Advanced Information Systems. 2023. Vol. 7, No. 2

ISSN 2522-9052

UDC 004.231.3 (004.056.55)

doi: https://doi.org/10.20998/2522-9052.2023.2.13

Dmytro Salnikov, Dmytro Karaman, Viktoriia Krylova

National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
HIGHLY RECONFIGURABLE SOFT-CPU BASED PERIPHERAL MODULES DESIGN

Abstract. Research motivation. When developing microcontrollers, manufacturers try to include as many different types of
peripherals as possible in order to increase the marketing attractiveness of their products. On the one hand, with a large assortment
of various peripheral modules, it is very difficult to implement several devices of the same type in the microcontroller:
manufacturers are mainly limited to 1-2 instances, in rare cases 4 modules of the same type are included. On the other hand,
most software projects do not use all the peripherals of modern microcontrollers and many devices are left unused, while there
may be a shortage of other types of modules. Another problem that has become especially noticeable for microcontrollers used
in the field of 10T is the cryptographic protection of data that is transmitted through built-in information exchange interfaces.
The main efforts of researchers and developers of cryptographic data protection methods were aimed at reducing energy-
intensive operations, memory access iterations and speeding up encryption processes while maintaining a high level of
cryptographic protection and enabling efficient data distribution within 10T devices networks. Research results. This paper
presents an alternative approach to the manufacture of peripheral modules as part of microcontrollers. The authors propose to
use a configurable software processor module based on the MIPS architecture with a reduced instruction set and limited
capabilities. Conclusions. This approach would make it possible to dynamically change the functionality of peripheral modules
in accordance with the requirements of the developed software solution, which in turn will increase the efficiency of the
microcontroller chips capabilities utilization. In addition, the transfer of data stream encryption functions to the reconfigurable
core of the peripheral module will provide fast and transparent cryptographic protection, as well as allow offloading the
microcontroller core and increasing the energy efficiency of chips while reducing their production cost.

Keywords: peripheral module; soft-CPU; RISC; MIPS architecture; FPGA; internet of things; encryption, lightweight

cryptography; AEAD; Ascon.

Introduction

Modern microcontrollers must have the widest
possible capabilities so that devices based on them can
meet the requirements of users. To do this,
microcontroller manufacturers are constantly improving
the computing cores in microcontrollers, as well as
increasing the number and expanding the functionality of
peripheral modules. However, this approach leads to a
narrowing of promising areas of application of
microcontrollers, especially from electronic devices with
intelligent capabilities for everyday life, as part of smart
home systems, as well as distributed systems with
stringent requirements for energy efficiency: wireless
sensor networks, devices as part of the Internet of Things
(1oT) etc.

At the moment, the problem of the efficiency of the
use of energy resources is one of the most important on the
European continent and even in the world. At the same
time, humanity uses millions of electrical devices that use
microcontrollers to deliver specific features to their users.

Internet of things devices are widely used in most
modern homes in the form of climate control systems,
safety or security systems, voice-controlled assistants etc.
The number of such devices continues to grow. Thus, each
device's efficiency impacts energy usage.

Despite the relatively low level of energy
consumption of each such device, the total costs for
millions of sold devices are significant, and optimizing the
energy consumption of each of them is an important task
of modern science and technology.

Another feature that has become relevant recently
for distributed embedded systems, especially for 10T, is
ensuring the security, integrity and confidentiality of
transmitted information, as well as providing protection
from unauthorized access. Implementations of traditional

encryption, integrity and confidentiality methods are
very resource intensive. During their development, first
of all, the issues of reliability and resistance to
cryptanalytic attacks were considered, rather than the
possibility of use on platforms with limited computing
capabilities and limited power supplies. That is why
recently there have been many attempts to adapt existing
solutions to the operating conditions of 10T devices, as
well as to search for new algorithms that initially take
into account the limitations of the 10T platform elements
and provide a level of protection no less than traditional
cryptographic methods.

