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SELECTION OF THE SET OF ALLOWABLE VALUES OF THE VARIABLE 

PARAMETERS OF THE STABILIZER OF A COMPLEX DYNAMIC OBJECT 
  

Abstract .  Topicality. One of the most important tasks in the application of computational methods for the parametric 

synthesis of controllers of complex dynamic objects is the task of determining the set of permissible values of the variable 

parameters of the controller, where the target function is calculated based on the solutions of the mathematical model of the 

disturbed motion of the dynamic object with its subsequent minimization. The purpose of the work is to construct the set 

of permissible values of variable parameters of the stabilizer of a complex dynamic object when applying the algorithmic 

combined method of parametric synthesis of stabilizers of complex dynamic objects, the essence of which is the direct 

calculation of the integral quadratic functional on the solutions of a closed dynamic system with subsequent finding of its 

global minimum through a sequential combination of two algorithms – the Sobol grid algorithm and the Nelder-Mead 

algorithm. Results. With the help of the Sobol grid construction algorithm, the starting point of the computational process 

is brought to the node of the Sobol grid, which is located in the small vicinity of the point of the global minimum. At the 

second stage of optimization, the found Sobol grid node is selected as the starting point for applying the Nelder-Mead 

method, which is implemented by the Optimization Toolbox software product of the MATLAB package or the Minimize 

software product of the MATHCAD package and leads the computational process to the point of the global minimum. 

Conclusion. The paper proves a theorem according to which the stability region of a closed system of the first 

approximation can be taken as such a set, and also gives an example of a solution to the problem of parametric synthesis of 

the stabilizer of the car's course stability system during its emergency braking. 

Key words:  complex dynamic object; mathematical model of the disturbed motion of a closed dynamic system; 

parametric synthesis of the stabilizer; variable parameters. 

 
 

Introduction 

Literary review and problem statement. In the 

1960s, American [1,2] and Soviet [3-5] scientists created 

the foundations of modern control theory, in particular, 

the theory of analytical design of optimal regulators 

(ADOR theory). The ADOR theory essentially represents 

a method of structural-parametric synthesis of stabilizers 

of dynamic systems. In its original form, this theory 

considered linear dynamic objects. Later, the ADOR 

theory was extended to nonlinear objects [6]. But the 

practical application of this theory did not spread widely 

for the following reasons: 

• firstly, the structure of the optimal regulator, 

obtained using the ADOR theory, involves the use of 

information about all, without exception, the components 

of the state vector of the stabilized object, obtaining 

which is associated with significant difficulties, or is 

completely impossible; 

• secondly, the methods of the ADOR theory are 

not designed for the parametric synthesis of stabilizers of 

objects containing non-analytical nonlinearities; 

• thirdly, the ADOR theory gives only general 

recommendations regarding the selection of weighting 

coefficients of integral additive quadratic functionals of 

quality; 

• fourthly, parametric synthesis of digital stabilizers 

for complex nonlinear dynamic objects using the ADOR 

theory is almost impossible because mathematical models 

of closed control systems contain both ordinary differential 

equations and difference relations. 

The listed features of the ADOR theory restrained 

its practical application. Until the beginning of the 90s of 

the last century, publications about the use of the ADOR 

theory in engineering practice rarely appeared. Examples 

of such publications are monographs [7, 8] and articles 

[6,9]. In these works, the authors proved that the value of 

the integral quadratic functional, which is calculated 

based on the solutions of the mathematical model of the 

disturbed motion of the closed dynamic system, is equal 

to the value of the Lyapunov function of the closed 

system at the final moment of the time of control =t . 

At the same time, the optimal values of the variable 

parameters of the stabilizer should be chosen under the 

condition of reaching the minimum of the Lyapunov 

function of the closed system at these values. Thus, the 

problem of parametric synthesis of a dynamic system 

regulator was reduced to a problem of mathematical 

programming, where the Lyapunov function of a closed 

dynamic system was used as the objective function. But 

this approach did not lead to a fundamental solution the 

problem of parametric synthesis of stabilizers of dynamic 

systems. The application of the Lyapunov function does 

not take into account the influence of non-analytical 

nonlinearities of the executive body of the dynamic 

system on the processes being stabilized, as well as the 

influence on them of the "code-to-analog" and "analog-

to-code" converters of the digital stabilizer. In addition, 

the methods of optimization of the Hook-Jives and 

Nelder-Mead functions [10], which are used in the 

implementation of the search for the minimum of the 

Lyapunov function, are unable to find the point of the 
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global minimum of the Lyapunov function in the space of 

varied parameters of the stabilizer, but only find the point 

of the local minimum closest to the starting point of the 

computing process. 

