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Abstract .  Gene expression does not occur arbitrarily and spontaneously, it obeys certain patterns that can be expressed 

as a connected graph or network. The disclosure of these patterns requires a large amount of experimental research and 

accumulation of necessary statistical information. Then this information is subjected to mathematical processing, which 

involves significant computing resources and takes a lot of time. Boolean networks are often used as the basis for building 

mathematical models in those calculations. Recently, models based on Boolean networks have increasingly grown in size 

and complexity causing increased demands on traditional software solutions and computing tools. Field-programmable gate 

arrays (FPGAs) are a powerful and reconfigurable platform for implementing efficient and high-performance computing. 

The use of FPGA will significantly speed up the process of calculating sequential chains of gene states, both through the 

use of hardware acceleration in the calculation of logical dependencies, and through the implementation of an array of 

parallel computing cores, each of which can perform its own individual task. Another solution that can significantly 

simplify the work of researchers of gene regulation networks is the creation of a universal computing architecture that will 

allow dynamic reconfiguration of its internal structure when the task or logical dependencies for the current Boolean 

network change. Such a solution will relieve the researcher of the need to perform the entire set of actions for the 

technological preparation of a new FPGA configuration, from making changes to the HDL code that describes the network 

to uploading the updated configuration to the hardware accelerator. The article discusses how to use FPGA for the 

implementation and modeling of arbitrary Boolean networks, describes the concept of a universal reconfigurable 

architecture of a logical dependency calculating core for an arbitrary Boolean network and proposes a practical 

implementation of such a calculating core for modeling gene regulation networks. 

Keywords:  gene regulatory network; biological system modeling; field-programmable gate arrays; hardware 

acceleration architectures; Boolean network model; computational biology systems; bioinformatics. 

 

Introduction 

Boolean models are widely used in modern 

research to model the behavior of the complexity of 

dynamical systems. A Boolean model is a structure that 

consists of simple nodes interconnected. Each node is a 

simple object that can be in one of two states – active or 

inactive. It is convenient to encode such an object in 

Boolean terms of states – an active state (1) and an 

inactive state (0). A change in the state of a node occurs 

under the influence of the input states of neighboring 

nodes according to certain rules. It is convenient to 

represent such rules as a Boolean function of several 

arguments. The result of evaluating the value of such a 

function will be a value that is the new state of the node. 

Thus, the model of some dynamical system can be a 

combination of very simple objects with a small number 

of possible states and transitions between states that are 

simple from the point of view of the computational 

requirements of transformation. Another advantage of 

Boolean models is the ease of scaling the model of a 

dynamic system. Adding new nodes to expand the 

system model is not a time-consuming process. Studies 

of the behavior of Boolean networks for system 

modeling have shown that such networks are 

characterized by certain features. Long-term monitoring 

of the states of the simulated system demonstrates that 

the system eventually reaches stable states or generates 

attractors. An attractor is a stable cyclic state, when a set 

of identical states is repeated for a fixed number of 

steps. Moreover, if there is some trajectory of states in 

the observed cycle of states, then this trajectory cannot 

leave this cycle of states, see, for example, [1–3]. The 

search for attractors is the main task in modeling a 

complex dynamic system. This task can be 

computationally difficult. In addition, when the system 

is expanded, the configuration and behavior of attractors 

can completely change. Also, in the most general case, 

the duration of the transition state leading to the 

attractor can be long [4]. It should also be noted that the 

dynamic system model built using the Boolean system 

is stochastic. Therefore, the simulation process must be 

run several times to get the average dynamic behavior 

of the system. Thus, the total simulation time can be 

significant. 

It can be concluded that the use of Boolean models 

is a convenient tool for modeling complex dynamic 

systems, since the model of such a system based on a 

Boolean network is a simple combination of 

functionally simple nodes with an elementary set of 

states. The disadvantages of using Boolean models 

include a significant increase in the computational 

complexity of the model with an increase in the size of 

the model, the non-triviality of the search for the key 

characteristics of the model, which include attractors 

inherent in the model and static states. 