Relevance of the topic and related works

The design of electronic devices is directly related
to the choice of optimal microprocessor used to
implement all planned functional capabilities of the
device. Modern microcontrollers use different
architectures of the processor core and have a different
set of peripheral units that can be configured to perform
various tasks. Selection of an appropriate architecture
and a set of such peripheral blocks affects a possibility to
expand and/or improve the functional capabilities of the
device. With this in mind, electronics and software
engineers often use overpowered devices to avoid
problems in the future and let the project grow without
significant printed circuit boards and software changes.

Most of the changes in the software can be related
to the lack of peripheral modules of the required type or
the inability to configure them to work in the required
mode.

Problems of this kind can be solved by including
CPLD or FPGA configurable blocks in the circuit [1, 2, 3].
In this case, the programmer can include the
implementation of the necessary peripheral modules in the
Verilog or VHDL hardware description languages as part

92

© D. Salnikov, D. Karaman, V. Krylova, 2023

ISSN 2522-9052

CyuacHi indopmariiitai cucremu. 2023. T. 7, Ne 2

of the project. Which requires additional programming
skills and, more importantly, significantly increases the
cost of such solutions and the process of working with
them [4]. Solutions with embedded CPU and FPGA in a
single chip are available from most semiconductor
manufacturers like Intel FPGA, AMD Xilinx, Analog
Devices [5, 6], etc. Another option is highly configurable
hybrid ICs like Cypress microcontrollers [7].

Flexible combination of the embedded
microprocessor functions core (CPU) and the
programmable part (FPGA) allows developers, if
necessary, to expand the functionality of the designed
solution by transferring complex and intensive
operations for the CPU to be executed in a separate
specialized module in the FPGA part. In the same way,
you can expand the pool of available peripherals, since
the FPGA part in most cases has access to the lines and
1/0 ports of the chip.

The issue of creating flexible auxiliary peripheral
modules has been considered for the past decade. For
example, [8] studies the possibility of expanding the
capabilities of the PIC microcontroller by connecting
external programmable peripherals to general purpose
I/0 ports. This solution allows you to add the missing
peripheral module, but occupies one of the few
input/output ports of the microcontroller. In addition, this
approach requires the involvement of external additional
hardware resources.

The use of hardware emulation through software is
proposed in [9] that allows you to recreate the behavior
of the 12C serial bus controller through the GPIO ports in
a microcontroller based on the RISC-V core. Thus, the
expansion of the functionality of the microcontroller
without the involvement of additional equipment is
provided. However, in this case, the kernel receives an
additional load, since it must spend additional processor
time emulating the 12C transceiver. In addition, questions
arise regarding the performance parameters of such a
solution. Definitely, such a module will not be able to
work with devices on the bus at high data exchange rates.

A specific way to use custom peripheral modules is
discussed in [10]. The authors create digital hardware
twins of peripheral modules using FPGA, which make it
easier for students to learn embedded systems in distance
education. Access to the modules is provided via the
Internet using a client-server architecture.

Another example of a remote peripheral module is
discussed in [11]. A method for remote control of
microcontroller input/output interfaces using WebUSB
technology is proposed.

Thus, the problem of the efficient, easy to use and
low-cost architecture for microcontroller peripheral unit
implementation is a relevant topic to research and
development nowadays.

The issues of security and data protection for
elements of the Internet of Things (IoT) system have
become especially acute since the concept was adopted
by leading electronics manufacturers and began to be
massively introduced into various fields of human
activity. The methods and technologies that initially
relied on that concept of devices networking did not
assume that devices would be available to a wide range

of users, among which there could be many intruders.

Numerous attempts to adapt existing methods of
cryptographic protection and authentication have shown
that in order to implement these methods in systems with
limited resources, it is necessary either to take resources
from other functions in the 10T system, or to curtail the
capabilities or even modify the main algorithms [12],
which can lead to a decrease in cryptographic resilience
or the emergence of vulnerabilities.