At the beginning of the 20th century, the authors of 

the article [11] proposed the method of the main 

coordinates of complex dynamic objects, which are 

understood as those components of the state vector of the 

object that characterize its dynamic properties to the 

greatest extent and are used to form a stabilization 

algorithm. On the basis of this method, an algorithmic 

combined method of parametric synthesis of stabilizers of 

complex dynamic objects was developed, the essence of 

which is the direct calculation of the additive integral 

quadratic functional on the solutions of a closed dynamic 

system, followed by finding its global minimum in the 

space of varied stabilizer parameters through a sequential 

combination of two algorithms – the Sobol grid algorithm 

[13] and the Nelder-Mead algorithm [10]. With the help 

of the Sobol grid method, the starting point of the 

computational process is brought to the node of the Sobol 

grid, which is located in the small vicinity of the point of 

the global minimum. At the second stage of optimization, 

the found Sobol grid node is selected as the starting point 

for applying the Nelder-Mead method, which is 

implemented by the Optimization Toolbox software 

product of the MATLAB package or the Minimize 

software product of the MATHCAD package and leads 

the computational process to the point of the global 

minimum. 

With the help of a combined algorithmic method, 

the authors solved the problems of parametric synthesis 

of a digital stabilizer of a resilient tank gun [14], a digital 

stabilizer of the space stage of a carrier rocket with a 

liquid jet engine on the active part of the flight path [15], 

as well as a digital stabilizer of the course stability system 

of a refueling car [16]. 

One of the most difficult problems of solving any 

optimization problem is the determination of the set of 

permissible values of the variable parameters of the 

dynamic system. The proposed work considers the 

method of choosing such a set while minimizing the 

functional, which is calculated on the solutions of a 

complex nonlinear dynamic system. 

Main material 

Selection of the set of permissible values of 

variable parameters of the stabilizer of a complex 

dynamic object. We will assume that the disturbed 

motion of a dynamic object is described by a vector-

matrix differential equation 

 ( ) ( )  ( )tUBtXtX += , (1) 

where ( )tX  is the n -dimensional vector of the state of 

the object; ( )tU  m -dimensional control vector; B – 

control matrix mn ; ( ) tX – n -dimensional 

nonlinear analytic vector function. 

The automatic regulator implements a control vector 

( )tU  in the form 

 ( ) ( ) tGtU = , (2) 

where ( ) tG  is a m -dimensional non-analytic vector 

function; ( )tG  – m -dimensional control vector function, 

which is formed by an electronic stabilizer in the form 

 ( ) ( )tXKtG = , (3) 

where K  is the matrix of variable parameters of the 

stabilizer with the size nm . 

The set of vector-matrix differential equation (1) 

and vector-matrix ratios (2) and (3) creates a 

mathematical model of the disturbed motion of a closed 

dynamic system. 

In accordance with works [11, 12], the components 

of the state vector ( )tX , which to the greatest extent 

characterize the behavior of the control object, will be 

called the main coordinates of the stabilization object. 

Usually, the measurement of the main coordinates does 

not cause difficulties, therefore, when forming the 

vector function (3), only the main coordinates of the 

object of stabilization are taken into account. At the 

same time, the columns of the matrix K  corresponding 

to the main coordinates of the object are non-zero, and 

all other columns are zero. The task of the parametric 

synthesis of the stabilizer of a dynamic object is to 

determine the non-zero elements of the matrix K  such 

that the integral quadratic functional reaches a minimum 

on the solutions of the mathematical model (1)–(3) 

 ( ) ( ) ( )


=

0

, dttQXtXKI ,    (4) 

where Q  is the diagonal Sylvester matrix of size nn  
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Some of the diagonal elements of the matrix (5) 

are equal to zero, and its non-zero diagonal elements 

correspond to the main components of the state vector 

( )tX . 