One of the approaches in the study of complex 

diseases is now the analysis of behavior in gene 

regulatory networks (GNR). In the literature, there are 

studies based on data sources for models of such 
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diseases as models of T-cell leukemia of large granular 

lymphocytes [5], prostate cancer [6], signaling pathways 

involved in cancer [6, 7], colon cancer [8], Fanconi's 

anemia and breast cancer [9]. Genes are quite simple 

chemical and biological objects in terms of a set of 

states that interact with each other, thus forming the 

genotype of an organism. Boolean models [10] are a 

possible alternative approach to the study of GRN and 

are used in the systems biology community [11–16]. 

Boolean network models can help build a qualitative 

description of the GRN. The concentrations or activities 

of chemicals can be represented using a finite set of 

discrete values. When constructing a Boolean GNR 

model, synchronous and asynchronous schemes for 

updating cell states can be applied. The synchronous 

circuit is simpler and more understandable. Time in 

such a scheme is discrete and the state of all cells of the 

model is updated at the same time for all elements of the 

model. A Boolean network with a synchronous circuit is 

easier to build and easier to model. But a model with a 

synchronous scheme is unlikely to be adequate to a real 

biological object with its inherent variety of states. An 

asynchronous scheme for updating model states seems 

to be more adequate. The asynchronous scheme [17] 

takes into account that the update of states occurs at 

arbitrary times and this is due to the different reaction 

rates of biological systems. In [18], it is proposed to 

distinguish between various asynchronous state update 

schemes such as deterministic asynchronous, stochastic 

asynchronous, random asynchronous, etc. 

Thus, it makes sense to consider models of 

dynamic biological systems using Boolean networks 

with asynchronous state updates. The paper describes 

general approaches and methods for generating such 

models, as well as the possibilities of practical hardware 

implementation of such models. 

Related Works 

The simplest simulation systems are synchronous 

simulators. These include those that perform 

simulations in this way and include simulators such as 

BooleanNet [19] and BoolNet [20]. If modeled using 

asynchronous system state updates, then the system 

analysis time will be very significant precisely because 

of the difficulty of adequately implementing such 

parallelism. However, these systems are used for GNR 

analysis and there are a number of problems that can be 

solved with their help. This is a feature of the digital 

approach to modeling. The disadvantage of synchronous 

modeling is the complete inconsistency of the complex 

biological system being modeled. Processes in a 

biological system are performed simultaneously, which 

is difficult to implement digitally. 

An interesting modeling technique is the use of 

decision diagrams. For example, the method of binary 

decision diagrams (BDD). In this method, for the system 

model to represent the model, its decomposition is 

performed and rigid links between its components are 

established [28]. The simulation systems geneFAtt [26] 

and boolSim/genYsis [27] are another variant of the 

decision diagram, which is called ROBDD — reduced 

ordered binary decision diagrams. This method is 

convenient for representing complex logical functions 

and uses a directed acyclic graph to represent the model. 

Binary decision methods are symbolic and do not go 

through the entire state space. How often does the 

network analysis modeling process with TEMporal-

LOGic specifications (Antelope) use model validation 

tools, a set of methods for automatically checking the 

properties of discrete systems, as well as for analyzing 

and constructing Boolean GRNs [29]. Model validators 

can prove properties of an infinite number of paths. Also, 

they can handle new, unexpected properties. It is noted 

that the main disadvantage of such methods is the 

impossibility of estimating the amount of memory 

required to complete the simulation, therefore, such 

methods require significant computing power. When 

using symbolic methods, attractors become available only 

at the very end of the simulation, while the computing 

power, in particular memory, may not be enough and the 

simulation process will end without results. 

The use of FPGAs for building models seems 

promising. It has already been mentioned above that one 

of the main requirements for modeling tools is the 

possibility of parallel processing of the state space. This 

is a consequence of using the asynchronous state-space 

change model. There are a fairly large number of works 

in which the authors use FPGAs and achieve significant 

results in terms of the adequacy of the computational 

model, as well as acceptable simulation time. In [30], 

[31], [32], the calculation of scale-free GRNs was 

proposed; the search for attractors was accelerated by 

the use of FPGAs. Also, in some works [33], [34], 

variants of the Gillespie stochastic simulation algorithm 

on FPGAs are implemented. The above sources 

demonstrate the ability to use FPGA technology to 

simulate variants of the Gillespie algorithm, achieving 

performance up to 20 times faster than a competing 

general-purpose CPU. 

