
Advanced Information Systems. 2023. Vol. 7, No. 3 ISSN 2522-9052

18

Methods of information systems synthesis

UDC 004.312.2, 004.383 (577.218) doi: https://doi.org/10.20998/2522-9052.2023.3.03

Oleg Vasylchenkov, Dmytro Salnikov, Dmytro Karaman

National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

ACCELERATION OF BOOLEAN GENE REGULATORY NETWORKS ANALYSIS

USING FPGA

Abstract . Gene expression does not occur arbitrarily and spontaneously, it obeys certain patterns that can be expressed

as a connected graph or network. The disclosure of these patterns requires a large amount of experimental research and

accumulation of necessary statistical information. Then this information is subjected to mathematical processing, which

involves significant computing resources and takes a lot of time. Boolean networks are often used as the basis for building

mathematical models in those calculations. Recently, models based on Boolean networks have increasingly grown in size

and complexity causing increased demands on traditional software solutions and computing tools. Field-programmable gate

arrays (FPGAs) are a powerful and reconfigurable platform for implementing efficient and high-performance computing.

The use of FPGA will significantly speed up the process of calculating sequential chains of gene states, both through the

use of hardware acceleration in the calculation of logical dependencies, and through the implementation of an array of

parallel computing cores, each of which can perform its own individual task. Another solution that can significantly

simplify the work of researchers of gene regulation networks is the creation of a universal computing architecture that will

allow dynamic reconfiguration of its internal structure when the task or logical dependencies for the current Boolean

network change. Such a solution will relieve the researcher of the need to perform the entire set of actions for the

technological preparation of a new FPGA configuration, from making changes to the HDL code that describes the network

to uploading the updated configuration to the hardware accelerator. The article discusses how to use FPGA for the

implementation and modeling of arbitrary Boolean networks, describes the concept of a universal reconfigurable

architecture of a logical dependency calculating core for an arbitrary Boolean network and proposes a practical

implementation of such a calculating core for modeling gene regulation networks.

Keywords: gene regulatory network; biological system modeling; field-programmable gate arrays; hardware

acceleration architectures; Boolean network model; computational biology systems; bioinformatics.

Introduction

Boolean models are widely used in modern

research to model the behavior of the complexity of

dynamical systems. A Boolean model is a structure that

consists of simple nodes interconnected. Each node is a

simple object that can be in one of two states – active or

inactive. It is convenient to encode such an object in

Boolean terms of states – an active state (1) and an

inactive state (0). A change in the state of a node occurs

under the influence of the input states of neighboring

nodes according to certain rules. It is convenient to

represent such rules as a Boolean function of several

arguments. The result of evaluating the value of such a

function will be a value that is the new state of the node.

Thus, the model of some dynamical system can be a

combination of very simple objects with a small number

of possible states and transitions between states that are

simple from the point of view of the computational

requirements of transformation. Another advantage of

Boolean models is the ease of scaling the model of a

dynamic system. Adding new nodes to expand the

system model is not a time-consuming process. Studies

of the behavior of Boolean networks for system

modeling have shown that such networks are

characterized by certain features. Long-term monitoring

of the states of the simulated system demonstrates that

the system eventually reaches stable states or generates

attractors. An attractor is a stable cyclic state, when a set

of identical states is repeated for a fixed number of

steps. Moreover, if there is some trajectory of states in

the observed cycle of states, then this trajectory cannot

leave this cycle of states, see, for example, [1–3]. The

search for attractors is the main task in modeling a

complex dynamic system. This task can be

computationally difficult. In addition, when the system

is expanded, the configuration and behavior of attractors

can completely change. Also, in the most general case,

the duration of the transition state leading to the

attractor can be long [4]. It should also be noted that the

dynamic system model built using the Boolean system

is stochastic. Therefore, the simulation process must be

run several times to get the average dynamic behavior

of the system. Thus, the total simulation time can be

significant.

It can be concluded that the use of Boolean models

is a convenient tool for modeling complex dynamic

systems, since the model of such a system based on a

Boolean network is a simple combination of

functionally simple nodes with an elementary set of

states. The disadvantages of using Boolean models

include a significant increase in the computational

complexity of the model with an increase in the size of

the model, the non-triviality of the search for the key

characteristics of the model, which include attractors

inherent in the model and static states.

One of the approaches in the study of complex

diseases is now the analysis of behavior in gene

regulatory networks (GNR). In the literature, there are

studies based on data sources for models of such

© Vasylchenkov O., Salnikov D., Karaman D., 2023

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 3

19

diseases as models of T-cell leukemia of large granular

lymphocytes [5], prostate cancer [6], signaling pathways

involved in cancer [6, 7], colon cancer [8], Fanconi's

anemia and breast cancer [9]. Genes are quite simple

chemical and biological objects in terms of a set of

states that interact with each other, thus forming the

genotype of an organism. Boolean models [10] are a

possible alternative approach to the study of GRN and

are used in the systems biology community [11–16].