In accordance with the combined algorithmic 

method of parametric synthesis of the stabilizer of a 

closed dynamic system, the value of the functional (4) is 

directly calculated on the solutions of the closed 

dynamic system (1)–(3) with subsequent finding of its 

minimum on the set of permissible values KG , which is 

built in the space of variable parameters of the stabilizer 

 ( ) ( ) ( )



=

0

* ,min dttQXtXKI
KGK

,        (6) 

where KGK *
 is the matrix of optimal values of 

variable parameters. 

To build a computational process of search of the 

matrix
*K , it is necessary to define a set KG  in the space 

of variable parameters of the stabilizer. To do this, let's 

move from the nonlinear system (1)–(3) to the system of 

the first approximation [17]. Instead of the nonlinear 

differential equation of the perturbed motion of the 
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stabilization object (1), let's go to the linear differential 

equation 

 ( ) ( ) ( )tUBtXAtX += ,    (7) 

where the elements of the matrix A  are calculated by the 

formula 

( ) ( ) ( ) 
( )

( )nji
tx

txtxtx
a

j

ni
ij ,1,   ,

,...,,

0

21 =

















= .     (8) 

Through ( ) ( ) ( ) txtxtx ni ,...,, 21  in formula (8), the 

elements of the vector function ( ) tX  are marked, and 

the derivatives are calculated at the point of stable 

equilibrium of the object, which is determined by the 

algebraic equation 

 ( )  ( ) 0=+ tUBtX . (9) 

The non-analytical vector function (2) takes into 

account non-analytical nonlinearities of the executive 

bodies of the stabilizer - saturation, insensitivity zone, etc. 

If these properties of the executive body are neglected, 

formula (2) can be presented in a linear form 

 ( ) ( )tGtU = , (10) 

and the mathematical model of the closed system of the 

first approximation can be written in the form of a linear-

matrix differential equation 

( ) ( ) ( ) ( ) ( )tXKBAtXKBtXAtX +=+= .   (11) 

The following theorem applies: as a set of allowable 

values KG  of the variable parameters of the stabilizer of 

the closed nonlinear dynamic system (1)–(3), the region 

of stability of the corresponding system of the first 

approximation (11) in the space of variable parameters 

can be chosen. 

The proof of the formulated theorem will be carried 

out from the opposite. Let's choose a point K  in the set of 

variable parameters that belongs to the region of stability of 

the system of the first approximation (11). In this point, in 

accordance with Lyapunov's theorem on stability to the 

first approximation [18], the nonlinear system (1)–(3) is 

also stable. Therefore, it is quite likely that the minimum 

point of the functional (4) is in the middle of the region of 

stability of the system of the first approximation (11). 

Now suppose that the minimum point of the 

functional (4), calculated on the solutions of the nonlinear 

system (1)–(3), is outside the region of stability of the 

system of the first approximation (11), that is, the system 

of the first approximation is unstable. But then the 

corresponding nonlinear system (1)–(3) is unstable and 

any point chosen outside the region of stability cannot be 

the minimum point of the functional (4) calculated on the 

solutions of the nonlinear system (1)–(3). Therefore, the 

minimum point of the functional (4) is in the region of 

stability of the system of the first approximation (11), 

which can be taken as a set KG  of allowable values of 

the variable parameters of the stabilizer of the nonlinear 

system (1)–(3). The theorem is proved. 

To construct the region of stability of the system of 

the first approximation (11), we write down its 

characteristic equation 

   0det =−+ sEKBA ,  (12) 

where s  is the complex variable of the Laplace 

transform. Using the D -distribution method [19] in the 

set of variable parameters of the stabilizer, we will select 

a set KG  and when organizing the computational process 

of searching for elements of the matrix of variable 

parameters K , we will use the condition 

 KGK  . (13) 

Example. As an example, consider the construction 

of the region of stability KG  of the closed system of 

course stability of the car [16]. Mathematical model of 

the disturbed movement of the car is written in the form: 
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 (14) 

where ( )tvx  – the current speed of the center of mass of 

the car; ( )t  – angle of deviation of the main longitudinal 

central axis of inertia of the car relative to the given 

direction of movement; ( )ty  – lateral shift of the center of 

mass of the car body relative to the given direction of 

movement (Fig. 1); ( )tp0  – brake fluid pressure in the 

main brake cylinder; ( )tp  – brake fluid pressure 

difference in the brake lines of the right and left sides of the 

car; M  – mass of the car; I  – the moment of inertia of 

the car body relative to its own central vertical axis of 

inertia; 0f  – the car's movement resistance coefficient; G  

– weight of the car; rI  – the moment of inertia of the 

rocker arm of the electromagnet of the executive body; rf  

– coefficient of liquid friction in the axis of rotation of the 

rocker arm; rc  – stiffness coefficient of the fixing spring 

of the rocker arm; mH  – the distance from surface of 

movement of the car to its center of mass; uk  – gain 

coefficient of the electro-hydraulic amplifier; B  – track 

width of the car; bk  – coefficient of proportionality. 