Methods of hardware implementation 

With an increase in the number of genes in the 

studied gene regulatory networks, the performance of 

the selected software and hardware tools becomes an 

important factor. When the dimension reaches dozens of 

genes, the search for attractors by successive 

enumeration of all possible transitions between different 

combinations of gene states can take weeks and even 

months of continuous operation of software tools, even 

if very productive computing resources are used. In this 

case, it is obvious that there is a desire to speed up the 

calculation of chains of possible gene states as much as 

possible, as well as to parallelize the calculation 

processes for different states. A freely configurable 

hardware architecture such as an FPGA is great for this. 

The FPGA structure just allows you to implement any 

number of arbitrary rather complex logical 

dependencies, has sufficient resources to store state 

values, and can be configured in such a way as to 

implement a large number of parallel computing cores. 

The number of simultaneously working computing 

cores can be limited only by the complexity of the 

simulated Boolean network and the available resources 

of the selected FPGA chip [37].  
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Consider a simplified example of a Boolean gene 

regulation network that includes four genes 
{G1, G2, G3, G4}, to clearly demonstrate the basic 

principles proposed in this article. The Boolean network 

is defined by the following system of logical equations, 

which allow, based on the current state of the genes, to 

calculate their next state: 

G1* = G4 

G2* = G2 

G3* = (! G1G3)                                                         (1) 

G4* = ((! G1  ! G4)(! G2  ! G1) 

   (G2  ! G4) (G2  G4)) 

To the left of the equal sign, new values of the 

gene states are formed, they are indicated with an 

asterisk symbol. At the next iteration of calculations, 

these values will be used in the expressions to the right 

of the equal sign. Logical operations are performed on 

the current values of the gene states: by the symbol ! the 

logical inversion is denoted, by symbols & and | the 

logical operations AND and OR, respectively, are 

indicated. The implementation of the presented system 

of logical equations is shown in Fig. 1.  

 

 
а 

 
b 

Fig. 1. Implementation of Boolean network using logic 

elements (a) or FPGA Look-Up Tables (b) 

 
In general, the scheme for calculating the states of 

the Boolean network genes must be sequential, since the 

obtained set of values of the gene states must be 

iteratively used to obtain the next set, then the next, and 

so on. To do this, a multi-bit memory element (register) 

is introduced into the circuit, which remembers the 

intermediate state of all genes and allows you to pass 

through the entire chain of successive states and, 

ultimately, detect the looping of the chain and trap states 

— attractors [38]. A circuit that can be easily 

implemented in FPGA hardware is shown in Fig. 2. 

 

 
Fig. 2. Proposed structure of the FPGA-based Boolean 

network sequencer 

 
In fact, any Boolean network represents a finite 

state machine. Each state vector represents the current 

state values of all genes according to Boolean functions 

in a network, while the transition condition may be 

represented as a block of logic to compute the next 

state.  

Such a block of logic may be implemented as a 

raw fixed logic (non-flexible way) or as a configurable 

block, that can compute the state for any set of logic 

functions. The second option will be slightly inferior in 

performance and consume more resources than the first 

but gives an opportunity to quickly prepare for 

modeling any Boolean network topology without the 

need to perform laborious and time-consuming steps of 

technological synthesis and preparation of a new 

configuration for the FPGA chip. Thus, it is more useful 

in the case of usage of software tools for research or 

network structure experiments. 
 

 
Fig. 3. Configurable logic element 

 

One of the options to implement the next state 

selection logic is to use memory. In such cases, the 

input of the block is the binary value for the current 

state. The output is the value for the next state. Thus, to 

implement a transition table for a one 16-gene Boolean 

network function requires 64Kb of memory. While 32-

gene function requires significantly more memory – 

over 4GB. 64KB of memory may be allocated even in 

FPGA memory blocks, but a bigger gene count requires 

a bunch of dedicated DRAM chips to follow such 

schema.  

For implementation on the FPGA, the resulting 

multi-output combinational circuit is described using the 

selected HDL language, after which the operations of 

synthesis, Place and Route, and generation of a 

bitstream configuration file are performed. At the same 

time, such an approach is not as flexible as desired and 
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requires regeneration of HDL design for each individual 

network topology if errors were found and corrected, 

and if the original model was refined or it is necessary 

to perform simulation run with a change in the behavior 

of a particular gene. This includes HDL code 

corrections, complete design synthesis, and fitting for 

certain FPGA chips before topology simulation and/or 

attractors search.  

