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SELECTION OF THE SET OF ALLOWABLE VALUES OF THE VARIABLE
PARAMETERS OF THE STABILIZER OF A COMPLEX DYNAMIC OBJECT

Abstract. Topicality. One of the most important tasks in the application of computational methods for the parametric
synthesis of controllers of complex dynamic objects is the task of determining the set of permissible values of the variable
parameters of the controller, where the target function is calculated based on the solutions of the mathematical model of the
disturbed motion of the dynamic object with its subsequent minimization. The purpose of the work is to construct the set
of permissible values of variable parameters of the stabilizer of a complex dynamic object when applying the algorithmic
combined method of parametric synthesis of stabilizers of complex dynamic objects, the essence of which is the direct
calculation of the integral quadratic functional on the solutions of a closed dynamic system with subsequent finding of its
global minimum through a sequential combination of two algorithms — the Sobol grid algorithm and the Nelder-Mead
algorithm. Results. With the help of the Sobol grid construction algorithm, the starting point of the computational process
is brought to the node of the Sobol grid, which is located in the small vicinity of the point of the global minimum. At the
second stage of optimization, the found Sobol grid node is selected as the starting point for applying the Nelder-Mead
method, which is implemented by the Optimization Toolbox software product of the MATLAB package or the Minimize
software product of the MATHCAD package and leads the computational process to the point of the global minimum.
Conclusion. The paper proves a theorem according to which the stability region of a closed system of the first
approximation can be taken as such a set, and also gives an example of a solution to the problem of parametric synthesis of
the stabilizer of the car's course stability system during its emergency braking.

Keywords: complex dynamic object; mathematical model of the disturbed motion of a closed dynamic system;
parametric synthesis of the stabilizer; variable parameters.

Introduction

Literary review and problem statement. In the
1960s, American [1,2] and Soviet [3-5] scientists created
the foundations of modern control theory, in particular,
the theory of analytical design of optimal regulators
(ADOR theory). The ADOR theory essentially represents
a method of structural-parametric synthesis of stabilizers
of dynamic systems. In its original form, this theory
considered linear dynamic objects. Later, the ADOR
theory was extended to nonlinear objects [6]. But the
practical application of this theory did not spread widely
for the following reasons:

o firstly, the structure of the optimal regulator,
obtained using the ADOR theory, involves the use of
information about all, without exception, the components
of the state vector of the stabilized object, obtaining
which is associated with significant difficulties, or is
completely impossible;

e secondly, the methods of the ADOR theory are
not designed for the parametric synthesis of stabilizers of
objects containing non-analytical nonlinearities;

o thirdly, the ADOR theory gives only general
recommendations regarding the selection of weighting
coefficients of integral additive quadratic functionals of
quality;

o fourthly, parametric synthesis of digital stabilizers
for complex nonlinear dynamic objects using the ADOR
theory is almost impossible because mathematical models
of closed control systems contain both ordinary differential
equations and difference relations.

The listed features of the ADOR theory restrained
its practical application. Until the beginning of the 90s of
the last century, publications about the use of the ADOR
theory in engineering practice rarely appeared. Examples
of such publications are monographs [7, 8] and articles
[6,9]. In these works, the authors proved that the value of
the integral quadratic functional, which is calculated
based on the solutions of the mathematical model of the
disturbed motion of the closed dynamic system, is equal
to the value of the Lyapunov function of the closed
system at the final moment of the time of control t=1.
At the same time, the optimal values of the variable
parameters of the stabilizer should be chosen under the
condition of reaching the minimum of the Lyapunov
function of the closed system at these values. Thus, the
problem of parametric synthesis of a dynamic system
regulator was reduced to a problem of mathematical
programming, where the Lyapunov function of a closed
dynamic system was used as the objective function. But
this approach did not lead to a fundamental solution the
problem of parametric synthesis of stabilizers of dynamic
systems. The application of the Lyapunov function does
not take into account the influence of non-analytical
nonlinearities of the executive body of the dynamic
system on the processes being stabilized, as well as the
influence on them of the "code-to-analog" and "analog-
to-code" converters of the digital stabilizer. In addition,
the methods of optimization of the Hook-Jives and
Nelder-Mead functions [10], which are used in the
implementation of the search for the minimum of the
Lyapunov function, are unable to find the point of the
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global minimum of the Lyapunov function in the space of
varied parameters of the stabilizer, but only find the point
of the local minimum closest to the starting point of the
computing process.