 

 

Fig. 1. For determination the disturbed car movement 
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System (14) is essentially non-linear, since it 

contains the multiplication of system state variables in the 

right parts of the second and fourth differential equations. 

At the same time, in the process of emergency braking 

( ) max00 ptp = , the right part of the first equation of 

system (14) represents a constant value, and the current 

speed of the car changes according to the formula 

 
( ) tavtvx −= 0 , (15) 

where 0v  is the initial speed at the beginning of the 

emergency braking mode; a  – acceleration during 

braking. 

Substitute ratio (15) into system (14). As a result, 

we get a mathematical model of disturbed car movement 

in the form of a linear non-stationary system 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ).

;
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  (16) 

The main coordinates of the system under 

consideration are the angular deviation ( )t , the angular 

speed of rotation of the car body ( )t=
  and the 

lateral shift of the center of mass of the body ( )ty . It is 

these coordinates that determine the disturbed movement 

of the car body, are measured by the corresponding 

sensors and are used in the formation of the control 

function 

 ( ) ( ) ( ) ( )tyktktkt y++=   ,   (17) 

The static characteristic of the executive body of the 

car's course stability system is presented in Fig. 2 and can 

be written in the form of a non-analytical function 

 ( )

( ) ( )

( ) ( )
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Fig. 2. Static characteristic of executive body 

 

The system of differential equations (14) and ratios 

(17) and (18) will be called the mathematical model of 

the disturbed motion of the closed system of course 

stability of the car. 

If the non-linearities of the static characteristic of 

the executive body of the system are neglected due to the 

fact that the value of the insensitivity zone 
*u  is small 

and the value of saturation 
**u  is large enough, then the 

non-analytical function (18) can be replaced by a linear 

function 

( ) ( )ttu = , 

or taking into account formula (17) 

 ( ) ( ) ( ) ( )tyktktktu y++=   .   (19) 

The system of linear non-stationary differential 

equations (16) and relation (19) will be called the 

mathematical model of the closed system of the first 

approximation. 

Construction of the region of stability of a linear 

non-stationary system on the set of its variable 

parameters is a rather complex problem. In engineering 

practice, the method of "frozen coefficients" [20,21] has 

become widespread, according to which several moments 

of time qs tttt ,...,,...,, 21  are selected in the interval  ,0  

and for each of the moments ( )qsts ,1, =  the time-varying 

coefficients are "frozen", that is, their values are assumed 

to be constant, and for each of the moments ( )qsts ,1, =  a 

mathematical model of disturbed motion with time-

constant coefficients is built. In other words, instead of a 

non-stationary system of the first approximation, q  

stationary systems are considered 
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 (20) 

where ( )qstavv ss ,1     ,0 =−= . 

Let's introduce the notation 
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Then linear stationary systems for each moment 

( )qsts ,1, =  are written in the form 
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We write each system of differential equations 

(21) in the normal Cauchy form, for which we introduce 

the state vector of the closed system 
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In the new variables, each of the systems (21) 

takes the form: 
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Each of the systems (22) will be written in vector-

matrix form 

 ( ) ( ) ( ) ( )qstXvAtX s ,1       ; == ,    (23) 

where the matrix ( )svA  is written in the form 
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The characteristic equations of each of the systems 

(22) have the form 

 ( )  ( )qssEvA s ,1       ;0det ==− ,    (25) 

where s  is the complex variable of the Laplace 

transform. 

Substitution of matrices (24) into characteristic 

equations (25) allows to write the latter in the canonical 

form: 
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   (26) 

In Fig. 3 shows the structural and functional scheme 

of the closed system of the car's course stability, where 

the notations are adopted:  

C – car;  

BS – braking system;  

B – car body;  

SU – sensor unit;  

EU – electronic unit. 