Boolean network models can help build a qualitative

description of the GRN. The concentrations or activities

of chemicals can be represented using a finite set of

discrete values. When constructing a Boolean GNR

model, synchronous and asynchronous schemes for

updating cell states can be applied. The synchronous

circuit is simpler and more understandable. Time in

such a scheme is discrete and the state of all cells of the

model is updated at the same time for all elements of the

model. A Boolean network with a synchronous circuit is

easier to build and easier to model. But a model with a

synchronous scheme is unlikely to be adequate to a real

biological object with its inherent variety of states. An

asynchronous scheme for updating model states seems

to be more adequate. The asynchronous scheme [17]

takes into account that the update of states occurs at

arbitrary times and this is due to the different reaction

rates of biological systems. In [18], it is proposed to

distinguish between various asynchronous state update

schemes such as deterministic asynchronous, stochastic

asynchronous, random asynchronous, etc.

Thus, it makes sense to consider models of

dynamic biological systems using Boolean networks

with asynchronous state updates. The paper describes

general approaches and methods for generating such

models, as well as the possibilities of practical hardware

implementation of such models.

Related Works

The simplest simulation systems are synchronous

simulators. These include those that perform

simulations in this way and include simulators such as

BooleanNet [19] and BoolNet [20]. If modeled using

asynchronous system state updates, then the system

analysis time will be very significant precisely because

of the difficulty of adequately implementing such

parallelism. However, these systems are used for GNR

analysis and there are a number of problems that can be

solved with their help. This is a feature of the digital

approach to modeling. The disadvantage of synchronous

modeling is the complete inconsistency of the complex

biological system being modeled. Processes in a

biological system are performed simultaneously, which

is difficult to implement digitally.

An interesting modeling technique is the use of

decision diagrams. For example, the method of binary

decision diagrams (BDD). In this method, for the system

model to represent the model, its decomposition is

performed and rigid links between its components are

established [28]. The simulation systems geneFAtt [26]

and boolSim/genYsis [27] are another variant of the

decision diagram, which is called ROBDD — reduced

ordered binary decision diagrams. This method is

convenient for representing complex logical functions

and uses a directed acyclic graph to represent the model.

Binary decision methods are symbolic and do not go

through the entire state space. How often does the

network analysis modeling process with TEMporal-

LOGic specifications (Antelope) use model validation

tools, a set of methods for automatically checking the

properties of discrete systems, as well as for analyzing

and constructing Boolean GRNs [29]. Model validators

can prove properties of an infinite number of paths. Also,

they can handle new, unexpected properties. It is noted

that the main disadvantage of such methods is the

impossibility of estimating the amount of memory

required to complete the simulation, therefore, such

methods require significant computing power. When

using symbolic methods, attractors become available only

at the very end of the simulation, while the computing

power, in particular memory, may not be enough and the

simulation process will end without results.

The use of FPGAs for building models seems

promising. It has already been mentioned above that one

of the main requirements for modeling tools is the

possibility of parallel processing of the state space. This

is a consequence of using the asynchronous state-space

change model. There are a fairly large number of works

in which the authors use FPGAs and achieve significant

results in terms of the adequacy of the computational

model, as well as acceptable simulation time. In [30],

[31], [32], the calculation of scale-free GRNs was

proposed; the search for attractors was accelerated by

the use of FPGAs. Also, in some works [33], [34],

variants of the Gillespie stochastic simulation algorithm

on FPGAs are implemented. The above sources

demonstrate the ability to use FPGA technology to

simulate variants of the Gillespie algorithm, achieving

performance up to 20 times faster than a competing

general-purpose CPU.

Methods of hardware implementation

With an increase in the number of genes in the

studied gene regulatory networks, the performance of

the selected software and hardware tools becomes an

important factor. When the dimension reaches dozens of

genes, the search for attractors by successive

enumeration of all possible transitions between different

combinations of gene states can take weeks and even

months of continuous operation of software tools, even

if very productive computing resources are used. In this

case, it is obvious that there is a desire to speed up the

calculation of chains of possible gene states as much as

possible, as well as to parallelize the calculation

processes for different states. A freely configurable

hardware architecture such as an FPGA is great for this.

The FPGA structure just allows you to implement any

number of arbitrary rather complex logical

dependencies, has sufficient resources to store state

values, and can be configured in such a way as to

implement a large number of parallel computing cores.

The number of simultaneously working computing

cores can be limited only by the complexity of the

simulated Boolean network and the available resources

of the selected FPGA chip [37].

