Advanced Information Systems. 2023. Vol. 7, No. 3 ISSN 2522-9052

Methods of information systems synthesis

UDC 004.312.2, 004.383 (577.218) doi: https://doi.org/10.20998/2522-9052.2023.3.03

Oleg Vasylchenkov, Dmytro Salnikov, Dmytro Karaman

National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

ACCELERATION OF BOOLEAN GENE REGULATORY NETWORKS ANALYSIS
USING FPGA

Abstract. Gene expression does not occur arbitrarily and spontaneously, it obeys certain patterns that can be expressed
as a connected graph or network. The disclosure of these patterns requires a large amount of experimental research and
accumulation of necessary statistical information. Then this information is subjected to mathematical processing, which
involves significant computing resources and takes a lot of time. Boolean networks are often used as the basis for building
mathematical models in those calculations. Recently, models based on Boolean networks have increasingly grown in size
and complexity causing increased demands on traditional software solutions and computing tools. Field-programmable gate
arrays (FPGAs) are a powerful and reconfigurable platform for implementing efficient and high-performance computing.
The use of FPGA will significantly speed up the process of calculating sequential chains of gene states, both through the
use of hardware acceleration in the calculation of logical dependencies, and through the implementation of an array of
parallel computing cores, each of which can perform its own individual task. Another solution that can significantly
simplify the work of researchers of gene regulation networks is the creation of a universal computing architecture that will
allow dynamic reconfiguration of its internal structure when the task or logical dependencies for the current Boolean
network change. Such a solution will relieve the researcher of the need to perform the entire set of actions for the
technological preparation of a new FPGA configuration, from making changes to the HDL code that describes the network
to uploading the updated configuration to the hardware accelerator. The article discusses how to use FPGA for the
implementation and modeling of arbitrary Boolean networks, describes the concept of a universal reconfigurable
architecture of a logical dependency calculating core for an arbitrary Boolean network and proposes a practical

implementation of such a calculating core for modeling gene regulation networks.

Keywords:

gene regulatory network; biological system modeling; field-programmable gate arrays; hardware

acceleration architectures; Boolean network model; computational biology systems; bioinformatics.

Introduction

Boolean models are widely used in modern
research to model the behavior of the complexity of
dynamical systems. A Boolean model is a structure that
consists of simple nodes interconnected. Each node is a
simple object that can be in one of two states — active or
inactive. It is convenient to encode such an object in
Boolean terms of states — an active state (1) and an
inactive state (0). A change in the state of a node occurs
under the influence of the input states of neighboring
nodes according to certain rules. It is convenient to
represent such rules as a Boolean function of several
arguments. The result of evaluating the value of such a
function will be a value that is the new state of the node.
Thus, the model of some dynamical system can be a
combination of very simple objects with a small number
of possible states and transitions between states that are
simple from the point of view of the computational
requirements of transformation. Another advantage of
Boolean models is the ease of scaling the model of a
dynamic system. Adding new nodes to expand the
system model is not a time-consuming process. Studies
of the behavior of Boolean networks for system
modeling have shown that such networks are
characterized by certain features. Long-term monitoring
of the states of the simulated system demonstrates that
the system eventually reaches stable states or generates
attractors. An attractor is a stable cyclic state, when a set
of identical states is repeated for a fixed number of

steps. Moreover, if there is some trajectory of states in
the observed cycle of states, then this trajectory cannot
leave this cycle of states, see, for example, [1-3]. The
search for attractors is the main task in modeling a
complex dynamic system. This task can be
computationally difficult. In addition, when the system
is expanded, the configuration and behavior of attractors
can completely change. Also, in the most general case,
the duration of the transition state leading to the
attractor can be long [4]. It should also be noted that the
dynamic system model built using the Boolean system
is stochastic. Therefore, the simulation process must be
run several times to get the average dynamic behavior
of the system. Thus, the total simulation time can be
significant.

It can be concluded that the use of Boolean models
is a convenient tool for modeling complex dynamic
systems, since the model of such a system based on a
Boolean network is a simple combination of
functionally simple nodes with an elementary set of
states. The disadvantages of using Boolean models
include a significant increase in the computational
complexity of the model with an increase in the size of
the model, the non-triviality of the search for the key
characteristics of the model, which include attractors
inherent in the model and static states.

One of the approaches in the study of complex
diseases is now the analysis of behavior in gene
regulatory networks (GNR). In the literature, there are
studies based on data sources for models of such

18

© Vasylchenkov O., Salnikov D., Karaman D., 2023

ISSN 2522-9052

CyuacHi inpopmariitai cuctemu. 2023. T. 7, Ne 3

diseases as models of T-cell leukemia of large granular
lymphocytes [5], prostate cancer [6], signaling pathways
involved in cancer [6, 7], colon cancer [8], Fanconi's
anemia and breast cancer [9]. Genes are quite simple
chemical and biological objects in terms of a set of
states that interact with each other, thus forming the
genotype of an organism. Boolean models [10] are a
possible alternative approach to the study of GRN and
are used in the systems biology community [11-16].
Boolean network models can help build a qualitative
description of the GRN. The concentrations or activities
of chemicals can be represented using a finite set of
discrete values. When constructing a Boolean GNR
model, synchronous and asynchronous schemes for
updating cell states can be applied. The synchronous
circuit is simpler and more understandable. Time in
such a scheme is discrete and the state of all cells of the
model is updated at the same time for all elements of the
model. A Boolean network with a synchronous circuit is
easier to build and easier to model. But a model with a
synchronous scheme is unlikely to be adequate to a real
biological object with its inherent variety of states. An
asynchronous scheme for updating model states seems
to be more adequate. The asynchronous scheme [17]
takes into account that the update of states occurs at
arbitrary times and this is due to the different reaction
rates of biological systems. In [18], it is proposed to
distinguish between various asynchronous state update
schemes such as deterministic asynchronous, stochastic
asynchronous, random asynchronous, etc.