At the beginning of the 20th century, the authors of
the article [11] proposed the method of the main
coordinates of complex dynamic objects, which are
understood as those components of the state vector of the
object that characterize its dynamic properties to the
greatest extent and are used to form a stabilization
algorithm. On the basis of this method, an algorithmic
combined method of parametric synthesis of stabilizers of
complex dynamic objects was developed, the essence of
which is the direct calculation of the additive integral
quadratic functional on the solutions of a closed dynamic
system, followed by finding its global minimum in the
space of varied stabilizer parameters through a sequential
combination of two algorithms — the Sobol grid algorithm
[13] and the Nelder-Mead algorithm [10]. With the help
of the Sobol grid method, the starting point of the
computational process is brought to the node of the Sobol
grid, which is located in the small vicinity of the point of
the global minimum. At the second stage of optimization,
the found Sobol grid node is selected as the starting point
for applying the Nelder-Mead method, which is
implemented by the Optimization Toolbox software
product of the MATLAB package or the Minimize
software product of the MATHCAD package and leads
the computational process to the point of the global
minimum.

With the help of a combined algorithmic method,
the authors solved the problems of parametric synthesis
of a digital stabilizer of a resilient tank gun [14], a digital
stabilizer of the space stage of a carrier rocket with a
liquid jet engine on the active part of the flight path [15],
as well as a digital stabilizer of the course stability system
of a refueling car [16].

One of the most difficult problems of solving any
optimization problem is the determination of the set of
permissible values of the variable parameters of the
dynamic system. The proposed work considers the
method of choosing such a set while minimizing the
functional, which is calculated on the solutions of a
complex nonlinear dynamic system.

Main material

Selection of the set of permissible values of
variable parameters of the stabilizer of a complex
dynamic object. We will assume that the disturbed
motion of a dynamic object is described by a vector-
matrix differential equation

X(t)=@[X(t)]+B-U(t), (1)
where X (t) is the n-dimensional vector of the state of
the object; U(t) m-dimensional control vector; B -

control matrix nxm; ®[X(t)]- n-dimensional

nonlinear analytic vector function.
The automatic regulator implements a control vector
U (t) in the form

U(t)=w[c(t)]. @)

where ¥[G(t)] is a m-dimensional non-analytic vector
function; G(t) — m -dimensional control vector function,
which is formed by an electronic stabilizer in the form

G(t)=K-X(t), @)

where K is the matrix of variable parameters of the
stabilizer with the size mxn.

The set of vector-matrix differential equation (1)
and vector-matrix ratios (2) and (3) creates a
mathematical model of the disturbed motion of a closed
dynamic system.

In accordance with works [11, 12], the components
of the state vector X(t), which to the greatest extent

characterize the behavior of the control object, will be
called the main coordinates of the stabilization object.
Usually, the measurement of the main coordinates does
not cause difficulties, therefore, when forming the
vector function (3), only the main coordinates of the
object of stabilization are taken into account. At the
same time, the columns of the matrix K corresponding
to the main coordinates of the object are non-zero, and
all other columns are zero. The task of the parametric
synthesis of the stabilizer of a dynamic object is to
determine the non-zero elements of the matrix K such
that the integral quadratic functional reaches a minimum
on the solutions of the mathematical model (1)—(3)

T

1(K)=[(X(t)Qx (t)dt, @

where Q isthe diagon:l Sylvester matrix of size nxn
B2 0 .. 0

o= 0 B2 .. 0 )
6 6 B'f

Some of the diagonal elements of the matrix (5)
are equal to zero, and its non-zero diagonal elements
correspond to the main components of the state vector
X(t).

In accordance with the combined algorithmic
method of parametric synthesis of the stabilizer of a
closed dynamic system, the value of the functional (4) is
directly calculated on the solutions of the closed
dynamic system (1)—(3) with subsequent finding of its
minimum on the set of permissible values G , which is
built in the space of variable parameters of the stabilizer

1(K")= min f(xOQx W), ®)

where K" eG, is the matrix of optimal values of
variable parameters.