Advanced Information Systems. 2023. Vol. 7, No. 3 ISSN 2522-9052

20

Consider a simplified example of a Boolean gene

regulation network that includes four genes
{G1, G2, G3, G4}, to clearly demonstrate the basic

principles proposed in this article. The Boolean network

is defined by the following system of logical equations,

which allow, based on the current state of the genes, to

calculate their next state:

G1* = G4

G2* = G2

G3* = (! G1G3) (1)

G4* = ((! G1 ! G4)(! G2 ! G1)

 (G2 ! G4) (G2 G4))

To the left of the equal sign, new values of the

gene states are formed, they are indicated with an

asterisk symbol. At the next iteration of calculations,

these values will be used in the expressions to the right

of the equal sign. Logical operations are performed on

the current values of the gene states: by the symbol ! the

logical inversion is denoted, by symbols & and | the

logical operations AND and OR, respectively, are

indicated. The implementation of the presented system

of logical equations is shown in Fig. 1.

а

b

Fig. 1. Implementation of Boolean network using logic

elements (a) or FPGA Look-Up Tables (b)

In general, the scheme for calculating the states of

the Boolean network genes must be sequential, since the

obtained set of values of the gene states must be

iteratively used to obtain the next set, then the next, and

so on. To do this, a multi-bit memory element (register)

is introduced into the circuit, which remembers the

intermediate state of all genes and allows you to pass

through the entire chain of successive states and,

ultimately, detect the looping of the chain and trap states

— attractors [38]. A circuit that can be easily

implemented in FPGA hardware is shown in Fig. 2.

Fig. 2. Proposed structure of the FPGA-based Boolean

network sequencer

In fact, any Boolean network represents a finite

state machine. Each state vector represents the current

state values of all genes according to Boolean functions

in a network, while the transition condition may be

represented as a block of logic to compute the next

state.

Such a block of logic may be implemented as a

raw fixed logic (non-flexible way) or as a configurable

block, that can compute the state for any set of logic

functions. The second option will be slightly inferior in

performance and consume more resources than the first

but gives an opportunity to quickly prepare for

modeling any Boolean network topology without the

need to perform laborious and time-consuming steps of

technological synthesis and preparation of a new

configuration for the FPGA chip. Thus, it is more useful

in the case of usage of software tools for research or

network structure experiments.

Fig. 3. Configurable logic element

One of the options to implement the next state

selection logic is to use memory. In such cases, the

input of the block is the binary value for the current

state. The output is the value for the next state. Thus, to

implement a transition table for a one 16-gene Boolean

network function requires 64Kb of memory. While 32-

gene function requires significantly more memory –

over 4GB. 64KB of memory may be allocated even in

FPGA memory blocks, but a bigger gene count requires

a bunch of dedicated DRAM chips to follow such

schema.

For implementation on the FPGA, the resulting

multi-output combinational circuit is described using the

selected HDL language, after which the operations of

synthesis, Place and Route, and generation of a

bitstream configuration file are performed. At the same

time, such an approach is not as flexible as desired and

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 3

21

requires regeneration of HDL design for each individual

network topology if errors were found and corrected,

and if the original model was refined or it is necessary

to perform simulation run with a change in the behavior

of a particular gene. This includes HDL code

corrections, complete design synthesis, and fitting for

certain FPGA chips before topology simulation and/or

attractors search.

Obviously, software tools to perform automatic

code generation, synthesis and other required steps may

be implemented. In any case that doesn't eliminate the

time-consuming operations of FPGA design

compilation and load of generated binary to the device.

Such an approach can take significantly more time than

the simulation itself.

Mostly, simulation of gene reduction problems is

limited to some predefined set of parameters, like

maximum attractor length and number of genes in a

network. For such a parameter subset, it is possible to

create a single user-configurable component that can be

configured to simulate an arbitrary Boolean network

with characteristics that do not exceed some constraints.

Such a component can be configured using a special

code that is created using application software, without

the need to make changes to the HDL code of the

project and perform all stages of synthesis,

technological preparation of the project and

reconfiguring FPGA resources.

At the same time, state calculation logic might be

implemented with a configurable block which includes

some amount of dedicated logic elements with

configurable connections between them. Such a

structure can be seen in Fig. 3. This approach gives

significantly lower memory consumption but uses logic

elements of the FPGA.

Principles of reconfiguration

The primary objective of the proposed hardware

accelerator is to search for closed-loop structures in the

chain of consequent gene states. The researcher might

need to change several transition functions in a Boolean

network repeatedly to conclude how such a structure

works and what properties it has. Taking this into

consideration, we need to provide a reliable way to use

the proposed accelerator in such conditions.

The proposed hardware structure is based on the

principle that any Boolean function can be implemented

as a Disjunctive Normal Form - a logical sum of logical

products (the so-called SOP form of representing a

logical expression) that includes input variables or their

inverses. Another principle is the use of multi-output

implicants. This principle can be used only when the

implemented logical equations depend on the same set

of input variables, which is the case in our case when

constructing logical dependencies for Boolean

networks. The multi-output implicants of a Boolean

function are a reduced set of logical products of the

input variables, which are sufficient to implement each

logical expression.

The block diagram of the proposed solution for the

implementation of the configurable logic element is

shown in Fig. 4.