Thus, it makes sense to consider models of
dynamic biological systems using Boolean networks
with asynchronous state updates. The paper describes
general approaches and methods for generating such
models, as well as the possibilities of practical hardware
implementation of such models.

Related Works

The simplest simulation systems are synchronous
simulators. These include those that perform
simulations in this way and include simulators such as
BooleanNet [19] and BoolNet [20]. If modeled using
asynchronous system state updates, then the system
analysis time will be very significant precisely because
of the difficulty of adequately implementing such
parallelism. However, these systems are used for GNR
analysis and there are a number of problems that can be
solved with their help. This is a feature of the digital
approach to modeling. The disadvantage of synchronous
modeling is the complete inconsistency of the complex
biological system being modeled. Processes in a
biological system are performed simultaneously, which
is difficult to implement digitally.

An interesting modeling technique is the use of
decision diagrams. For example, the method of binary
decision diagrams (BDD). In this method, for the system
model to represent the model, its decomposition is
performed and rigid links between its components are
established [28]. The simulation systems geneFALtt [26]
and boolSim/genYsis [27] are another variant of the
decision diagram, which is called ROBDD — reduced
ordered binary decision diagrams. This method is

convenient for representing complex logical functions
and uses a directed acyclic graph to represent the model.
Binary decision methods are symbolic and do not go
through the entire state space. How often does the
network analysis modeling process with TEMporal-
LOGic specifications (Antelope) use model validation
tools, a set of methods for automatically checking the
properties of discrete systems, as well as for analyzing
and constructing Boolean GRNs [29]. Model validators
can prove properties of an infinite number of paths. Also,
they can handle new, unexpected properties. It is noted
that the main disadvantage of such methods is the
impossibility of estimating the amount of memory
required to complete the simulation, therefore, such
methods require significant computing power. When
using symbolic methods, attractors become available only
at the very end of the simulation, while the computing
power, in particular memory, may not be enough and the
simulation process will end without results.

The use of FPGAs for building models seems
promising. It has already been mentioned above that one
of the main requirements for modeling tools is the
possibility of parallel processing of the state space. This
is a consequence of using the asynchronous state-space
change model. There are a fairly large number of works
in which the authors use FPGAs and achieve significant
results in terms of the adequacy of the computational
model, as well as acceptable simulation time. In [30],
[31], [32], the calculation of scale-free GRNs was
proposed; the search for attractors was accelerated by
the use of FPGAs. Also, in some works [33], [34],
variants of the Gillespie stochastic simulation algorithm
on FPGAs are implemented. The above sources
demonstrate the ability to use FPGA technology to
simulate variants of the Gillespie algorithm, achieving
performance up to 20 times faster than a competing
general-purpose CPU.

Methods of hardware implementation

With an increase in the number of genes in the
studied gene regulatory networks, the performance of
the selected software and hardware tools becomes an
important factor. When the dimension reaches dozens of
genes, the search for attractors by successive
enumeration of all possible transitions between different
combinations of gene states can take weeks and even
months of continuous operation of software tools, even
if very productive computing resources are used. In this
case, it is obvious that there is a desire to speed up the
calculation of chains of possible gene states as much as
possible, as well as to parallelize the calculation
processes for different states. A freely configurable
hardware architecture such as an FPGA is great for this.
The FPGA structure just allows you to implement any
number of arbitrary rather complex logical
dependencies, has sufficient resources to store state
values, and can be configured in such a way as to
implement a large number of parallel computing cores.
The number of simultaneously working computing
cores can be limited only by the complexity of the
simulated Boolean network and the available resources
of the selected FPGA chip [37].

19

Advanced Information Systems. 2023. Vol. 7, No. 3

ISSN 2522-9052

Consider a simplified example of a Boolean gene
regulation network that includes four genes
{G1,G2,G3,G4}, to clearly demonstrate the basic
principles proposed in this article. The Boolean network
is defined by the following system of logical equations,
which allow, based on the current state of the genes, to
calculate their next state:

G1* =G4
G2* = G2
G3* = (1 G1|G3) 1)
Ga*=((1G1&!G4)|(1G2& ! G1)]

(G2 & 1 G4) | (G2 & G4))

To the left of the equal sign, new values of the
gene states are formed, they are indicated with an
asterisk symbol. At the next iteration of calculations,
these values will be used in the expressions to the right
of the equal sign. Logical operations are performed on
the current values of the gene states: by the symbol ! the
logical inversion is denoted, by symbols & and | the
logical operations AND and OR, respectively, are
indicated. The implementation of the presented system
of logical equations is shown in Fig. 1.

0 G1*
0 G2*
Glo
G2 O »—l >O— o G3*
G3 O
G4 O
E AND
J OR |0 G4*
E g AND
E AND
AND
a
G1 O— ———0 G1*
G2 O 0 G2*
G3 O G3*
G4 O —0 G4*
LuT
el
24—
LuT
M
b

Fig. 1. Implementation of Boolean network using logic
elements (a) or FPGA Look-Up Tables (b)

In general, the scheme for calculating the states of
the Boolean network genes must be sequential, since the
obtained set of values of the gene states must be
iteratively used to obtain the next set, then the next, and
so on. To do this, a multi-bit memory element (register)

is introduced into the circuit, which remembers the
intermediate state of all genes and allows you to pass
through the entire chain of successive states and,
ultimately, detect the looping of the chain and trap states
— attractors [38]. A circuit that can be easily
implemented in FPGA hardware is shown in Fig. 2.

n Current State

To attrator
search
scheme

n n n
LOGIC REG

Initial n

State

New
State

Current
State

Fig. 2. Proposed structure of the FPGA-based Boolean
network sequencer

In fact, any Boolean network represents a finite
state machine. Each state vector represents the current
state values of all genes according to Boolean functions
in a network, while the transition condition may be
represented as a block of logic to compute the next
state.