To build a computational process of search of the
matrix K, it is necessary to define a set Gk in the space
of variable parameters of the stabilizer. To do this, let's
move from the nonlinear system (1)—(3) to the system of

the first approximation [17]. Instead of the nonlinear
differential equation of the perturbed motion of the
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stabilization object (1), let's go to the linear differential
equation

X(t)=A-X(t)+B-U(t), @)

where the elements of the matrix A are calculated by the

formula
z(a(pi [ t), xz(t>,...,xn<t>]j i) ®

ox; (t)

Through ; [x,(t), %,(t),..., %, (t)] in formula (8), the
elements of the vector function ®[X (t)] are marked, and

the derivatives are calculated at the point of stable
equilibrium of the object, which is determined by the
algebraic equation

®[X (t)]+B-U(t)=0. 9)

The non-analytical vector function (2) takes into
account non-analytical nonlinearities of the executive
bodies of the stabilizer - saturation, insensitivity zone, etc.
If these properties of the executive body are neglected,
formula (2) can be presented in a linear form

U(t)=Gl(t), (10)

and the mathematical model of the closed system of the
first approximation can be written in the form of a linear-
matrix differential equation

X(t)=A-X(t)+B-K-X(t)=(A+B-K)X(t). (12)

The following theorem applies: as a set of allowable
values Gy of the variable parameters of the stabilizer of

the closed nonlinear dynamic system (1)—(3), the region
of stability of the corresponding system of the first
approximation (11) in the space of variable parameters
can be chosen.

The proof of the formulated theorem will be carried
out from the opposite. Let's choose a point K in the set of
variable parameters that belongs to the region of stability of
the system of the first approximation (11). In this point, in
accordance with Lyapunov's theorem on stability to the
first approximation [18], the nonlinear system (1)—(3) is
also stable. Therefore, it is quite likely that the minimum
point of the functional (4) is in the middle of the region of
stability of the system of the first approximation (11).

Now suppose that the minimum point of the
functional (4), calculated on the solutions of the nonlinear
system (1)—(3), is outside the region of stability of the
system of the first approximation (11), that is, the system
of the first approximation is unstable. But then the
corresponding nonlinear system (1)—(3) is unstable and
any point chosen outside the region of stability cannot be
the minimum point of the functional (4) calculated on the
solutions of the nonlinear system (1)—(3). Therefore, the
minimum point of the functional (4) is in the region of
stability of the system of the first approximation (11),
which can be taken as a set G of allowable values of

the variable parameters of the stabilizer of the nonlinear
system (1)—(3). The theorem is proved.

To construct the region of stability of the system of
the first approximation (11), we write down its
characteristic equation

det[A+B-K -E-s]=0, (12)

where s is the complex variable of the Laplace
transform. Using the D -distribution method [19] in the
set of variable parameters of the stabilizer, we will select
aset G¢ and when organizing the computational process

of searching for elements of the matrix of variable

parameters K , we will use the condition
KeGg. (13)

Example. As an example, consider the construction
of the region of stability G, of the closed system of

course stability of the car [16]. Mathematical model of
the disturbed movement of the car is written in the form:

0 (0)= = [2k polt) + 6o

a;(t):—Bz—ﬁbAp(t)—z“rM fon Ot}

AB) =~ ap(t) - - Ap(t) + Xe u ),

y(t)=- ( W (t)
)

where v, (t) — the current speed of the center of mass of

the car; (t) — angle of deviation of the main longitudinal

central axis of inertia of the car relative to the given
direction of movement; y(t) — lateral shift of the center of

mass of the car body relative to the given direction of
movement (Fig. 1); p,(t) — brake fluid pressure in the

main brake cylinder; Ap(t) — brake fluid pressure

difference in the brake lines of the right and left sides of the
car; M — mass of the car; | — the moment of inertia of
the car body relative to its own central vertical axis of
inertia; f, — the car's movement resistance coefficient; G

— weight of the car; 1, — the moment of inertia of the
rocker arm of the electromagnet of the executive body; f,

— coefficient of liquid friction in the axis of rotation of the
rocker arm; ¢, — stiffness coefficient of the fixing spring

of the rocker arm; H, - the distance from surface of
movement of the car to its center of mass; k, — gain

coefficient of the electro-hydraulic amplifier; B — track
width of the car; k, — coefficient of proportionality.