This state of affairs led to the need to develop a
separate class of cryptographic protection methods —
lightweight cryptography [13]. These methods had to
take into account the features of distributed embedded
systems: reduced power supply and low level of
performance, and at the same time provide a level of
protection that is not inferior to traditional methods.

Authenticated Encryption with Attached Data
(AEAD) [14] occupies a special place among the
methods of lightweight cryptography. Their peculiarity
lies in the fact that not the entire message is encrypted,
but only a part of it with the most sensitive data, while
the entire message is authenticated. This allows you to
ensure data protection and message integrity, while the
data necessary for successful and efficient routing
remains open.

In February 2023, the US National Institute of
Standards and Technology (NIST) announced the results
of a competition to select a lightweight cryptography
algorithm [15] that will form the basis of the
corresponding standard. As a result of many years of
thorough selection among 57 applicants, the family of
cryptographic algorithms Ascon [16] was chosen. The
implementation of the block cipher algorithm, which is
part of this family, is discussed in this article.

Soft-CPU-based peripheral module

From the authors' point of view, the complexity of
implementing peripheral modules in hardware
significantly reduces the possibilities of their usage, and
most companies prefer usage-ready solutions that do not
require additional development process.

At the same time, most programmers involved in
the creation of microcontroller-based systems have an
understanding of the processes and operations which take
place in peripheral units and can create their
programmatical description using C/C++ or assembler
language.

Worthless to say that availability of mature
programming development tools, in particular, a C
language compiler and/or an assembly parser, plays an
even more important role in the life cycle of any software
project.

Thus, it is promising to use general purpose CPU
architectures without additional license conditions,
mature development tools and well-known instruction
sets, such as MIPS, RISC-V etc.

At the current stage, a software processor that uses
MIPS architecture has been chosen to construct the
experimental architecture. Issues of the efficiency of
MIPS/RISC-V software processors and development for
such systems on chip are widely considered in the
literature, particularly in [17].

93

Advanced Information Systems. 2023. Vol. 7, No. 2

ISSN 2522-9052

Basic architecture of MIPS soft processor was
modified for this experiment. Modules for working with
data memory were removed. Registers $a0-$a3 were
used to load data from the queue. Registers $s0-$s7 — for
setting the output GPI1O lines to the required state. Other
registers are available to the programmer for intermediate
calculations.

For such a system, basic UART module can be
executed in the form of the following program assembly
language (Listing 1).

_start:
li $t1, 10 # set bit counter st+8d+sp
move $t0, $a0 # load data from queue to tx buffer
andi $t0, $t0, OXFF # cut data to 1 byte with mask
sll $t0, $t0, 1 # prepare start bit
or $tO, $t0, 0x01
loops:
move $s0, $t0 # copy to s0.0 bit data to tx from buf
jal baud_delay
srl $t0, $t0, 1 # prepare next bit to tx
subu $t1, $t1, 1 # count bits transmitted
bgtz $t1, loops # test if tx complete
rest of code
nop
j _start
baud_delay:
delay routine according to baudrate
jr $ra
Listing 1

The process of designing and manufacturing ICs is
overcomplicated and involves significant workforce
requirements with licensing expenses. It is not possible for
small IT companies to plan a set of required peripherals
and produce a chip or ASIC which matches needs of a
project exactly. It increases time-to-market of the device,
expenses and complexity of any device. Moreover, there is
no way to deal with changes in requirements. It is not
possible to reconfigure such chips in future. A possible
way of solving this problem presented in [8], while our
proposal is more generic and configurable.

Implementation of some peripheral modules
consume significant hardware resources. This affects
chip cost and energy consumption. Thus, widely adopted
practice is to use cheaper devices and implement required
peripheral in software using general purpose input/output
pins. An example of such a study is presented in [9]. It
provides software implementation of 12C peripheral.

Proposed in this work, MIPS-based block, is 3 times
smaller in terms of consumed FPGA resources.