Such a block of logic may be implemented as a
raw fixed logic (non-flexible way) or as a configurable
block, that can compute the state for any set of logic
functions. The second option will be slightly inferior in
performance and consume more resources than the first
but gives an opportunity to quickly prepare for
modeling any Boolean network topology without the
need to perform laborious and time-consuming steps of
technological synthesis and preparation of a new
configuration for the FPGA chip. Thus, it is more useful
in the case of usage of software tools for research or
network structure experiments.

configuration
fixed ¢
n L=

>
D)

>3 n

- |

n ') n

]

oY

LOGIC LOGIC

Fig. 3. Configurable logic element

One of the options to implement the next state
selection logic is to use memory. In such cases, the
input of the block is the binary value for the current
state. The output is the value for the next state. Thus, to
implement a transition table for a one 16-gene Boolean
network function requires 64Kb of memory. While 32-
gene function requires significantly more memory —
over 4GB. 64KB of memory may be allocated even in
FPGA memory blocks, but a bigger gene count requires
a bunch of dedicated DRAM chips to follow such
schema.

For implementation on the FPGA, the resulting
multi-output combinational circuit is described using the
selected HDL language, after which the operations of
synthesis, Place and Route, and generation of a
bitstream configuration file are performed. At the same
time, such an approach is not as flexible as desired and

20

ISSN 2522-9052

CyuacHi inpopmariitai cuctemu. 2023. T. 7, Ne 3

requires regeneration of HDL design for each individual
network topology if errors were found and corrected,
and if the original model was refined or it is necessary
to perform simulation run with a change in the behavior
of a particular gene. This includes HDL code
corrections, complete design synthesis, and fitting for
certain FPGA chips before topology simulation and/or
attractors search.

Obviously, software tools to perform automatic
code generation, synthesis and other required steps may
be implemented. In any case that doesn't eliminate the
time-consuming operations of FPGA design
compilation and load of generated binary to the device.
Such an approach can take significantly more time than
the simulation itself.

Mostly, simulation of gene reduction problems is
limited to some predefined set of parameters, like
maximum attractor length and number of genes in a
network. For such a parameter subset, it is possible to
create a single user-configurable component that can be
configured to simulate an arbitrary Boolean network
with characteristics that do not exceed some constraints.
Such a component can be configured using a special
code that is created using application software, without
the need to make changes to the HDL code of the
project and perform all stages of synthesis,
technological preparation of the project and
reconfiguring FPGA resources.

At the same time, state calculation logic might be
implemented with a configurable block which includes
some amount of dedicated logic elements with

configurable connections between them. Such a
structure can be seen in Fig. 3. This approach gives
significantly lower memory consumption but uses logic
elements of the FPGA.

Principles of reconfiguration

The primary objective of the proposed hardware
accelerator is to search for closed-loop structures in the
chain of consequent gene states. The researcher might
need to change several transition functions in a Boolean
network repeatedly to conclude how such a structure
works and what properties it has. Taking this into
consideration, we need to provide a reliable way to use
the proposed accelerator in such conditions.

The proposed hardware structure is based on the
principle that any Boolean function can be implemented
as a Disjunctive Normal Form - a logical sum of logical
products (the so-called SOP form of representing a
logical expression) that includes input variables or their
inverses. Another principle is the use of multi-output
implicants. This principle can be used only when the
implemented logical equations depend on the same set
of input variables, which is the case in our case when
constructing logical dependencies for Boolean
networks. The multi-output implicants of a Boolean
function are a reduced set of logical products of the
input variables, which are sufficient to implement each
logical expression.

The block diagram of the proposed solution for the
implementation of the configurable logic element is
shown in Fig. 4.

configuration load interface

h 4

n

Gl:n D‘h

programmable interconnect 1

I’ﬁl l m l’ m
[AND, | [AND; | [AND; |

m

configuration load interface

Pl P2 P3 Dk s g1
OR,
s 82
OR,
i n
programmable interconnect 2 ——0 G*,,
s £gn
OR,
7'y

Fig. 4. Configurable logic of proposed hardware accelerator

The circuit contains a matrix of programmable
interconnect 1, which ensures the formation of the
necessary implicant products p; using a set of m-input
AND logic elements, as well as a matrix of
programmable interconnect 2, in which the supply of
the required products to the s-input OR logic elements
is controlled, which provide implementation of logical
dependencies of the required Boolean network and the
formation of new values of gene variables.

Both matrices include special selector elements, the
operation of which is determined by a special code that is
fed to their configuration interface. The interfaces of all
configurable elements are combined in such a way as to
simultaneously configure their operation when a serial bit
stream is fed to the common configuration interface of
the logical dependency implementation module.

The configuration sequence is formed on the
researcher's personal computer using special application

21

Advanced Information Systems. 2023. Vol. 7, No. 3

ISSN 2522-9052

software. Then, the way this sequence is loaded may
differ depending on the chosen hardware platform and
the way the system interacts with the user. Examples of
system organization at the top level of its presentation
are shown in Fig. 5.