X X ‘V(t)
v (t) \
y
\
< y(t) R
o i Y

Fig. 1. For determination the disturbed car movement
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System (14) is essentially non-linear, since it
contains the multiplication of system state variables in the
right parts of the second and fourth differential equations.
At the same time, in the process of emergency braking

Po(t)= Pomax» the right part of the first equation of
system (14) represents a constant value, and the current
speed of the car changes according to the formula

v (t)=vo-a-t, (15)

where v, is the initial speed at the beginning of the
emergency braking mode; a - acceleration during
braking.

Substitute ratio (15) into system (14). As a result,
we get a mathematical model of disturbed car movement
in the form of a linear non-stationary system

(1) =~ 52 ap() - ZE2 fovg a1

Ap<t)=—{—rAp<t)—‘;—pr<t>+f—Uu(t>;

y(t)=—(vo —a-hu(t)

The main coordinates of the system under
consideration are the angular deviation \u(t), the angular

speed of rotation of the car body w, =\(t) and the

(16)

lateral shift of the center of mass of the body y(t). It is

these coordinates that determine the disturbed movement
of the car body, are measured by the corresponding
sensors and are used in the formation of the control
function

c(t) = kww(t)+ k“-,o)w (t)+ kyy(t) ,

The static characteristic of the executive body of the
car's course stability system is presented in Fig. 2 and can
be written in the form of a non-analytical function

a7

u”signa(t) mpu |oft) <u’;

u(t)={o(t) mpuu” < |G(t) <u”; (18)
u”signof(t) mpu |o(t)>u”.
u(t)
u** /
//
e
0 o(t)

/]

yd -

Fig. 2. Static characteristic of executive body

The system of differential equations (14) and ratios
(17) and (18) will be called the mathematical model of
the disturbed motion of the closed system of course

stability of the car.
If the non-linearities of the static characteristic of
the executive body of the system are neglected due to the

fact that the value of the insensitivity zone u” is small

and the value of saturation u” is large enough, then the
non-analytical function (18) can be replaced by a linear

function
u(t)=ol(t),
or taking into account formula (17)
u(t) =k, w(t)+k,o, )+k,y(t).

The system of linear non-stationary differential
equations (16) and relation (19) will be called the
mathematical model of the closed system of the first
approximation.

Construction of the region of stability of a linear
non-stationary system on the set of its variable
parameters is a rather complex problem. In engineering
practice, the method of "frozen coefficients" [20,21] has
become widespread, according to which several moments
of time t,t,,....t,...t; are selected in the interval [0,1]

(19)

and for each of the moments ts,(s = 1_q) the time-varying
coefficients are "frozen", that is, their values are assumed
to be constant, and for each of the moments ts,(s = 1,q) a

mathematical model of disturbed motion with time-
constant coefficients is built. In other words, instead of a
non-stationary system of the first approximation, q

stationary systems are considered

()= -2 ap(t)- 212 fov, g0
. fo .. C,
Ap(t)= —rAp(t)—rAP(t)Jr (20)

+':_u ke, w(t)+ Ky w(t)+k, y(0)]

(s-1a)

where vy =V, — (s =1, q)
Let's introduce the notation

' 2HpM | By . Cr.
By == Tor dp =77 App =17

3(0)= ~veult)

Then linear stationary systems for each moment
ts,(s =1, q) are written in the form

i5(t) = ~a,pAp(L) - Ve (1)
Ap<> <> AP+
R
J(O)-—vu(ty  (s-La)

We write each system of differential equations
(21) in the normal Cauchy form, for which we introduce
the state vector of the closed system

(21)
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()] [wt) ]
()] |w(t)
X(t)=|x(t) |=| Ap(t)].
X ()| |2n(t)
xs(t)| [ y(t)

In the new variables, each of the systems (21)
takes the form:

% (1) = =2y, VX (1) =3, pXs (1)
X3 (t) =X (t)’ (22)
4 ()= Euky,xl (t)+EukV,x2 (t)-

~appX3 (1) —appXs (t)+Eukyx5 (t);
% (1) = ~vsxq (t); (S:L_Q)~

Each of the systems (22) will be written in vector-

matrix form
KO-Aw) X0 b-Td). @
where the matrix A(v;) is written in the form
[0 1 0 0 0 |
0 -a,Vv -a, 0 0
Alvg)=| 0 0 0 1 0 |.(24)
kik, kuky, —an, —ah,  kuk,
v, 0o 0o 0 0|

The characteristic equations of each of the systems
(22) have the form
(s = ]Tq) ’

det[A(v;)-E -s]=0; (25)
is the complex variable of the Laplace

where s
transform.

Substitution of matrices (24) into characteristic
equations (25) allows to write the latter in the canonical
form:

4

5 + (@, Vs +apy )t +

+(a’ a;

3
yy 8ppVs +a|0p)s +

_ (26)
+(a,/,pkuk,/~,+a’ a v)52+

yy 3ppVs
(s-13)

In Fig. 3 shows the structural and functional scheme
of the closed system of the car's course stability, where
the notations are adopted:

C-—car;

BS - braking system;

B — car body;

SU — sensor unit;

EU — electronic unit.

Analysis of Fig. 3 allows us to conclude that the
electronic unit implements two control circuits,
namely, the internal control circuit for the angle of
deviation y(t) and angular speed o, (t)=\(t), as well

+a,, pkuk,, s—a,, pVskuky =0;

as the external control circuit for the shift of the car's
center of mass y(t).

Fig. 3. Closed system of car course stability

Let's break the outer contour by putting k, =0 in
the characteristic equations (26). As a result, the
characteristic equations (26) take the form (s = 1_q ) :

4

S +(a 2

Vg +app)s +

’

’ 3 ’ ’
A +app)s +(a a

vy = pp @7)

T ’
+(ay,pkuky) +a’, a

- ppvs)s+ay,pkuky, =0.

In the characteristic equations (27), we will make a
replacement s = jo , separate the real and imaginary parts
and set them equal to zero. As a result, to construct the
stability region Gy (v,) for the internal control loop, we
obtain the ratio

2
O ’ ’ 20,
k, =~ avera, —off;  (28)
a\vpk“

T O
8yp Ku

Changing o from zero to infinity, in the area of the
variable parameters (k\wk\i/) for different valuesv, , we

construct regions of stability G (v, ), (s = 1_q) which are
presented in Fig. 4.

kW,V-s
700 T T
— |

600

)

. ok )

200 /
P

100
- Y

0 100 200 300 400 500 600 700 800

0

Fig. 4. Stability regions G}/ (v )
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At the same time, the region G/ represents the

intersection of regions Gy (v, ), (s = 1_q)

GY =GY()NGY (V)N .."GEly,)  (30)

and is the region of allowable values of variable
parameters k,, and k,, in the plane (k\wk\i/)- The values

of the coefficients of the characteristic polynomial (27) in
the example under consideration are equal to:

-2 1. _ -2,
ay,=0,8~10 m-; app—2005 ;

ap, =55 st ky=05-10v1.pa.sL:
a,,=0,34-10"Pat.s72.

The values of the speed of the car were chosen as
follows:

v;=25m-s%; v, =20m-st; vy =15m-st

v, =10m-s; vy =5m-s; vy =0m-s

Analysis of fig. 4 allows us to conclude that the
value of the fixed speed of movement v, has almost no

effect on the region of stability of the closed system of
the first approximation, especially in the region of low
frequencies.

On the constructed set G using the algorithmic

combined method of parametric synthesis of the stabilizer
of a complex dynamic object, we find the values of the

variable parameters ki, € GY; kj G, which deliver
the global minimum of functional

J. [[31 Xl 2X2 )}jt

on the solutions of the closed nonlinear system (14), (17),
(18) under the condition that in relation (17) the variable
parameter k, is equal to zero, and the weighting
coefficients of the functional (31) are chosen according to
the method described in works [22,23].