Fig. 4. Configurable logic of proposed hardware accelerator

The circuit contains a matrix of programmable

interconnect 1, which ensures the formation of the

necessary implicant products pi using a set of m-input

AND logic elements, as well as a matrix of

programmable interconnect 2, in which the supply of

the required products to the s-input OR logic elements

is controlled, which provide implementation of logical

dependencies of the required Boolean network and the

formation of new values of gene variables.

Both matrices include special selector elements, the

operation of which is determined by a special code that is

fed to their configuration interface. The interfaces of all

configurable elements are combined in such a way as to

simultaneously configure their operation when a serial bit

stream is fed to the common configuration interface of

the logical dependency implementation module.

The configuration sequence is formed on the

researcher's personal computer using special application

Advanced Information Systems. 2023. Vol. 7, No. 3 ISSN 2522-9052

22

software. Then, the way this sequence is loaded may

differ depending on the chosen hardware platform and

the way the system interacts with the user. Examples of

system organization at the top level of its presentation

are shown in Fig. 5.

 а b

Fig. 5. Configuration interface with memory mapped

device (a) and external interface converter (b)

It is widely adopted in the biological community to

use SBML files to share gene models and write R

language scripts to perform research. From a

programmer perspective, each SBML file is an XML-

formatted entity that contains a genes list and a

collection of Boolean algebra equations – transition

functions.

The proposed software should allow the

processing of such models, load equations from the file

and use them. At the same time, a user should have the

possibility to express equations as a program and

perform a research task with it (attractors search,

topology optimization etc.).

The proposed hardware structure should receive a

configuration, a sequence of bytes, that represent mux

switches configurations and other interconnect option

switches states. From the algorithmic perspective, it is

convenient to use one of the normal Boolean forms

(conjunctive or disjunctive) to generate configuration

bytes. There is not much difference in which form to

use. We use a Disjunctive Normal Form (DNF) for

proposed structures and hardware.

Moreover, users might use non-optimal gene

transition functions.

This leads to a waste of hardware resources and

performance loss. It is unlikely that a lot of biologists

have deep Boolean algebra knowledge. While

optimization and conversion to a normal form are well

studied in the literature [35] it is appearing a quite hard

and annoying task for most researchers. Certainly,

making a calculation each time after an equation change

is not convenient and time-wasting. Thus, configuration

software should verify the equation, optimize it if

possible and convert it to DNF.

As a result, one can conclude general steps to

perform research of the Boolean network structure

presented on Fig. 6.

At the moment, we adopted Python usage. It is

more convenient to implement SBML parser and

accelerator configuration builder. In addition, there is a

SymPy [36] package that allows to work with Boolean

symbol arithmetic, minimize Boolean logic functions

and convert them to DNF.

Fig. 6. Boolean function network research process

The hardware structure of the proposed accelerator

requires configuration data built in an appropriate

format.

For a basic network we should perform the

following steps to build a configuration:

1. Load SBML file to obtain involved genes list

and transition functions.

2. Translate gene names to indexed form.

3. Convert transition functions to a product of

sums form.

4. Minimize Boolean functions.

5. Split transition functions to sums and

products.

6. Build binary configuration data and store it to

the FPGA device.

Ultimately, the configuration must be a multi-bit

binary vector in which the configuration sequences for

each interconnect matrix for all logical blocks of the

hardware accelerator are concatenated. To ensure the

delivery of the configuration to the device via the

selected interface (this can be, for example, the UART

interface that is widely used and used in digital

technology, or rather, its implementation over the USB

computer interface, special high-speed interfaces can

also be used, such as PCI, or network interface, such as

Ethernet) you need to add special headers to the

common packet indicating the target nodes for which

the transferred configuration is intended, as well as a

checksum field to check the integrity of the

configuration before applying it to the target logical

block.

An example of the configuration package structure

is shown in Fig. 7.

Fig. 7. Configuration package structure

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 3

23

Results

In this paper, we propose a flexible method of

implementation of a hardware accelerator device,

capable to speedup boolean gene regulatory networks

simulation and analysis.

Results of FPGA resources consumption are

presented in Table 1.

Table 1 – FPGA Resources Consumption

Implementation

FPGA Resources

Registers
Memory

blocks
LUTs

Raw logic 32 0 25120

Complete

solution
512 65K×16 37680

For the raw logic approach, time to get execution

results consists of FPGA design synthesis, binary load

time and execution time. In contrast, our approach time

consists only of binary load time, configuration time

and execution time. By configuration time we assume a

lightweight “compilation” of mux enable and neg logic

enable switches states.

Results of FPGA performance comparison are

presented in Table 2.

Table 2 – Performance estimation

Implementation
Execution

performance
Startup time

Raw logic 1clk per state ~ 7 min

Complete

solution
1clk per mux state < 10 sec

Our results show that proposed tools enable

simulation of Boolean network models with increased

performance and flexibility. While other solutions focus

on execution performance, we also consider

startup/compilation/synthesis time. Thus, overall

performance has increased.