CPU < PC
USB
FPGA é
Memory- g USB-UART
mapped P g
Configuration b s
Registers UART
I/O Interface < FPGA
a b

Fig. 5. Configuration interface with memory mapped
device (a) and external interface converter (b)

It is widely adopted in the biological community to
use SBML files to share gene models and write R
language scripts to perform research. From a
programmer perspective, each SBML file is an XML-
formatted entity that contains a genes list and a
collection of Boolean algebra equations — transition
functions.

The proposed software should allow the
processing of such models, load equations from the file
and use them. At the same time, a user should have the
possibility to express equations as a program and
perform a research task with it (attractors search,
topology optimization etc.).

The proposed hardware structure should receive a
configuration, a sequence of bytes, that represent mux
switches configurations and other interconnect option
switches states. From the algorithmic perspective, it is
convenient to use one of the normal Boolean forms
(conjunctive or disjunctive) to generate configuration
bytes. There is not much difference in which form to
use. We use a Disjunctive Normal Form (DNF) for
proposed structures and hardware.

Moreover, users might use non-optimal gene
transition functions.

This leads to a waste of hardware resources and
performance loss. It is unlikely that a lot of biologists
have deep Boolean algebra knowledge. While
optimization and conversion to a normal form are well
studied in the literature [35] it is appearing a quite hard
and annoying task for most researchers. Certainly,
making a calculation each time after an equation change
is not convenient and time-wasting. Thus, configuration
software should verify the equation, optimize it if
possible and convert it to DNF.

As a result, one can conclude general steps to
perform research of the Boolean network structure
presented on Fig. 6.

At the moment, we adopted Python usage. It is
more convenient to implement SBML parser and

accelerator configuration builder. In addition, there is a
SymPy [36] package that allows to work with Boolean
symbol arithmetic, minimize Boolean logic functions
and convert them to DNF.

Update Gene
Boolean
Functions

Build CNF/DNF
Form

Parse SMBL

Minimize
Boolean
Functions

Actor

Build Hardware
Configuration

Execute
Hardware Task

Fig. 6. Boolean function network research process

The hardware structure of the proposed accelerator
requires configuration data built in an appropriate
format.

For a basic network we should perform the
following steps to build a configuration:

1. Load SBML file to obtain involved genes list
and transition functions.

2. Translate gene names to indexed form.

3. Convert transition functions to a product of
sums form.

4. Minimize Boolean functions.

5. Split transition functions to sums and
products.

6. Build binary configuration data and store it to
the FPGA device.

Ultimately, the configuration must be a multi-bit
binary vector in which the configuration sequences for
each interconnect matrix for all logical blocks of the
hardware accelerator are concatenated. To ensure the
delivery of the configuration to the device via the
selected interface (this can be, for example, the UART
interface that is widely used and used in digital
technology, or rather, its implementation over the USB
computer interface, special high-speed interfaces can
also be used, such as PCI, or network interface, such as
Ethernet) you need to add special headers to the
common packet indicating the target nodes for which
the transferred configuration is intended, as well as a
checksum field to check the integrity of the
configuration before applying it to the target logical
block.

An example of the configuration package structure
is shown in Fig. 7.

LD CONF | LEN BLK BLK BLK

TYPE 1 N | CONF1 | CONF2 CONF N CRC
LD CONF | LEN BLK BLK BLK CRC
TYPE 2 N | CONF1 [CONF2 CONF N

Fig. 7. Configuration package structure

22

ISSN 2522-9052

CyuacHi inpopmariitai cuctemu. 2023. T. 7, Ne 3

Results

In this paper, we propose a flexible method of
implementation of a hardware accelerator device,
capable to speedup boolean gene regulatory networks
simulation and analysis.

Results of FPGA resources consumption are
presented in Table 1.

Table 1 — FPGA Resources Consumption

FPGA Resources
Implementation
P Registers | Memory LUTs
blocks
Raw logic 32 0 25120
Complete
solution 512 65K*16 37680

For the raw logic approach, time to get execution
results consists of FPGA design synthesis, binary load
time and execution time. In contrast, our approach time
consists only of binary load time, configuration time
and execution time. By configuration time we assume a
lightweight “compilation” of mux enable and neg logic
enable switches states.

Results of FPGA performance comparison are
presented in Table 2.

Table 2 — Performance estimation

. Execution .
Implementation performance Startup time
Raw logic 1clk per state ~7 min
Complete 1clk per mux state <10 sec
solution

Our results show that proposed tools enable
simulation of Boolean network models with increased
performance and flexibility. While other solutions focus
on execution performance, we also consider
startup/compilation/synthesis time. Thus, overall
performance has increased.

As a future research direction, we see a study of
different Boolean gene reduction models to find the
most relevant next state selection structure in terms of
performance/flexibility.

Conclusions

The article considers the possibility of using FPGA
to study the processes of gene co-expression, presented
as a model based on a Boolean network. It is difficult to
overestimate the importance of this solution: the study
of co-expression for various cases in the world of
biology and medicine will allow researchers to better
understand the course of biological processes in living
cells, which, in turn, can help in the search for
treatments for serious diseases, various types of cancer,

etc. From one side proposed approach is simple and
suitable for building simulation structures but
informative enough and able to get relevant results.

Approaches used for Boolean network simulation
are analyzed. One of the main problems for most
approaches is relatively long time for gene Boolean
network re-simulation if some changes are needed after
previous simulation.