Another field where highly reconfigurable
peripherals are needed is a study laboratory. Any
university in the world now has remote laboratory classes
and requires students to perform experiments and
laboratory assignments from home. A solution that uses
FPGA logic to mimic some type of hardware is proposed
in [10, 11, 19]. In addition, hardware emulated using
FPGA can be used to improve testing methods [18], and
to measure and characterize network architectures [19].
Our approach of realization of peripheral blocks may
simplify implementation of generic execution units
suitable for remote/concurrent usage.

We can't analyze hardware expenses to create
specific peripheral blocks in ASIC. It depends on the
technical process of the manufacturer and a lot of design
choices of the engineer. We assume that ASIC resource
consumption is compatible with FPGA resources
consumed to implement such blocks. Mentioned blocks
and their configuration can be seen in [20].

In Table 1 one can see resource consumption for
widely used Intel FPGA peripheral IP blocks. Note that
some of them use additional memory which is not used
to implement register memory maps, queues or FIFO
buffers. Thus, additional memory is required to
implement an interface to control them.

To verify the solutions proposed in the article, we
used a 5CSEBA6U23I7 device of Intel Cyclone V SoC
with 2-core ARM Cortex A9 FPGA.

Table 1 — FPGA Resources consumption for different
types of IP cores

Regis- | ALM | Block me-

ters blocks | mory bits
Modified MIPS core 74 72 0
Intel SPI IP Core 56 23 0
Intel 16550 UART IP Core 156 114 0
Intel UART IP Core 0 1 0
Intel 12C Host IP Core 215 143 40

In addition to peripheral blocks, we provide
resources consumed to synthesize a modified MIPS
processor suitable for software implementation of the
listed peripherals. The structure of the synthesized CPU
is show on Fig. 1.

sm_top:sm_top

N
E sm_clk_divider:sm_clk_divider
sm_debouncer:fQ
clkin
clkin clk q[3..0]
. 1 devide[3..0] clkOut clk
clkDevide[3..0] d[3..0]
enable
rst_n SM_cpuism_cpu
sm_debouncerf1
sm_rom:reset_rom T
clk q[0..0] imData[31..0] imAddr{31..0]
clkEnable d[0..0] a[31..0] rd[31..0] I regAddr{4..0] regData[31..0] regData[31..0]
rst_n rst n
sm_debouncer:f2
clk H q[4..0]
regAddr[4..0] d[4..0]
v

Fig. 1. Structure of the synthesized MIPS core

94

ISSN 2522-9052

CyuacHi indopmariiitai cucremu. 2023. T. 7, Ne 2

Modern CPU implementations use pipelining to
allow computing cores to work faster by using higher
frequencies. The problem is that on high frequencies
timing delay on logic used to implement CPU becomes
significant. Such delay limits frequency and, as a result,
CPU performance. Thus, adding a pipeline (e.g., save
intermediate states of signals to registers) to the design
allows to improve capabilities of the CPU.

Moreover, it is a common practice to include hazard
units to CPU implementations to allow pipelining of the
CPU and achieve higher performance. In contradiction to

common CPUs, reconfigurable peripheral modules do
not have a requirement to run with frequencies higher
than 30-40MHz. Such relaxation of the requirements
allows to drop these modules and significantly reduce
resources required to implement peripheral module.

As most peripheral blocks of modern
microcontrollers the suggested implementation requires
additional FIFO buffers and input/output multiplexers to
achieve efficient signal transmitting/receiving. Such
logic can be connected to the registers of the peripheral
module as shown on Fig. 2.

Cpu bus
Configuration l/
~] Outputs
clk Output
Inputs register x .
———| 2
=
MIPS based
peripheral —
Input module
Cpu bus register
FIFO

Fig. 2. Additional logic needed to used proposed modules

In this article we don’t compute resources that
required to implement such buffers and interconnect. In
most cases resources spent to synthesize such logic is
equivalent to the resources needed for functioning of
regular peripheral block.