Obviously, software tools to perform automatic 

code generation, synthesis and other required steps may 

be implemented. In any case that doesn't eliminate the 

time-consuming operations of FPGA design 

compilation and load of generated binary to the device. 

Such an approach can take significantly more time than 

the simulation itself. 

Mostly, simulation of gene reduction problems is 

limited to some predefined set of parameters, like 

maximum attractor length and number of genes in a 

network. For such a parameter subset, it is possible to 

create a single user-configurable component that can be 

configured to simulate an arbitrary Boolean network 

with characteristics that do not exceed some constraints. 

Such a component can be configured using a special 

code that is created using application software, without 

the need to make changes to the HDL code of the 

project and perform all stages of synthesis, 

technological preparation of the project and 

reconfiguring FPGA resources.  

At the same time, state calculation logic might be 

implemented with a configurable block which includes 

some amount of dedicated logic elements with 

configurable connections between them. Such a 

structure can be seen in Fig. 3. This approach gives 

significantly lower memory consumption but uses logic 

elements of the FPGA. 

Principles of reconfiguration 

The primary objective of the proposed hardware 

accelerator is to search for closed-loop structures in the 

chain of consequent gene states. The researcher might 

need to change several transition functions in a Boolean 

network repeatedly to conclude how such a structure 

works and what properties it has. Taking this into 

consideration, we need to provide a reliable way to use 

the proposed accelerator in such conditions. 

The proposed hardware structure is based on the 

principle that any Boolean function can be implemented 

as a Disjunctive Normal Form - a logical sum of logical 

products (the so-called SOP form of representing a 

logical expression) that includes input variables or their 

inverses. Another principle is the use of multi-output 

implicants. This principle can be used only when the 

implemented logical equations depend on the same set 

of input variables, which is the case in our case when 

constructing logical dependencies for Boolean 

networks. The multi-output implicants of a Boolean 

function are a reduced set of logical products of the 

input variables, which are sufficient to implement each 

logical expression.  

The block diagram of the proposed solution for the 

implementation of the configurable logic element is 

shown in Fig. 4. 

 

 
Fig. 4. Configurable logic of proposed hardware accelerator 

 
The circuit contains a matrix of programmable 

interconnect 1, which ensures the formation of the 

necessary implicant products pi using a set of m-input 

AND logic elements, as well as a matrix of 

programmable interconnect 2, in which the supply of 

the required products to the s-input OR logic elements 

is controlled, which provide implementation of logical 

dependencies of the required Boolean network and the 

formation of new values of gene variables. 

Both matrices include special selector elements, the 

operation of which is determined by a special code that is 

fed to their configuration interface. The interfaces of all 

configurable elements are combined in such a way as to 

simultaneously configure their operation when a serial bit 

stream is fed to the common configuration interface of 

the logical dependency implementation module. 

The configuration sequence is formed on the 

researcher's personal computer using special application 
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software. Then, the way this sequence is loaded may 

differ depending on the chosen hardware platform and 

the way the system interacts with the user. Examples of 

system organization at the top level of its presentation 

are shown in Fig. 5. 

 

   
   а                                                    b 

Fig. 5. Configuration interface with memory mapped 

device (a) and external interface converter (b) 

 

It is widely adopted in the biological community to 

use SBML files to share gene models and write R 

language scripts to perform research. From a 

programmer perspective, each SBML file is an XML-

formatted entity that contains a genes list and a 

collection of Boolean algebra equations – transition 

functions.  

The proposed software should allow the 

processing of such models, load equations from the file 

and use them. At the same time, a user should have the 

possibility to express equations as a program and 

perform a research task with it (attractors search, 

topology optimization etc.). 

The proposed hardware structure should receive a 

configuration, a sequence of bytes, that represent mux 

switches configurations and other interconnect option 

switches states. From the algorithmic perspective, it is 

convenient to use one of the normal Boolean forms 

(conjunctive or disjunctive) to generate configuration 

bytes. There is not much difference in which form to 

use. We use a Disjunctive Normal Form (DNF) for 

proposed structures and hardware. 

Moreover, users might use non-optimal gene 

transition functions.  