Most existing simulation software systems require
processes that include several steps such as updating the
model, transforming and simplification of Boolean
functions, applying changes to selected simulation
software systems etc. In this article an approach is
proposed that could reduce total modelling time
significantly. The idea is to implement a generic
infrastructure that could be quickly reconfigured for
particular gene network instance. The promising idea is
using FPGA to implement computation unit. It could be
implemented with external CPU based or computation-
specific hardware, however, there are some published
works that proposed the use of FPGA-based solutions
for simulation. As it was said before Boolean network
of any genes amount could be represented by set of
CNF/DNF simplified Boolean functions. It could be
mapped easily to FPGA structure because of hardware
array of logic gates which FPGA consists of. We
proposed FPGA-based generic structure that could be
quickly reconfigured using general purpose 1/O
interface (UART as an example). Specifics of this
hardware unit were analyzed. It provides general
functionalities of Boolean network element such as:
deterministic state set, state transitions according to
implemented Boolean functions, connection to attractor
search engine.

The configurable part of computing unit is able to
implement any set of n CNF/DNF Boolean functions
that describe gene Boolean network to be studied. Also,
an auxiliary part that provides configuring properties
was added. Proposed implementation uses Boolean
functions converted to DNF. Computing unit includes
set of AND/OR logic gates according to number of
genes that can be simulated. Configuring subsystem
builds internal interconnections for AND/OR gate
inputs according to loaded configuration bitstream that
will provide desired logic function set for simulation.

Also, possible approach for configuration structure
is described that allows to configure FPGA device used
for simulation. Configuration bitstream could be
prepared using general purpose PC or another suitable
computing device using high-level language like
Python.

Configuration data is presented as binary sequence
and could be uploaded to FPGA using standard interface
like UART.

FPGA resources utilization and reduce of
simulation time were estimated if proposed solution is
used for gene Boolean network simulation.

REFERENCES

1. Faure, A, Naldi, A., Chaouiya, C. and Thieffry, D. (2006), “Dynamical analysis of a generic Boolean model for the control
of the mammalian cell cycle”, Bioinformatics, vol. 22, pp. 124-131, doi: http://doi.org/10.1093/bicinformatics/btl210.

23

https://doi.org/10.1093/bioinformatics/btl210

Advanced Information Systems. 2023. Vol. 7, No. 3 ISSN 2522-9052

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Li, F., Long, T., Lu, Y., Ouyang, Q. and Tang, C. (2004), “The yeast cell-cycle network is robustly designed”, Proc. Nat.
Acad. Sci., vol. 101, no. 14, pp. 4781-4786, doi: http://doi.org/10.1073/pnas.0305937101.

Huang, S. (1999), “Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis
and drug discovery”, J. Molecular Med., vol. 77, no. 6, pp. 469-480, doi:_http://doi.org/10.1007/s001099900023.

Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., and De Micheli, G. (2008), “Synchronous versus asynchronous modeling of
gene regulatory networks”, Bioinformatics, vol. 24, no. 17, pp. 1917-1925, doi:_http://doi.org/10.1093/bioinformatics/btn336.
Zhang, R., Shah, M. V., Yang, J., Nyland, S. B., Liu, X., Yun, J. K., Albert, R. and Loughran, T. P. (2008), “Network model
of survival signaling in large granular lymphocyte leukemia”, Proc. Nat. Acad. Sci., vol. 105, no. 42, 2008, pp. 16308-16313,
doi: http://doi.org/10.1073/pnas.0806447105.

Hu, Y., Gu, Y., Wang, H., Huang, Y. and Zou, Y. M. (2015), “Integrated network model provides new insights into
castration-resistant prostate cancer,” Sci. Rep., vol. 5, no. April, pp. 1-12, Nov. 2015, doi: https://doi.org/10.1038/srep17280.
Fumia, H. F., and Martins, M. L. (2013), “Boolean network model for cancer pathways: Predicting carcinogenesis and
targeted therapy outcomes”, PL0S One, vol. 8, no. 7, Art. no. 11, doi: https://doi.org/10.1371/journal.pone.0069008.

Lu, J., Zeng, H., Liang, Z., Chen, L., Zhang, L., Zhang, H., Liu, H., Jiang, H., Shen, B., Huang, M., Geng, M., Spiegel, S. and
Luo, C. (2015), “Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel
combinatorial anti-cancer targets,” Sci. Rep., vol. 5, 2015, Art. no. 14739, doi: https://doi.org/10.1038/srep14739.

Rodriguez, A., Sosa, D., Torres, L., Molina, B., Frias, S. and Mendoza, L. (2012), “A Boolean network model of the
FA/BRCA pathway,” Bioinf., vol. 28, no. 6, 2012, pp. 858-866, doi: https://doi.org/10.1093/bioinformatics/bts036.

Glass, L. and Kauffman, S. A. (1973), “The Logical Analysis of Continuous, Non-linear Biochemical Control Networks”,
J. Theoretical Biol., vol. 39, 1973, pp. 103-129, doi: https://doi.org/10.1016/0022-5193(73)90208-7.

Melas, N., Chairakaki, A. D., Chatzopoulou, E. I., Messinis, D. E., Katopodi, T., Pliaka, V., Samara, S., Mitsos, A., Dailiana,
Z., Kollia, P. and Alexopoulos, L. G. (2014), “Modeling of signaling pathways in chondrocytes based on phosphoproteomic
and cytokine release data”, Osteoarthritis Cartilage, vol. 22, no. 3, pp. 509-518, https://doi.org/10.1016/j.joca.2014.01.001.
Chen, H., Wang, G., Simha, R., Du, C. and Zeng, C. (2016), “Boolean models of biological processes explain cascade-like
behavior”, Sci. Rep., vol. 6, 2016, Art. no. 20067, doi: https://doi.org/10.1038/srep20067.