Implementing Encryption Functions
in the Peripheral Module

One of the modern requirements for devices that are
oriented to work as part of the 10T is to support a certain
stack of cryptographic data protection methods: block or
stream encryption, various ciphertext block chaining
modes, hash sum calculation, message authentication
mechanism (MAC) and even digital signature generation.
In most cases, the necessary protection mechanisms are
implemented at the software level and are executed by
the main computing core of the microcontroller.
Peripheral modules are not involved in the process in any
way and perform only the functions of receiving,
transmitting and transport integrity control of data
packets.

Much less common are devices in which
cryptographic functions or their composite operations are
implemented at the level of the computing core
(hardware support for cryptographic operations).
However, despite the excellent speed of the encryption
and authentication processes, the use of such tools faces
significant limitations: high price and export control by
government agencies.

Since the core of the MIPS soft processor was used
in the development of the reconfigurable peripheral
module, the possibility of transferring the execution of
encryption functions from the main core of the
microcontroller to the soft processor core of the
peripheral module was considered.

Such a solution will allow to unload the main core
of the microcontroller and making the encryption process
transparent: in the main program, it will only be enough
to send data for transmission and read the received data,
the peripheral module will automatically perform
encryption during transmission and decryption during
reception. In the main program code, it is only necessary
to provide for the process of initial initialization of
encryption functions in the peripheral module (loading
keys, initialization vectors, mode selection), which is
performed when the system is initialized after switching
on or by special request.

As an example, the family of lightweight algorithms
Ascon [16] was considered. It includes an authenticated
encryption algorithm and a hash function calculation
algorithm. Both algorithms use a transformation called
the sponge function. The authors of the algorithm set
offer a wide range of software implementations for
various microprocessor architectures with different
degrees of optimization in public repository on GitHub.

The implementation of the entire set of algorithms
by means of a peripheral module does not seem
appropriate, since after compilation, the entire code,
taking into account optimizations, occupies at least 6456
bytes in memory. Therefore, it is proposed to perform all
operations for initialization and preparation of the
encryption process in the main core of the
microcontroller, and to transfer the initial state for the
encryption or decryption functions to the peripheral
module.

An estimate of the size of the executable code is
given in Table 2. For estimation, a general
implementation version of the algorithm was compiled
from the authors' repository on GitHub, ascon128v12
version for 32-bit processors with instructions on integer

95

Advanced Information Systems. 2023. Vol. 7, No. 2

ISSN 2522-9052

operands (bi32). The compilation was done on mips gcc
ver. 12.2.0, emulation and debugging were performed on
the MIPS32r5 generic kernel simulator.

Table 2 — Estimation of the code size of the encryption

system

Implemented function Code size, bytes
Full implementation of the algorithm 6456
stack
Implementation of encryption and
decryption (auxiliary code) 5344 (3928)
Encryption function only (including 4544
auxiliary code)
Decryption function only (including 4720
auxiliary code)

An example of the previously discussed program
for the operation of the UART module with the
implementation of preliminary encryption of the
transmitted data is shown below (Listing 2).

Conclusions

The use of processor architectures with reduced
command and pipeline functionality is seen as a
profitable replacement for traditional configurable
peripheral modules that are widely used at the moment.

The FPGA implementation of software-based
MIPS core, modified to be lightweight from the recourse
usage perspective, shows that such design consumes
comparable, with most peripheral blocks, among FPGA
resources.