Analysis of Fig. 3 allows us to conclude that the 

electronic unit implements two control circuits, 

namely, the internal control circuit for the angle of 

deviation ( )t  and angular speed ( ) ( )tt =
 , as well 

as the external control circuit for the shift of the car's 

center of mass ( )ty . 

 

 

Fig. 3. Closed system of car course stability 

 

Let's break the outer contour by putting 0=yk  in 

the characteristic equations (26). As a result, the 

characteristic equations (26) take the form ( )1,s q= :  
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In the characteristic equations (27), we will make a 

replacement = js , separate the real and imaginary parts 

and set them equal to zero. As a result, to construct the 

stability region ( )sK vG
 for the internal control loop, we 

obtain the ratio 

  2
2

−+


= 



 ppspp
up

avaa
ka

k ; (28) 

 ( ) spppps
up

vaaava
ka

k 



 −+= 21
 .  (29) 

Changing   from zero to infinity, in the area of the 

variable parameters ( ) kk ,  for different values sv , we 

construct regions of stability ( ) ( )qsvG sK ,1 , =
, which are 

presented in Fig. 4. 
 

 

Fig. 4. Stability regions ( )sK vG
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At the same time, the region 
KG  represents the 

intersection of regions ( ) ( )qsvG sK ,1 , =   

 ( ) ( ) ( )qKKKK vGvGvGG  = ...21  (30) 

and is the region of allowable values of variable 

parameters k  and k  in the plane ( ) kk , . The values 

of the coefficients of the characteristic polynomial (27) in 

the example under consideration are equal to: 

 

2 1 2
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The values of the speed of the car were chosen as 

follows: 
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Analysis of fig. 4 allows us to conclude that the 

value of the fixed speed of movement sv  has almost no 

effect on the region of stability of the closed system of 

the first approximation, especially in the region of low 

frequencies. 

On the constructed set 

KG  using the algorithmic 

combined method of parametric synthesis of the stabilizer 

of a complex dynamic object, we find the values of the 

variable parameters 


  KGk*
; 


  KGk*
 , which deliver 

the global minimum of functional 

 ( ) ( ) ( ) 


 +=

0

2
2

2
2

2
1

2
1, dttxtxkkI   (31) 

on the solutions of the closed nonlinear system (14), (17), 

(18) under the condition that in relation (17) the variable 

parameter yk  is equal to zero, and the weighting 

coefficients of the functional (31) are chosen according to 

the method described in works [22,23]. 

The values of the coefficients 
*
k  and 

*
k , which 

deliver the minimum of the functional (31), are  

 V 9,198* =k ;  sV 4,349* =k .  

Let's close the outer circuit of the scheme shown in 

fig. 3 and return to the characteristic equation (26), 

putting in it 
*
 = kk  and 

*
 =  kk . We solve the 

characteristic equation with respect to the variable 

parameter yk : 



( )

( ) ( ) 

*

* 2

3 4 5

1

.

uy p
up s

up pp s

pp s pp s pp

k a k k s
a k v

a k k a a v s

a a v a s a v a s s

 


  

 

= +

+ + +

   + + + + +

 (32) 

In relation (32), we make a replacement = js  

and separate the real and imaginary parts 

 

( )

( )
( ) 

* 2

4

1
Re

;

y
up s

up pp s

s pp

k
a k v

a k k a a v

a v a



  









= 

 − + +

 + +

 (33) 

 
( ) 

( ) 

*

3 5

1
Im

.

uy p
up s

pp s pp

k a k k s
a k v

a a v a

 




 

 

=  −

 − + +

 (34) 

In Fig. 5 shows the boundaries of the regions of 

stability of systems of the first approximation (22) in the 

plane of the complex variable parameter yk . The region 

y
KG  is an intersection of regions ( ) ( )qsvG s

y
K ,1 , =  

 ( ) ( ) ( )q
y
K

y
K

y
K

y
K vGvGvGG = ...21 , (35) 

each of which is a segment of the real axis, located on its 

negative part between the points of intersection of the 

latter and constructed using relations (33) and (34) as the 

boundary of the stability region.  
 