Grieco, L., Calzone, L., Bernard-Pierrot, 1., Radvanyi, F., Kahn-Perles, B. and Thieffry, D. (2013), “Integrative modelling of
the influence of MAPK network on cancer cell fate decision”, PLoS Com.put. Biol., vol. 9, no. 10, Sep. 2013, pp. 1-15, doi:
doi: https://doi.org/10.1371/journal.pcbi.1003286.

Cohen,D. P., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A. and Calzone, L. (2015), “Mathematical modelling of
molecular pathways enabling tumour cell invasion and migration,” PLoS Comput. Biol., vol. 11, no. 11, Sep. 2015, Art. no.
€1004571, doi: https://doi.org/10.1371/journal.pcbi.1004571.

Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U. U., Weismantel, R.,
Gilles, E. D., Klamt, S. and Schraven, B. (2007), “A logical model provides insights into T cell receptor signaling”, PL0S
Computational Biology, vol. 3, no. 8, Sep. 2007, pp. 1580-1590, doi: https://doi.org/10.1371/journal.pcbhi.0030163.

Dorier, J., Crespo, l., Niknejad, A., Liechti, R., Ebeling, M. and Xenarios, I. (2016), “Boolean regulatory network
reconstruction using literature based knowledge with a genetic algorithm optimization method”, BMC Bioinf., vol. 17, no. 1,
Art. no. 410, doi: https://doi.org/10.1186/s12859-016-1287-z.

Thomas, R. (1991), “Regulatory networks seen as asynchronous automata: A logical description”, J. Theoretical Biol.,
vol. 153, no. 1, 1991, pp. 1-23, doi: https://doi.org/10.1016/S0022-5193(05)80350-9.

Purandare, M., Polig, R., and Hagleitner, C. (2017), “Accelerated analysis of Boolean gene regulatory networks,” Proc. 27th
Int. Conf. Field Programmable Logic Appl., 2017, pp. 1-6, doi: https://doi.org/10.23919/FPL.2017.8056778.

Albert, 1., Thakar, J., Li, S., Zhang, R. and Albert, R. (2008), “Boolean network simulations for life scientists”, Source Code
Biol. Med., vol. 3, no. 1, 2008, Art. no. 16, doi: https://doi.org/10.1186/1751-0473-3-16.

Mussel, C, Hopfensitz, M., and Kestler, H. A. (2010), “BoolNet - an R package for generation, reconstruction and analysis of
Boolean networks”, Bioinf., vol. 26, no. 10, pp. 1378-1380, doi: http://dx.doi.org/10.1093/bioinformatics/btq124.

Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., Kroemer, G., Barillot, E., and Calzone, L. (2017),
“MaBoSS 2.0: An environment for stochastic Boolean modeling”, Bioinf., vol. 33, no. 14, Jul. 2017, pp. 2226-2228, doi:
https://doi.org/10.1093/bioinformatics/btx123.

Saadatpour, A., Albert, R., and Reluga, T. C. (2013), “A reduction method for Boolean network models proven to conserve
attractors”, SIAM J. Appl. Dynamical Syst., vol. 12, no. 4, pp. 1997-2011, doi: http://dx.doi.org/10.1137/13090537X.

Ay, F., Xu, F. and Kahveci, T. (2009), “Scalable steady state analysis of boolean biological regulatory networks”, PL0oS One,
vol. 4, no. 12, Dec. 2009, pp. 1-9, doi: http://dx.doi.org/10.1371/journal.pone.0007992.

Berntenis, N. and Ebeling, M. (2013), “Detection of attractors of large Boolean networks via exhaustive enumeration of
appropriate subspaces of the state space”, BMC Bioinf., vol. 14, no. 1, doi: https://doi.org/10.1186/1471-2105-14-361.
Mendes, D., Henriques, R., Remy, E., Carneiro, J., Monteiro, P. T. and Chaouiya, C. (2018), “Estimating attractor
reachability in asynchronous logical models”, Frontiers Physiology, vol. 9, 2018, Art. no. 1161, doi:
https://doi.org/10.3389/fphys.2018.01161.

Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F. and He, L. (2013), “An efficient algorithm for computing attractors of
synchronous and asynchronous boolean networks”, PLoS One, vol. 8, no. 4, Apr. 2013, pp. 1-7, doi:
http://dx.doi.org/10.1371/journal.pone.0060593.

Garg, A., Di Cara, A., Xenarios, I., Mendoza, L. and De Micheli, G. (2008), “Synchronous versus asynchronous modeling of
gene regulatory networks,” Bioinf., vol. 24, no. 17, pp. 1917-1925, doi: http://dx.doi.org/10.1093/bioinformatics/btn336.
Mizera, A., Pang, J., Qu, H. and Yuan, Q. (2019), “Taming asynchrony for attractor detection in large boolean networks”,
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 1, pp. 31-42, doi: _http://dx.doi.org/10.1109/TCBB.2018.2850901.
Arellano, G., Argil, J., Azpeitia, E., Benitez, M., Carrillo, M., Gongora, P., Rosenblueth, D. Aand Alvarez-Buylla, E. R.
(2011), ““Antelope”: A hybrid-logic model checker for branching-time Boolean GRN analysis,” BMC Bioinf., vol. 12, no. 1,
Art. no. 490, doi: https://doi.org/10.1186/1471-2105-12-490.

Zerarka, M., David, J. and Aboulhamid, E. M. (2004), “High speed emulation of gene regulatory networks using FPGAs”,
Proc. 47th Midwest Symp. Circuits Syst., Aug. 2004, pp. 1-545, doi: http://dx.doi.org/10.1109/MWSCAS.2004.1354048.