As a future research direction, we see a study of

different Boolean gene reduction models to find the

most relevant next state selection structure in terms of

performance/flexibility.

Conclusions

The article considers the possibility of using FPGA

to study the processes of gene co-expression, presented

as a model based on a Boolean network. It is difficult to

overestimate the importance of this solution: the study

of co-expression for various cases in the world of

biology and medicine will allow researchers to better

understand the course of biological processes in living

cells, which, in turn, can help in the search for

treatments for serious diseases, various types of cancer,

etc. From one side proposed approach is simple and

suitable for building simulation structures but

informative enough and able to get relevant results.

Approaches used for Boolean network simulation

are analyzed. One of the main problems for most

approaches is relatively long time for gene Boolean

network re-simulation if some changes are needed after

previous simulation.

Most existing simulation software systems require

processes that include several steps such as updating the

model, transforming and simplification of Boolean

functions, applying changes to selected simulation

software systems etc. In this article an approach is

proposed that could reduce total modelling time

significantly. The idea is to implement a generic

infrastructure that could be quickly reconfigured for

particular gene network instance. The promising idea is

using FPGA to implement computation unit. It could be

implemented with external CPU based or computation-

specific hardware, however, there are some published

works that proposed the use of FPGA–based solutions

for simulation. As it was said before Boolean network

of any genes amount could be represented by set of

CNF/DNF simplified Boolean functions. It could be

mapped easily to FPGA structure because of hardware

array of logic gates which FPGA consists of. We

proposed FPGA-based generic structure that could be

quickly reconfigured using general purpose I/O

interface (UART as an example). Specifics of this

hardware unit were analyzed. It provides general

functionalities of Boolean network element such as:

deterministic state set, state transitions according to

implemented Boolean functions, connection to attractor

search engine.

The configurable part of computing unit is able to

implement any set of n CNF/DNF Boolean functions

that describe gene Boolean network to be studied. Also,

an auxiliary part that provides configuring properties

was added. Proposed implementation uses Boolean

functions converted to DNF. Computing unit includes

set of AND/OR logic gates according to number of

genes that can be simulated. Configuring subsystem

builds internal interconnections for AND/OR gate

inputs according to loaded configuration bitstream that

will provide desired logic function set for simulation.

Also, possible approach for configuration structure

is described that allows to configure FPGA device used

for simulation. Configuration bitstream could be

prepared using general purpose PC or another suitable

computing device using high-level language like

Python.

Configuration data is presented as binary sequence

and could be uploaded to FPGA using standard interface

like UART.

FPGA resources utilization and reduce of

simulation time were estimated if proposed solution is

used for gene Boolean network simulation.

REFERENCES

1. Faure, A., Naldi, A., Chaouiya, C. and Thieffry, D. (2006), “Dynamical analysis of a generic Boolean model for the control

of the mammalian cell cycle”, Bioinformatics, vol. 22, pp. 124–131, doi: http://doi.org/10.1093/bioinformatics/btl210.

https://doi.org/10.1093/bioinformatics/btl210

Advanced Information Systems. 2023. Vol. 7, No. 3 ISSN 2522-9052

24

2. Li, F., Long, T., Lu, Y., Ouyang, Q. and Tang, C. (2004), “The yeast cell-cycle network is robustly designed”, Proc. Nat.

Acad. Sci., vol. 101, no. 14, pp. 4781–4786, doi: http://doi.org/10.1073/pnas.0305937101.

3. Huang, S. (1999), “Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis

and drug discovery”, J. Molecular Med., vol. 77, no. 6, pp. 469–480, doi: http://doi.org/10.1007/s001099900023.

4. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., and De Micheli, G. (2008), “Synchronous versus asynchronous modeling of

gene regulatory networks”, Bioinformatics, vol. 24, no. 17, pp. 1917–1925, doi: http://doi.org/10.1093/bioinformatics/btn336.

5. Zhang, R., Shah, M. V., Yang, J., Nyland, S. B., Liu, X., Yun, J. K., Albert, R. and Loughran, T. P. (2008), “Network model

of survival signaling in large granular lymphocyte leukemia”, Proc. Nat. Acad. Sci., vol. 105, no. 42, 2008, pp. 16308–16313,

doi: http://doi.org/10.1073/pnas.0806447105.

6. Hu, Y., Gu, Y., Wang, H., Huang, Y. and Zou, Y. M. (2015), “Integrated network model provides new insights into

castration-resistant prostate cancer,” Sci. Rep., vol. 5, no. April, pp. 1–12, Nov. 2015, doi: https://doi.org/10.1038/srep17280.

7. Fumia, H. F., and Martins, M. L. (2013), “Boolean network model for cancer pathways: Predicting carcinogenesis and

targeted therapy outcomes”, PLoS One, vol. 8, no. 7, Art. no. 11, doi: https://doi.org/10.1371/journal.pone.0069008.