The values of the coefficients k,, and kg,

(1)

which
deliver the minimum of the functional (31), are
ky, =1989V; k; =349,4V:s.
Let's close the outer circuit of the scheme shown in
fig. 3 and return to the characteristic equation (26),
putting in it k, =k, and k,=k;. We solve the

characteristic equation with respect to the variable
parameter k. :

awpkukws+

(32)

2
+(awp kuk +ay,,appVs )s +

(aa

3 ' ' 4 5
iy pst+app)S +(aw,vs+app)s +S }

In relation (32), we make a replacement s= jo
and separate the real and imaginary parts

1
Reky (CU) =—X

kuVS
k k +a/, a 0® +
vy PD

RAE
(anS +apy )a) }

(33)

e

1
Imky (0)=———-1a Ku k Sw—
T aypkuvs Love (34)

~(ay appVs +app Jo* + af’}.
In Fig. 5 shows the boundaries of the regions of
stability of systems of the first approximation (22) in the

plane of the complex variable parameter k, . The region
Gy is an intersection of regions G} (v ), (s =1_q)
Gy =GL(W)NGL(V,)n.."GlY,),  (35)

each of which is a segment of the real axis, located on its
negative part between the points of intersection of the
latter and constructed using relations (33) and (34) as the
boundary of the stability region.

70

Imk
60 y

50
40

30 \
20 \

10
Z\

0

-10 -1

Reky,V-m

-20
-1200 -1000  -800 -600 -400 -200 0 200

Fig. 5. Stability regions G} (v )

Unlike regions Gy (v;), (s=1,_q), regions G (v,)
are significantly dependent on values v, and increase as
values v, decrease.

Using the algorithmic combined method of the
parametric synthesis of the stabilizer on the set G2 we

choose the point k;eG% that delivers the global

minimum of the functional

1k Kk, )= j 122 )+ B2 (0)+ B2kt . (36)

which calculated on the mathematical model of the closed
dynamic system (14), (17), (18). The value of parameter

ky €GY is ky, =-113,1B-m™*. The set of allowable
values of the variable parameters of the stabilizer G¢ isa
union of the sets Gy and G}

Gk =Gy UG,

each of which is the region of stability of the closed

10
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system of the first approximation in the plane of variable
parameters of the stabilizer.

In Fig. 6 shows the processes of stabilization of the
car body relative to the given direction of movement
during emergency braking at the calculated values of the

X, (1) X, (t) 57 xs(t), m

variable parameters of the stabilizer, which ensure the
minimum of the functional (31) by the internal circuit of
corner stabilization and the minimum of the functional
(36) by the two-circuit system, calculated on the solutions
of the closed system (14), (17), (18).

o.: //\ \ %(t)
RN __/> 7t
M\ N—
W= S
AW
\V

Fig. 6. Stabilization processes of the car body during emergency braking

Conclusions and recommendations

As a result of the research, the conclusions were
drawn and recommendations were offered:

« an effective method of choosing the values of
variable parameters of stabilizers of complex
dynamic objects is the combined algorithmic method
of parametric synthesis, based on the application of
main coordinates, which in the greatest extent
characterize the dynamic properties of the object
being stabilized;

« one of the most difficult tasks when applying the
combined algorithmic method of parametric synthesis of
stabilizers of complex dynamic objects is the task of
determining the set of allowable values of the variable
parameters of the stabilizer, which is used to find the

minimum value of the additive integral quadratic
functional, which is calculated based on the solutions of
the mathematical model of the disturbed motion of the
closed stabilization system;

* it is proved that as a set of allowable values of
variable stabilizer parameters of a complex dynamic
object, the region of stability of a linear closed system
of the first approximation, which is built in the space of
varied stabilizer parameters, can be used,;

+ considered an example of choosing a set of
allowable values of variable parameters of the car's
course stability system, on which the values of the
parameters that ensure the high quality of the
stabilization processes of the car body relative to the
given direction of movement during emergency braking
are selected.
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Buoip MHOKMHM 10NYCTHMHX 3HaYeHb BapilioBaHUX napameTpiB
crabdiizaTopa cKJIaHOT0 TUHAMIYHOTO 00’ €KTa