Thus, microcontrollers with 10 to 20 such modules
may be a competitive replacement to widely used
solutions.

| start:
move $t0, $a0
xor $t0, $t0, $t4

load plaintext from queue to buffer

plain text being xored with
state block to get ciphertext

call encryption function -
permutations of state block

jal ascon_encrypt

li $t1, 10 # set bit counter st+8d+sp
andi $t0, $t0, OXFF # cut data to 1 byte with mask
sll $t0, $t0, 1 # prepare start bit
or $t0, $t0, 0x01
loops:
move $s0, $t0 # copy to s0.0 bit data to tx from buf
jal baud_delay
sl $t0, $t0, 1 # prepare next bit to tx
subu $t1, $t1, 1 # count bits transmitted
bgtz $t1, loops # test if tx complete
rest of code
nop
j _start
baud_delay:
delay routine according to baudrate
ir $ra
Listing 2
The transfer of encryption functions for

transmitted/received data from the main core program of
the microcontroller to the core of the soft-processor
allows to significantly reduce load of the main core,
increase performance, and also make the processes of
ensuring the protection and authentication of data
transmitted by loT devices transparent to user software.
As the results of the implementation showed, the transfer
of all encryption functions to the microcode that is
executed in the peripheral module can lead to a high
consumption of a very limited amount of soft processor
memory and reduce the performance of the peripheral
module. In this regard, the issue of implementing
hardware support for encryption at the level of assembler
commands of a soft-processor is considered.

REFERENCES

1. Liu,C, LiuQ.andChengL.(2011), “CPLD based MCU coprocessor design and experiment platform”, 2011 Int. Conf. on Electronics,
Communications and Control, Ningbo, China, 2011, pp. 1365-1368, doi: https://doi.org/10.1109/ICECC.2011.6066408.

2. Schiavone, P.D., Rossi, D., Mauro, A. Di, Giirkaynak, F.K., Saxe, T., Wang, M., Yap, K,C. and Benini, L. (2021), “Arnold:
An eFPGA-Augmented RISC-V SoC for Flexible and Low-Power 10T End Nodes”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 4, pp. 677-690, April 2021, doi: https://doi.org/10.1109/TVLSI.2021.3058162.

3. Matsumura, T., Okada, N., Kawamura, Y., Nii, K., Arimoto, K., H. Makino and Y. Matsuda (2014), “The LSI implementation
of a memory based field programmable device for MCU peripherals”, 17th Int. Symposium on Design and Diagnostics of
Electronic Circuits & Systems, Warsaw, Poland, pp. 183-188, doi: https://doi.org/10.1109/DDECS.2014.6868787.

4. Amano, H., Abe, S., Hasegawa, Y., Deguchi, K. and Suzuki, M. (2005), “Performance and cost analysis of time-multiplexed
execution on the dynamically reconfigurable processor”, Proc. IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 315-316, doi: https://doi.org/10.1109/FCCM.2005.52.

5. (2023), Intel® Products / Intel® FPGAs and SoC FPGAs, available at:
https://www.intel.com/content/www/us/en/products/details/fpga.html.

6. (2023), AMD Xilinx Products / Adaptive SoCs: ZYNQ and Versal, available at: https://www.xilinx.com/products/silicon-

devices/soc.html.

7. (2023), Cypress PSoC® 6 Microcontrollers Purpose-Built for the Internet of Things, available at:
https://www.infineon.com/dgdl/Infineon-PSoC 6 _MCU_The New_Standard for_the_ Internet_of Things-ProductBrochure-

v05_00-EN.pdf?fileld=8ac78c8c7d0d8da4017d0f64f95450c7.

8. Penteado, C.G. and Moreno, E.D. (2009), “A Specialized Processor for Emulating Peripherals of the PIC Microcontroller”,
IEEE Latin America Transactions, vol. 7, no. 2, pp. 133-140, June 2009, doi: https://doi.org/10.1109/TLA.2009.5256820.

9. Molina-Robles, R., Garcia-Ramirez, R., Chacén-Rodriguez, A., Rimolo-Donadio, R. and Arnaud, A. (2021), “Low-level
algorithm for a software-emulated 12C 1/0 module in general purpose RISC-V based microcontrollers”, 2021 IEEE URUCON,
Montevideo, Uruguay, pp. 90-94, doi: https://doi.org/10.1109/URUCON53396.2021.9647309.