This leads to a waste of hardware resources and 

performance loss. It is unlikely that a lot of biologists 

have deep Boolean algebra knowledge. While 

optimization and conversion to a normal form are well 

studied in the literature [35] it is appearing a quite hard 

and annoying task for most researchers. Certainly, 

making a calculation each time after an equation change 

is not convenient and time-wasting. Thus, configuration 

software should verify the equation, optimize it if 

possible and convert it to DNF. 

As a result, one can conclude general steps to 

perform research of the Boolean network structure 

presented on Fig. 6.  

At the moment, we adopted Python usage. It is 

more convenient to implement SBML parser and 

accelerator configuration builder. In addition, there is a 

SymPy [36] package that allows to work with Boolean 

symbol arithmetic, minimize Boolean logic functions 

and convert them to DNF. 

 

 
Fig. 6. Boolean function network research process  

 

The hardware structure of the proposed accelerator 

requires configuration data built in an appropriate 

format.  

For a basic network we should perform the 

following steps to build a configuration: 

1. Load SBML file to obtain involved genes list 

and transition functions. 

2. Translate gene names to indexed form. 

3. Convert transition functions to a product of 

sums form. 

4. Minimize Boolean functions. 

5. Split transition functions to sums and 

products. 

6. Build binary configuration data and store it to 

the FPGA device. 

Ultimately, the configuration must be a multi-bit 

binary vector in which the configuration sequences for 

each interconnect matrix for all logical blocks of the 

hardware accelerator are concatenated. To ensure the 

delivery of the configuration to the device via the 

selected interface (this can be, for example, the UART 

interface that is widely used and used in digital 

technology, or rather, its implementation over the USB 

computer interface, special high-speed interfaces can 

also be used, such as PCI, or network interface, such as 

Ethernet) you need to add special headers to the 

common packet indicating the target nodes for which 

the transferred configuration is intended, as well as a 

checksum field to check the integrity of the 

configuration before applying it to the target logical 

block.  

An example of the configuration package structure 

is shown in Fig. 7. 

 

 
Fig. 7. Configuration package structure 
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Results 

In this paper, we propose a flexible method of 

implementation of a hardware accelerator device, 

capable to speedup boolean gene regulatory networks 

simulation and analysis. 

Results of FPGA resources consumption are 

presented in Table 1. 
 

Table 1 – FPGA Resources Consumption 

Implementation 

FPGA Resources 

Registers 
Memory 

blocks 
LUTs 

Raw logic 32 0 25120 

Complete 

solution 
512 65K×16 37680 

 

For the raw logic approach, time to get execution 

results consists of FPGA design synthesis, binary load 

time and execution time. In contrast, our approach time 

consists only of binary load time, configuration time 

and execution time. By configuration time we assume a 

lightweight “compilation” of mux enable and neg logic 

enable switches states.  

Results of FPGA performance comparison are 

presented in Table 2. 
 

Table 2 – Performance estimation 

Implementation 
Execution 

performance 
Startup time 

Raw logic 1clk per state ~ 7 min 

Complete 

solution 
1clk per mux state < 10 sec 

 

Our results show that proposed tools enable 

simulation of Boolean network models with increased 

performance and flexibility. While other solutions focus 

on execution performance, we also consider 

startup/compilation/synthesis time. Thus, overall 

performance has increased.  

As a future research direction, we see a study of 

different Boolean gene reduction models to find the 

most relevant next state selection structure in terms of 

performance/flexibility. 

Conclusions 

The article considers the possibility of using FPGA 

to study the processes of gene co-expression, presented 

as a model based on a Boolean network. It is difficult to 

overestimate the importance of this solution: the study 

of co-expression for various cases in the world of 

biology and medicine will allow researchers to better 

understand the course of biological processes in living 

cells, which, in turn, can help in the search for 

treatments for serious diseases, various types of cancer, 

etc. From one side proposed approach is simple and 

suitable for building simulation structures but 

informative enough and able to get relevant results. 

Approaches used for Boolean network simulation 

are analyzed. One of the main problems for most 

approaches is relatively long time for gene Boolean 

network re-simulation if some changes are needed after 

previous simulation.  