24

http://doi.org/10.1007/s001099900023
http://doi.org/10.1093/bioinformatics/btn336
https://doi.org/10.1371%2Fjournal.pone.0069008
https://doi.org/10.1093/bioinformatics/bts036
https://doi.org/10.1016/0022-5193(73)90208-7
https://doi.org/10.1016/j.joca.2014.01.001
https://doi.org/10.1371/journal.pcbi.1003286
https://doi.org/10.1371/journal.pcbi.1003286
doi:%20https://doi.org/10.1371/journal.pcbi.1004571
https://www.researchgate.net/journal/PLoS-Computational-Biology-1553-7358
https://www.researchgate.net/journal/PLoS-Computational-Biology-1553-7358
http://dx.doi.org/10.1371/journal.pcbi.0030163
https://doi.org/10.1016%2fS0022-5193(05)80350-9
https://doi.org/10.23919/FPL.2017.8056778
https://doi.org/10.1093/bioinformatics/btx123
https://doi.org/10.3389/fphys.2018.01161
https://doi.org/10.1109/TCBB.2018.2850901

ISSN 2522-9052 CyuacHi inpopmariitai cuctemu. 2023. T. 7, Ne 3

31. Pournara, I., Bouganis, C. and Constantinides, G. A. (2005), “FPGA-accelerated Bayesian learning for reconstruction of gene
regulatory networks”, Proc. Int. Conf. Field Programmable Logic Appl., Sep. 2005, pp. 323-328, doi:
http://dx.doi.org/10.1109/FPL.2005.1515742.

32. Ferreira, R. and Vendramini, J. C. G. (2010), “FPGA-accelerated attractor computation of scale free gene regulatory
networks”, Proc. Int. Conf. Field Program. Logic Appl., pp. 550-555, DOI: http://dx.doi.org/10.1109/FPL.2010.108.

33. Salwinski, L. and Eisenberg, D. (2004), “In silico simulation of biological network dynamics”, Nature Biotechnology,
vol. 22, no. 8, Aug. 2004, pp. 1017-1019, doi: http://dx.doi.org/10.1038/nbt991.

34. Keane, F., Bradley, C. and Ebeling, C. (2004), “A compiled accelerator for biological cell signaling simulations”, FPGA '04:
Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays, Art. no. 233, pp.
233-241, doi: https://doi.org/10.1145/968280.968313.

35. Whitesitt, J.E. (2012), Boolean Algebra and Its Applications, Courier Corporation, 192 p., available at:
https://www.scribd.com/book/365215162/Boolean-Algebra-and-Its-Applications.

36. Meurer, A., Smith, C. P., Paprocki, M. and Certik, O. (2017), “SymPy: symbolic computing in Python”, PeerJ Comput. Sci.,
3:e103, doi: https://doi.org/10.7717/peerj-cs.103.

37. Vasylchenkov, O. G., Salnikov, D. V. and Karaman, D. G. (2022), “Hardware model for boolean network attractors search,”
Proc. of 22 Intl. scient. and pract. conf. Problems of informatics and modeling (PIM-2022), Kharkiv — Odesa, 2022, p. 20,
available at: https://repository.kpi.kharkov.ua/handle/KhPI-Press/59901.

38. Vasylchenkov, O. G., Salnikov, D.V. and Karaman, D. G. (2022), “Hardware computational infrastructure for boolean
network attractors search”, Proc. of Intl. scient. and tech. conf. Automation, electronics, information and measurement
technologies: education, science, practice, Kharkiv, Dec. 01-02, 2022, pp. 13-14, available at:
http://repository.kpi.kharkov.ua/handle/KhPI-Press/60498.

Received (Hapniiia) 31.05.2023
Accepted for publication (ITpuiinsita 10 apyky) 16.08.2023

B1IOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

BacuibuenkoB Outer IeoprifioBuY — KaHIUAAT TEXHIYHUX HAYK, TOLCHT KadeIpH aBTOMATHKH Ta YIIPABIIHHS B TEXHIYHUX
cucreMax, HanioHanpHUH TeXHIYHHH yHIBEpCHTET «XapKiBChbKHI MOMITEXHIYHUI IHCTUTYT», XapKiB, YKpaiHa;
Oleg Vasylchenkov — Candidate of Technical Sciences, Associate Professor of the Department of automation and control in
technical systems, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.
e-mail: oleh.vasylchenkov@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0002-0969-2248.

CaabHikoB)IMPITpO BajeHTHHOBHY — KaHauaaT TEXHIYHUX HayK, aCUCTCHT Ka(bez[pn aBTOMATHUKH Ta praBJ’[iHHH B TEXHIYHUX
cucremax, HarmoHanpHU TeXHIYHUHA YHIBEPCUTET «XapKiBCHKHUH NONMITEXHIYHUH IHCTUTYT», XapKiB, YKpaiHa;
Dmytro Salnikov — Candidate of Technical Sciences, Assistant Professor of the Department of automation and control in
technical systems, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.
e-mail: dmytro.salnikov@khpi.edu.ua; ORCID ID: http://orcid.org/0009-0007-6201-5370.

Kapaman Imutpo I'puropoBuy — crapumii BUKIa1a49 kKageapru aBTOMATHKH Ta YIPABIiHHS B TEXHIYHAX CHCTEMAX,
HamionanbsHU TeXHIYHUE yHIBEPCUTET «XapKiBCHKUH MOMITEXHIYHUI IHCTUTYT», XapKiB, YKpaiHa;
Dmytro Karaman —Senior Lecturer of the Department of automation and control in technical systems, National Technical
University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.
e-mail: dmytro.karaman@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0002-7252-3172.