8. Lu, J., Zeng, H., Liang, Z., Chen, L., Zhang, L., Zhang, H., Liu, H., Jiang, H., Shen, B., Huang, M., Geng, M., Spiegel, S. and

Luo, C. (2015), “Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel

combinatorial anti-cancer targets,” Sci. Rep., vol. 5, 2015, Art. no. 14739, doi: https://doi.org/10.1038/srep14739.

9. Rodrıguez, A., Sosa, D., Torres, L., Molina, B., Frıas, S. and Mendoza, L. (2012), “A Boolean network model of the

FA/BRCA pathway,” Bioinf., vol. 28, no. 6, 2012, pp. 858–866, doi: https://doi.org/10.1093/bioinformatics/bts036.

10. Glass, L. and Kauffman, S. A. (1973), “The Logical Analysis of Continuous, Non-linear Biochemical Control Networks”,

J. Theoretical Biol., vol. 39, 1973, pp. 103–129, doi: https://doi.org/10.1016/0022-5193(73)90208-7.

11. Melas, N., Chairakaki, A. D., Chatzopoulou, E. I., Messinis, D. E., Katopodi, T., Pliaka, V., Samara, S., Mitsos, A., Dailiana,

Z., Kollia, P. and Alexopoulos, L. G. (2014), “Modeling of signaling pathways in chondrocytes based on phosphoproteomic

and cytokine release data”, Osteoarthritis Cartilage, vol. 22, no. 3, pp. 509–518, https://doi.org/10.1016/j.joca.2014.01.001.

12. Chen, H., Wang, G., Simha, R., Du, C. and Zeng, C. (2016), “Boolean models of biological processes explain cascade-like

behavior”, Sci. Rep., vol. 6, 2016, Art. no. 20067, doi: https://doi.org/10.1038/srep20067.

13. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B. and Thieffry, D. (2013), “Integrative modelling of

the influence of MAPK network on cancer cell fate decision”, PLoS Com.put. Biol., vol. 9, no. 10, Sep. 2013, pp. 1–15, doi:

doi: https://doi.org/10.1371/journal.pcbi.1003286.

14. Cohen,D. P., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A. and Calzone, L. (2015), “Mathematical modelling of

molecular pathways enabling tumour cell invasion and migration,” PLoS Comput. Biol., vol. 11, no. 11, Sep. 2015, Art. no.

e1004571, doi: https://doi.org/10.1371/journal.pcbi.1004571.

15. Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U. U., Weismantel, R.,

Gilles, E. D., Klamt, S. and Schraven, B. (2007), “A logical model provides insights into T cell receptor signaling”, PLoS

Computational Biology, vol. 3, no. 8, Sep. 2007, pp. 1580–1590, doi: https://doi.org/10.1371/journal.pcbi.0030163.

16. Dorier, J., Crespo, I., Niknejad, A., Liechti, R., Ebeling, M. and Xenarios, I. (2016), “Boolean regulatory network

reconstruction using literature based knowledge with a genetic algorithm optimization method”, BMC Bioinf., vol. 17, no. 1,

Art. no. 410, doi: https://doi.org/10.1186/s12859-016-1287-z.

17. Thomas, R. (1991), “Regulatory networks seen as asynchronous automata: A logical description”, J. Theoretical Biol.,

vol. 153, no. 1, 1991, pp. 1–23, doi: https://doi.org/10.1016/S0022-5193(05)80350-9.

18. Purandare, M., Polig, R., and Hagleitner, C. (2017), “Accelerated analysis of Boolean gene regulatory networks,” Proc. 27th

Int. Conf. Field Programmable Logic Appl., 2017, pp. 1–6, doi: https://doi.org/10.23919/FPL.2017.8056778.

19. Albert, I., Thakar, J., Li, S., Zhang, R. and Albert, R. (2008), “Boolean network simulations for life scientists”, Source Code

Biol. Med., vol. 3, no. 1, 2008, Art. no. 16, doi: https://doi.org/10.1186/1751-0473-3-16.

20. Mussel, C, Hopfensitz, M., and Kestler, H. A. (2010), “BoolNet - an R package for generation, reconstruction and analysis of

Boolean networks”, Bioinf., vol. 26, no. 10, pp. 1378–1380, doi: http://dx.doi.org/10.1093/bioinformatics/btq124.

21. Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., Kroemer, G., Barillot, E., and Calzone, L. (2017),

“MaBoSS 2.0: An environment for stochastic Boolean modeling”, Bioinf., vol. 33, no. 14, Jul. 2017, pp. 2226–2228, doi:

https://doi.org/10.1093/bioinformatics/btx123.

22. Saadatpour, A., Albert, R., and Reluga, T. C. (2013), “A reduction method for Boolean network models proven to conserve

attractors”, SIAM J. Appl. Dynamical Syst., vol. 12, no. 4, pp. 1997–2011, doi: http://dx.doi.org/10.1137/13090537X.

23. Ay, F., Xu, F. and Kahveci, T. (2009), “Scalable steady state analysis of boolean biological regulatory networks”, PLoS One,

vol. 4, no. 12, Dec. 2009, pp. 1–9, doi: http://dx.doi.org/10.1371/journal.pone.0007992.