Most existing simulation software systems require 

processes that include several steps such as updating the 

model, transforming and simplification of Boolean 

functions, applying changes to selected simulation 

software systems etc. In this article an approach is 

proposed that could reduce total modelling time 

significantly. The idea is to implement a generic 

infrastructure that could be quickly reconfigured for 

particular gene network instance. The promising idea is 

using FPGA to implement computation unit. It could be 

implemented with external CPU based or computation-

specific hardware, however, there are some published 

works that proposed the use of FPGA–based solutions 

for simulation. As it was said before Boolean network 

of any genes amount could be represented by set of 

CNF/DNF simplified Boolean functions. It could be 

mapped easily to FPGA structure because of hardware 

array of logic gates which FPGA consists of. We 

proposed FPGA-based generic structure that could be 

quickly reconfigured using general purpose I/O 

interface (UART as an example). Specifics of this 

hardware unit were analyzed. It provides general 

functionalities of Boolean network element such as: 

deterministic state set, state transitions according to 

implemented Boolean functions, connection to attractor 

search engine.  

The configurable part of computing unit is able to 

implement any set of n CNF/DNF Boolean functions 

that describe gene Boolean network to be studied. Also, 

an auxiliary part that provides configuring properties 

was added. Proposed implementation uses Boolean 

functions converted to DNF. Computing unit includes 

set of AND/OR logic gates according to number of 

genes that can be simulated. Configuring subsystem 

builds internal interconnections for AND/OR gate 

inputs according to loaded configuration bitstream that 

will provide desired logic function set for simulation. 

Also, possible approach for configuration structure 

is described that allows to configure FPGA device used 

for simulation. Configuration bitstream could be 

prepared using general purpose PC or another suitable 

computing device using high-level language like 

Python.  

Configuration data is presented as binary sequence 

and could be uploaded to FPGA using standard interface 

like UART. 

FPGA resources utilization and reduce of 

simulation time were estimated if proposed solution is 

used for gene Boolean network simulation. 
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Прискорення аналізу булевих мереж регуляції генів за допомогою FPGA 

О. Г. Васильченков, Д. В. Сальніков, Д. Г. Караман 

Анотація .  Експресія генів не відбувається довільно та спонтанно, вона підпорядковується певним 

закономірностям, які можна виразити у вигляді зв’язаного графу чи мережі. Розкриття цих закономірностей вимагає 

великого обсягу експериментальних досліджень і накопичення необхідної статистичної інформації. Потім ця інформація 

піддається математичній обробці, яка залучає значні обчислювальні ресурси та займає багато часу. Булеві мережі часто 

використовуються як основа для побудови математичних моделей у цих розрахунках. Останнім часом моделі, засновані 

на булевих мережах, дедалі більше зростають у розмірі та складності, викликаючи підвищені вимоги до традиційних 

програмних рішень і обчислювальних інструментів. Програмовані вентильні матриці (FPGA) — це потужна платформа з 

можливістю реконфігурації для забезпечення ефективних і високопродуктивних обчислень. Використання FPGA може 

значно прискорити процес обчислення послідовного ланцюга станів генів, як за рахунок використання апаратного 

прискорення при обчисленні логічних залежностей, так і за рахунок реалізації масиву паралельних обчислювальних 

ядер, кожне з яких може виконувати свою власне індивідуальне завдання. Іншим рішенням, яке може істотно спростити 

роботу дослідників мереж регуляції генів, є створення універсальної обчислювальної архітектури, яка дозволяє 

динамічно реконфігурувати свою внутрішню структуру при зміні завдання або логічних залежностей для поточної 

булевої мережі. Таке рішення позбавить дослідника від необхідності виконувати весь комплекс дій з технологічної 

підготовки нової конфігурації ПЛІС, від внесення змін до коду HDL, що описує мережу, до завантаження оновленої 

конфігурації в апаратний прискорювач. У статті обговорюється, як використовувати FPGA для реалізації та 

моделювання довільних булевих мереж, описується концепція універсальної архітектури ядра, що реконфігурується, для 

обчислення логічних залежностей довільної булевої мережі та пропонується практична реалізація такого 

обчислювального ядра для моделювання генної регуляції мережі.  

Ключові  слова:  мережа регуляції генів; моделювання біологічних систем; програмовані логічні інтегральні 

схеми; архітектури апаратного прискорення; булева модель мережі; системи обчислювальної біології; біоінформатика. 
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