91,75% 

Classification, 

 oss weights 10% 
92,07% 

Experiment 2.  

Training Siamese neural network 

with supplementary outputs, 

using varying loss weights  

on plantvillage dataset 

For the subsequent experiment, 

we decided to use a more intricate and 

challenging dataset for our forthcoming 

investigation. This decision stems from 

the imperative to enhance the depth and 

robustness of our study's outcomes, so 

we utilized a subset of the PlantVillage 

dataset [12]. This dataset comprises 

approximately 20,000 images spread 

across 15 recognition classes as shown 

in Fig. 3. To identify extra features, the 

dataset was segmented into 

hypothetical groups. The first group 

categorizes the plant type, resulting in 

three distinct classes: "Pepper," "Potato," and "Tomato." 

Another classification was based on the health status of 

the plants – either healthy or diseased. Consequently, we 

were able to generate supplementary outputs for 

classifying plant types and a regression output indicating 

the plant's health status. 

The first algorithm was modified and additional steps 

were added to enhance its capabilities. Specifically, in 

Step 2, supplementary outputs were calculated for the 

classification task based on the leaf type, and in Step 3, 

supplementary outputs were calculated for the regression 

task based on the health status of the leaf. These additional 

steps were aimed at providing more comprehensive 

information and guidance to the Siamese neural network 

during training, enabling it to better distinguish specific 

properties, e.g. leaf types and leaf health. 

The ResNet50V2 model was selected due to its 

prior training on the extensive Imagenet dataset, 

encompassing millions of categorized images. This 

pretraining bestows the model with robust generalization 

capabilities and a broad spectrum of visual feature 

extraction. Additionally, the model stands out for its 

rapid execution and minimal resource requirements [13]. 

Subsequent layers were incorporated to interpret 

features derived from ResNet50V2, forming a vector for 

a Siamese neural network. These vectors were then 

directed to an Euclidean distance computation function, 

with contrastive loss employed for error determination. 

The model's training converged in a 96.54% accuracy 

rate. 

Progressing further, we applied supplementary 

outputs, with the first supplementary output designed for 

regression aiming to guide the model's focus toward leaf 

conditions. A subsequent model iteration incorporated a 

classifier as an extra output, targeting the model's 

attention to letter categorizations.  

In the final iteration, a dual-output model was 

crafted, amalgamating both regression and classifier 

recognition functionalities from the prior experiments as 

shown in Fig. 4. 

 
Fig. 2. Siamese neural network architecture  

with supplementary classification branch 

 

 
Fig. 3. Example of PlantVillage dataset samples 
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Fig. 4. Siamese neural network architecture with supplementary classification and regression branches 

 

During the model training, various distributions of 

error function weights for supplementary branches were 

explored. Initially, the model utilized a uniform weight 

distribution, followed by adjustments where the 

additional outputs influenced the training outcomes by 

50%, 20%, and 10% compared to the error function 

weights for the contrastive loss output. The refined 

Siamese neural network model reports an accuracy of 

96.54%. 

Following the training, it was observed that the 

supplementary branches had minimal impact on the 

model's accuracy, with a mean decrease of 1.11%.  

Notably, the most commendable performance came 

from the model with two extra outputs, where their 

weight influence on the error function was at 50%. 

However, the accuracy only rose by 0.72%, which 

might be attributed to a statistical anomaly. This 

presumption of statistical error is reinforced by the results 

from models with two extra outputs but with error 

function weights of 20% and 10% – these models 

exhibited accuracy variations of -0.34% and +0.36%, 

compared to the singular output model (Table 2). Such 

patterns indicate that, contrary to aiding the main model 

in honing in on distinct features, the extra branches 

seemingly degrade the training outcomes. 

Conclusions 

The paper investigates the potential advantages of 

enhancing Siamese neural networks with supplementary 

Table 2 – Comparison of training results with different 

setups of supplementary tasks 

Additional outputs Accuracy 

No additional outputs 96.54% 

Classification and regression, loss weights 100% 95,19% 

Classification and regression, loss weights 50% 97,26% 

Classification and regression, loss weights 20% 96,20% 

Classification and regression, loss weights 10% 96,90% 

Classification, loss weights 100% 91,00% 

Classification, loss weights 50% 94,35% 

Classification, loss weights 20% 95,43% 

Classification, loss weights 10% 96,24% 

Regression, loss weights 100% 93,92% 

Regression, loss weights 50% 94,62% 

Regression, loss weights 20% 96,61% 

Regression, loss weights 10% 96,60% 

 

outputs, drawing inspiration from the GoogLeNet model. 

Two primary datasets were employed: Fashion MNIST 

and a subset of the PlantVillage dataset.  

The Siamese network's foundational architecture 

was juxtaposed against modified versions, including 

additional outputs targeting classification, regression, or 

both.  

Experiments utilized the ResNet50V2 model for its 

efficiency and generalization capabilities, with results 

suggesting that while the supplementary outputs 
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marginally influenced accuracy, the added complexity 

didn't always translate to superior performance. Notably, 

the model with dual outputs, where error function 

weights of the supplementary branches were set at 50%, 

yielded the most promising results. However, the overall 

impact of additional outputs on accuracy was 

inconsistent, highlighting the need for further exploration 

into their optimal integration. 
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Ефективність використання додаткових виходів 

у сіамських нейронних мережах 

А. В. Мельниченко, К. А. Здор  

Анотація .  У галузі комп’ютерного зору ефективна обробка великої кількості зображень є комплексною задачею, 

яка вимагає використання глибоких нейронних мереж. Сіамські нейронні мережі, відомі своєю дзеркальною структурою, 

пропонують ефективне вирішення задач порівняння зображень, особливо обмеженого об’єму даних. У цьому дослідженні 

розглядається можливість покращення цих моделей шляхом додавання допоміжних виходів, які поліпшують точність 

класифікації і виявлення конкретних особливостей даних. В статті розглядається результати двох експериментів з 

використанням датасетів Fashion MNIST і PlantVillage, з включенням додаткової класифікації, регресії та комбінованих 

стратегій виходу з різними конфігураціями втрати ваги. Результати експериментів продемонстрували, що для простіших 

датасетів введення додаткових вихідних даних призводить до зниження точності моделі. І навпаки, для складніших 

датасетів оптимальна точність була досягнута за рахунок одночасної інтеграції додаткових виходів з регресією та 

класифікацією. Слід зазначити, що отримане підвищення точності є відносно незначним і не гарантує суттєвий вплив на 

загальну точність моделі. 

Ключові  слова: комп’ютерний зір; нейронні мережі; сіамські нейронні мережі; розпізнавання зображень. 
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