 

Fig. 5. Stability regions ( )s
y
K vG  
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Using the algorithmic combined method of the 

parametric synthesis of the stabilizer on the set 
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KG  we 

choose the point 
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minimum of the functional 
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which calculated on the mathematical model of the closed 

dynamic system (14), (17), (18). The value of parameter 
y
Ky Gk *

 is 
1* m1,113 −−= Вk y . The set of allowable 

values of the variable parameters of the stabilizer KG  is a 

union of the sets 

KG  and 

y
KG  

 y
KKK GGG = 

,  

each of which is the region of stability of the closed 
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system of the first approximation in the plane of variable 

parameters of the stabilizer. 

In Fig. 6 shows the processes of stabilization of the 

car body relative to the given direction of movement 

during emergency braking at the calculated values of the 

variable parameters of the stabilizer, which ensure the 

minimum of the functional (31) by the internal circuit of 

corner stabilization and the minimum of the functional 

(36) by the two-circuit system, calculated on the solutions 

of the closed system (14), (17), (18). 

 

 

Fig. 6. Stabilization processes of the car body during emergency braking 

 
 

Conclusions and recommendations 

As a result of the research, the conclusions were 

drawn and recommendations were offered: 

• an effective method of choosing the values of 

variable parameters of stabilizers of complex 

dynamic objects is the combined algorithmic method 

of parametric synthesis, based on the application of 

main coordinates, which in the greatest extent 

characterize the dynamic properties of the object 

being stabilized; 

• one of the most difficult tasks when applying the 

combined algorithmic method of parametric synthesis of 

stabilizers of complex dynamic objects is the task of 

determining the set of allowable values of the variable 

parameters of the stabilizer, which is used to find the 

minimum value of the additive integral quadratic 

functional, which is calculated based on the solutions of 

the mathematical model of the disturbed motion of the 

closed stabilization system; 

• it is proved that as a set of allowable values of 

variable stabilizer parameters of a complex dynamic 

object, the region of stability of a linear closed system 

of the first approximation, which is built in the space of 

varied stabilizer parameters, can be used; 

• considered an example of choosing a set of 

allowable values of variable parameters of the car's 

course stability system, on which the values of the 

parameters that ensure the high quality of the 

stabilization processes of the car body relative to the 

given direction of movement during emergency braking 

are selected. 
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Вибір множини допустимих значень варійованих параметрів  

стабілізатора складного динамічного об’єкта 

Є. Є. Александров, Т. Є. Александрова, І. В. Костяник, Я. Ю. Моргун 

Анотація . Актуальність. Однією з найважливіших задач при застосуванні обчислювальних методів 

параметричного синтезу регуляторів складних динамічних об’єктів є задача визначення множини допустимих значень 

варійованих параметрів регулятора, де проводиться обчислення цільової функції на рішеннях математичної моделі 

збуреного руху динамічного об’єкта з її подальшою мінімізацією. Метою роботи є побудова множини допустимих 

значень варійованих параметрів стабілізатора складного динамічного об’єкта при застосуванні алгоритмічного 

комбінованого методу параметричного синтезу стабілізаторів складних динамічних об’єктів, сутність якого полягає у 

безпосередньому обчисленні інтегрального квадратичного функціонала на рішеннях замкненої динамічної системи з 

подальшим знаходженням його глобального мінімуму шляхом послідовної комбінації двох алгоритмів – алгоритму 

побудови сітки Соболя і алгоритму Нелдера-Міда. Результати. За допомогою алгоритму побудови сітки Соболя стартова 

точка обчислювального процесу приводиться до вузла сітки Соболя, який знаходиться в малому околі точки глобального 

мінімуму. На другому етапі оптимізації знайдений вузол сітки Соболя вибирається стартовою точкою для застосування 

методу Нелдера-Міда, який реалізується програмним продуктом Optimization Toolbox пакету MATLAB або програмним 

продуктом Minimize пакету MATHCAD і виводить обчислювальний процес в точку глобального мінімуму. Висновок. В 

роботі доведено теорему, згідно з якою в якості такої множини може прийматися область стійкості замкненої системи 

першого наближення, а також наведено приклад рішення задачі параметричного синтезу стабілізатора системи курсової 

стійкості автомобіля в процесі його термінового гальмування. 

Ключові  слова:  складний динамічний об’єкт; математична модель збуреного руху замкненої динамічної 

системи; параметричний синтез стабілізатора; варійовані параметри. 
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