€. €. Anexcannpos, T. €. Anekcannposa, I. B. Koctanuk, S. FO. Mopryx

AHoTanisi. AkrtyanabHicTb. OJHIEI0 3 HAWBAXIMBIIIUX 3amad IPH 3aCTOCYBaHHI OOYHCIIOBAaJbHUX METOJIB
apaMeTPUYHOT0 CHHTE3y PEryJISATOPIiB CKJIaJHHUX JHHAMIUYHHX 00’€KTIB € 3ajaya BH3HAYCHHS MHOXKMHH JIOIMYCTHMHX 3HA4YeHb
BapifOBaHUX MapaMeTpiB PEryysiTopa, ¢ MPOBOIUTHECS OOYHCICHHS MidbOBOi (PYHKIII Ha PIMICHHIX MaTEeMAaTHYHOI MOJEINi
30ypeHoro pyxy IHHaMidHOro o0’ekTa 3 11 mojanbIlol MiHiMizawico. MeToo po6oTH € moOynoBa MHOXHHH JIOIYCTHMHX
3HAUeHb BapifiOBaHMX MapaMeTpiB cTabiii3aTopa CKIAJHOTO JAWHAMIYHOTO OO0’€KTa MPH 3aCTOCYBaHHI aJrOPUTMIYHOTO
KOMOIHOBaHOTO METOJy MapaMeTPHYHOTrO CHHTEe3y CTabii3aTopiB CKIAJHUX AMHAMIYHHX 00 €KTIB, CYTHICTh SIKOTO MOJISITAE Y
Oe3nocepeJHEOMY OOUYHCIICHHI IHTErpaIbHOTO KBaAPaTHYHOrO (YHKI[iOHANA Ha PIMICHHAX 3aMKHEHOI JMHAMIUHOI CHCTEMH 3
MOJANBIIAM 3HAXODKEHHSAM HOrO TI00ATBHOTO MIHIMyMY MDISXOM IIOCHIZOBHOI KOMOIHAmii JBOX alNTOPHTMIB — alTOPUTMY
nobynosu citku Cobosst i anroputmy Hemmepa-Mina. PesyabTaTn. 3a nomomoroto anroputmy nodymosu citku CoGolst crapToBa
TOYKA OOUHCIIOBAIHHOTO TIPOIIECY NPUBOIUTHCS 10 By3na ciTkn CoOoIst, SKHH 3HAXOMUTHCS B MaJIOMY OKOJIi TOUKH TJI0OAIBHOTO
MiniMmymy. Ha npyromy erami onrumizamii 3HalmeHui By3oi citku Co0omist BHOMpPAETHCS CTapTOBOIO TOYKOIO JUIS 3aCTOCYBaHHS
merony Hempepa-Mina, sikuii peani3yerbesi mporpamauM npoayktom Optimization Toolbox makery MATLAB abo mporpamHiM
npoxyktoM Minimize nakery MATHCAD i BUBOAUTH OOYHCITIOBAIGHUMN MPOIEC B TOYKY IMo0aabHOro MiHiMymy. BucnoBok. B
po0oTi 10BeIeHO TeopeMy, 3TiHO 3 KO0 B SIKOCTi TaKOi MHOXXHMHH MOJXE IPHUUMATHCS 00NacTh CTIHKOCTI 3aMKHEHOI CHCTEMH
HEpLIOro HaONMKeHHsI, a TAKOXK HABEICHO MPUKIIA] PIlICHHs 3aa4i mapaMeTPUYHOr0 CHHTEe3y CTabili3aTopa CHCTEMH KypCOBOT
CTIMKOCTI aBTOMOO1IIS B IIPOIIECi HOTO TEPMIHOBOTO TAIbMYBaHHS.

KawuoBi caoBa: cxiaguuii quHaMidHUE 00’€KT; MaTeMaTHYHAa MOJeNb 30YpEHOro pyXy 3aMKHEHOI JUHAMIYHOI
CHCTeMH; IapaMeTPUIHHI CHHTE3 cTabii3aTopa; BapiioBaHi apamMeTpH.
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