24. Berntenis, N. and Ebeling, M. (2013), “Detection of attractors of large Boolean networks via exhaustive enumeration of

appropriate subspaces of the state space”, BMC Bioinf., vol. 14, no. 1, doi: https://doi.org/10.1186/1471-2105-14-361.

25. Mendes, D., Henriques, R., Remy, E., Carneiro, J., Monteiro, P. T. and Chaouiya, C. (2018), “Estimating attractor

reachability in asynchronous logical models”, Frontiers Physiology, vol. 9, 2018, Art. no. 1161, doi:

https://doi.org/10.3389/fphys.2018.01161.

26. Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F. and He, L. (2013), “An efficient algorithm for computing attractors of

synchronous and asynchronous boolean networks”, PLoS One, vol. 8, no. 4, Apr. 2013, pp. 1–7, doi:

http://dx.doi.org/10.1371/journal.pone.0060593.

27. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L. and De Micheli, G. (2008), “Synchronous versus asynchronous modeling of

gene regulatory networks,” Bioinf., vol. 24, no. 17, pp. 1917–1925, doi: http://dx.doi.org/10.1093/bioinformatics/btn336.

28. Mizera, A., Pang, J., Qu, H. and Yuan, Q. (2019), “Taming asynchrony for attractor detection in large boolean networks”,

IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 1, pp. 31–42, doi: http://dx.doi.org/10.1109/TCBB.2018.2850901.

29. Arellano, G., Argil, J., Azpeitia, E., Benıtez, M., Carrillo, M., Gongora, P., Rosenblueth, D. Aand Alvarez-Buylla, E. R.

(2011), ““Antelope”: A hybrid-logic model checker for branching-time Boolean GRN analysis,” BMC Bioinf., vol. 12, no. 1,

Art. no. 490, doi: https://doi.org/10.1186/1471-2105-12-490.

30. Zerarka, M., David, J. and Aboulhamid, E. M. (2004), “High speed emulation of gene regulatory networks using FPGAs”,

Proc. 47th Midwest Symp. Circuits Syst., Aug. 2004, pp. I–545, doi: http://dx.doi.org/10.1109/MWSCAS.2004.1354048.

http://doi.org/10.1007/s001099900023
http://doi.org/10.1093/bioinformatics/btn336
https://doi.org/10.1371%2Fjournal.pone.0069008
https://doi.org/10.1093/bioinformatics/bts036
https://doi.org/10.1016/0022-5193(73)90208-7
https://doi.org/10.1016/j.joca.2014.01.001
https://doi.org/10.1371/journal.pcbi.1003286
https://doi.org/10.1371/journal.pcbi.1003286
doi:%20https://doi.org/10.1371/journal.pcbi.1004571
https://www.researchgate.net/journal/PLoS-Computational-Biology-1553-7358
https://www.researchgate.net/journal/PLoS-Computational-Biology-1553-7358
http://dx.doi.org/10.1371/journal.pcbi.0030163
https://doi.org/10.1016%2fS0022-5193(05)80350-9
https://doi.org/10.23919/FPL.2017.8056778
https://doi.org/10.1093/bioinformatics/btx123
https://doi.org/10.3389/fphys.2018.01161
https://doi.org/10.1109/TCBB.2018.2850901

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 3

25

31. Pournara, I., Bouganis, C. and Constantinides, G. A. (2005), “FPGA-accelerated Bayesian learning for reconstruction of gene

regulatory networks”, Proc. Int. Conf. Field Programmable Logic Appl., Sep. 2005, pp. 323–328, doi:

http://dx.doi.org/10.1109/FPL.2005.1515742.

32. Ferreira, R. and Vendramini, J. C. G. (2010), “FPGA-accelerated attractor computation of scale free gene regulatory

networks”, Proc. Int. Conf. Field Program. Logic Appl., pp. 550–555, DOI: http://dx.doi.org/10.1109/FPL.2010.108.

33. Salwinski, L. and Eisenberg, D. (2004), “In silico simulation of biological network dynamics”, Nature Biotechnology,

vol. 22, no. 8, Aug. 2004, pp. 1017–1019, doi: http://dx.doi.org/10.1038/nbt991.

34. Keane, F., Bradley, C. and Ebeling, C. (2004), “A compiled accelerator for biological cell signaling simulations”, FPGA '04:

Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays, Art. no. 233, pp.

233–241, doi: https://doi.org/10.1145/968280.968313.

35. Whitesitt, J.E. (2012), Boolean Algebra and Its Applications, Courier Corporation, 192 p., available at:

https://www.scribd.com/book/365215162/Boolean-Algebra-and-Its-Applications.

36. Meurer, A., Smith, C. P., Paprocki, M. and Čertík, O. (2017), “SymPy: symbolic computing in Python”, PeerJ Comput. Sci.,

3:e103, doi: https://doi.org/10.7717/peerj-cs.103.