IIpuckopenHs aHai3y O0yJeBUX Mepex peryJsiuii resis 3a nonomororo FPGA
O. I'. Bacunpuenkos, [I. B. Campnikos, /1. I'. Kapaman

Anortaunisi. Excrnpecis rTeHiB He BimOyBaeThCs JOBIIBHO Ta CIOHTAaHHO, BOHA MiAMOPSAIKOBYEThCS TEBHUM
3aKOHOMIPHOCTSM, SKi MO’KHA BHUPA3UTH Yy BHTJISAL 3B’S3aHOTO Tpady 4m Mepexi. PO3KpHUTTS X 3aKOHOMIpHOCTEH BHUMarae
BEJIUKOTO 00CATY eKCIIEpIMEHTAIBHUX JOCIIIKEHD 1 HAKOIMMYeHHST HeoOXiqHo1 craTucTiyHO1 iHdopmaii. [TotiM 115 iHdopMmartis
MiATA€TBCST MaTEMaTHYIHI 00poOIIi, sika 3aiTy4dae 3HAUHI 00YHCITIOBANIBHI pecypcH Ta 3aiimae Garato dacy. Bynesi Mepexi gyacto
BUKOPHCTOBYIOTHCS SIK OCHOBA ISl TOOYZIOBH MaTeMaTHYHUX MOJIENel Y [UX po3paxyHkax. OCTaHHIM 4acoM MO, 3aCHOBaHi
Ha OyJIeBHX Mepexax, Jefali OiIblie 3poCcTaroTh Y PO3MIpi Ta CKNIAJHOCTI, BUKIMKAIOYH MiABUIEHI BUMOTH 1O TPaJHLiiHNX
NpPOrpaMHHMX PillleHb i 00UNCIIOBaNBEHUX iHCTpyMeHTIB. [IporpamoBani BenTribHi Matpuii (FPGA) — 1ie motysxHa miatdopma 3
MOXKJIMBICTIO pekoH(irypauii 1 3abe3neyeHHs epeKTHBHUX i BUCOKOMPOIYKTHBHUX oOuncieHb. Bukopucranus FPGA moxe
3HAYHO NPHCKOPHUTH TPOIEC OOYMCICHHS IOCITIJOBHOIO JIAHIIOTa CTAaHIB TeHIiB, SK 3a PaXyHOK BHKOPHCTAHHS alapaTHOTO
MIPUCKOPEHHS TPH OOYUCIICHHI JIOTIYHUX 3aJIS)KHOCTEH, TaK 1 32 paXyHOK peaii3alii MacHBY IMapajeldbHUX OOYMCIIOBAIBHUX
sJep, KOJKHE 3 SKUX MOKE BUKOHYBATH CBOIO BJIACHE iHMBIJyallbHE 3aBIaHHs. [HIIMM PillICHHSM, K€ MOXE iCTOTHO CIIPOCTHUTH
poOOTy MOCHITHUKIB MEpEeX peryislil T'eHiB, € CTBOPEHHsS YHIBEPCAIbHOI OOYHCITIOBAIBLHOI apXiTEKTYPH, SIKa JO3BOIISE
JIMHAMIYHO PEKOH(IrypyBaTH CBOIO BHYTPIIIHIO CTPYKTYpPY HpH 3MiHI 3aBAaHHS a00 JOTIYHHX 3aJISKHOCTEH Ui MOTOYHOL
OyneBoi Mepexi. Take pilieHHs M030aBUTH JOCHIAHMKA BiJl HEOOXIAHOCTI BHKOHYBATH BECh KOMIUIEKC Iiif 3 TEXHOJOTIYHOI
ninroroBku HoBoi kKoHirypauii ITJIIC, Big BHeceHHs 3MiH 1o koxy HDL, mio ommcye mepexy, 10 3aBaHTa)XEHHS OHOBJICHOT
KOH(QIrypamii B amapaTHHH TNpUCKOpIOBadY. Y CTaTTi OOTOBOPIOEThCS, sIK BUKOpuctoByBaTH FPGA mns peamizanii Ta
MOJICIIOBAHHS JOBUIBHUX OYJIEBHX MEPEK, OMUCYETHCST KOHLETILS yHIBEpCAIbHOT apXiTeKTypH SApa, 110 PeKOHDITypyeThCs, s
OOYMCIICHHS JIOTIYHHMX 3aJeKHOCTeHl JOBiNIbHOT OyineBOi Mepeki Ta MPONOHYETHCS MpakTHYHA peanisallis TaKoro
00YHCITIOBAIBHOTO s1/Ipa IS MOJICIIOBaHHS T'€HHOI peryJIsiii Mepeski.

Kaw4oBi cmoBa: Mepexa peryisimil reHiB; MOJCIIOBaHHS OiOJIOTIYHUX CHUCTEM; MPOTrpaMOBaHi JIOTIUHI iHTerpaibHi
CXEMH; apXITEeKTypH alapaTHOro MPUCKOPEHH:; OyiieBa MOJIENb MEPEKi; CHCTEMH 004UCIIOBaIBHOT Oiosiorii; 6ioiHpopmaTHKa.

25

https://dl.acm.org/doi/proceedings/10.1145/968280
https://dl.acm.org/doi/proceedings/10.1145/968280
https://doi.org/10.1145/968280.968313
http://orcid.org/0000-0002-4540-8670
http://orcid.org/0009-0007-6201-5370
http://orcid.org/0000-0002-7252-3172