37. Vasylchenkov, O. G., Salnikov, D. V. and Karaman, D. G. (2022), “Hardware model for boolean network attractors search,”

Proc. of 22 Intl. scient. and pract. conf. Problems of informatics and modeling (PIM–2022), Kharkiv – Odesa, 2022, p. 20,

available at: https://repository.kpi.kharkov.ua/handle/KhPI-Press/59901.

38. Vasylchenkov, O. G., Salnikov, D. V. and Karaman, D. G. (2022), “Hardware computational infrastructure for boolean

network attractors search”, Proc. of Intl. scient. and tech. conf. Automation, electronics, information and measurement

technologies: education, science, practice, Kharkiv, Dec. 01-02, 2022, pp. 13–14, available at:

http://repository.kpi.kharkov.ua/handle/KhPI-Press/60498.

Received (Надійшла) 31.05.2023

Accepted for publication (Прийнята до друку) 16.08.2023

ВІДОМОСТІ ПРО АВТОРІВ / ABOUT THE AUTHORS

Васильченков Олег Георгійович – кандидат технічних наук, доцент кафедри автоматики та управління в технічних

системах, Національний технічний університет «Харківський політехнічний iнститут», Харків, Україна;

Oleg Vasylchenkov – Candidate of Technical Sciences, Associate Professor of the Department of automation and control in

technical systems, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.

e-mail: oleh.vasylchenkov@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0002-0969-2248.

Сальніков Дмитро Валентинович – кандидат технічних наук, асистент кафедри автоматики та управління в технічних

системах, Національний технічний університет «Харківський політехнічний iнститут», Харків, Україна;

Dmytro Salnikov – Candidate of Technical Sciences, Assistant Professor of the Department of automation and control in

technical systems, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.

e-mail: dmytro.salnikov@khpi.edu.ua; ORCID ID: http://orcid.org/0009-0007-6201-5370.

Караман Дмитро Григорович – старший викладач кафедри автоматики та управління в технічних системах,

Національний технічний університет «Харківський політехнічний iнститут», Харків, Україна;

Dmytro Karaman –Senior Lecturer of the Department of automation and control in technical systems, National Technical

University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.

e-mail: dmytro.karaman@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0002-7252-3172.

Прискорення аналізу булевих мереж регуляції генів за допомогою FPGA

О. Г. Васильченков, Д. В. Сальніков, Д. Г. Караман

Анотація . Експресія генів не відбувається довільно та спонтанно, вона підпорядковується певним

закономірностям, які можна виразити у вигляді зв’язаного графу чи мережі. Розкриття цих закономірностей вимагає

великого обсягу експериментальних досліджень і накопичення необхідної статистичної інформації. Потім ця інформація

піддається математичній обробці, яка залучає значні обчислювальні ресурси та займає багато часу. Булеві мережі часто

використовуються як основа для побудови математичних моделей у цих розрахунках. Останнім часом моделі, засновані

на булевих мережах, дедалі більше зростають у розмірі та складності, викликаючи підвищені вимоги до традиційних

програмних рішень і обчислювальних інструментів. Програмовані вентильні матриці (FPGA) — це потужна платформа з

можливістю реконфігурації для забезпечення ефективних і високопродуктивних обчислень. Використання FPGA може

значно прискорити процес обчислення послідовного ланцюга станів генів, як за рахунок використання апаратного

прискорення при обчисленні логічних залежностей, так і за рахунок реалізації масиву паралельних обчислювальних

ядер, кожне з яких може виконувати свою власне індивідуальне завдання. Іншим рішенням, яке може істотно спростити

роботу дослідників мереж регуляції генів, є створення універсальної обчислювальної архітектури, яка дозволяє

динамічно реконфігурувати свою внутрішню структуру при зміні завдання або логічних залежностей для поточної

булевої мережі. Таке рішення позбавить дослідника від необхідності виконувати весь комплекс дій з технологічної

підготовки нової конфігурації ПЛІС, від внесення змін до коду HDL, що описує мережу, до завантаження оновленої

конфігурації в апаратний прискорювач. У статті обговорюється, як використовувати FPGA для реалізації та

моделювання довільних булевих мереж, описується концепція універсальної архітектури ядра, що реконфігурується, для

обчислення логічних залежностей довільної булевої мережі та пропонується практична реалізація такого

обчислювального ядра для моделювання генної регуляції мережі.

Ключові слова: мережа регуляції генів; моделювання біологічних систем; програмовані логічні інтегральні

схеми; архітектури апаратного прискорення; булева модель мережі; системи обчислювальної біології; біоінформатика.

https://dl.acm.org/doi/proceedings/10.1145/968280
https://dl.acm.org/doi/proceedings/10.1145/968280
https://doi.org/10.1145/968280.968313
http://orcid.org/0000-0002-4540-8670
http://orcid.org/0009-0007-6201-5370
http://orcid.org/0000-0002-7252-3172