10. Buysse, L., Van den Broucke, Q., Verslype, S., Peuteman, J., Boydens, J. and Pissoort, D. (2021), “FPGA-based digital twins
of microcontroller peripherals for verification of embedded software in a distance learning environment”, 2021 XXX Int.
Scientific Conference Electronics (ET), Sozopol, Bulgaria, pp. 1-4, doi: https://doi.org/10.1109/ET52713.2021.9579770.

11. Huang, L. and Shu, Y. (2022), “Design and Research of Microcontroller 1/0 Control Technology”, 2022 IEEE 4th International
Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 2022, pp. 263-266, doi:

https://doi.org/10.1109/1CP1CS55264.2022.9873583.

96

https://doi.org/10.1109/FCCM.2005.52

ISSN 2522-9052 CyuacHi indopmariiitai cucremu. 2023. T. 7, Ne 2

12. Kane, L. E., Chen, J. J,, Thomas, R., Liu, V. and Mckague, M. (2020), “Security and Performance in 1oT: A Balancing Act”,
IEEE Access, vol. 8, pp. 1219.69-1219.86, doi: https://doi.org/10.1109/ACCESS.2020.3007536.

13. Biryukov, A. and Perrin, L. (2017), “State of the art in lightweight symmetric cryptography”, Cryptology ePrint Archive, Nov.
2017, available at: https://eprint.iacr.org/2017/511.pdf.

14. Jutla, C. S. (2008), “Encryption Modes with Almost Free Message Integrity”, Journal of Cryptology, vol. 21, pp. 547-578, doi:
https://doi.org/10.1007/s00145-008-9024-z.

15. (2023), NIST Selects ‘Lightweight Cryptography’ Algorithms to Protect Small Devices, National Institute of Standards and
Technology (NIST) Website, February 07, 2023, available at: https://www.nist.gov/news-events/news/2023/02/nist-selects-
lightweight-cryptography-algorithms-protect-small-devices.

16. Dobraunig, C., Eichlseder, M., Mendel, F. and Schliffer, M. (2023), Ascon: Lightweight Authenticated Encryption & Hashing,
available at: https://ascon.iaik.tugraz.at/index.html.

17. Dewangan, G. K., Prasad, G. and Mandi, B.C. (2021), “Design and Implementation of 32 bit MIPS based RISC Processor”,
2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2021, pp. 998-1002,
doi: https://doi.org/10.1109/SPIN52536.2021.9566007.

18. Li, T. and Liu, Q. (2016), “Cost effective partial scan for hardware emulation”, 2016 IEEE 24th Annual Int. Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 131-134, doi: https://doi.org/10.1109/FCCM.2016.39.

19. Khamis, M., El-Ashry, S., Shalaby, A., AbdElsalam M. and El-Kharashi M. W. (2018), “A configurable risc-v for noc-based
mpsocs: A framework for hardware emulation”, 2018 11th International Workshop on Network on Chip Architectures
(NoCArc), pp. 1-6, doi: https://doi.org/10.1109/NOCARC.2018.8541158.

20. (2021), Embedded Peripherals [P User Guide for Quartus Prime 21.4, Intel, UG-01085, available at:
https://www.intel.com/content/wwwi/us/en/docs/programmable/683130/21-4/introduction.html.

Received (Hanxiiinwta) 24.02.2023
Accepted for publication (ITpuiinsita 10 apyky) 10.05.2023

B1IOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

CaabHikoB JIMuTpo BajeHTHHOBHY — KaHIWAAT TEXHIYHUX HAYK, CTAPIIWN BUKIaAa4 KadeIpu aBTOMATHKH Ta YIPABIiHHS B
TEeXHIYHUX cucTeMax, HamioHanbHMA TeXHIYHIN YHIBEPCUTET «XapKiBCHKUHN MOMITEXHIYHUN 1HCTUTYT», XapKiB, YKpaiHa;
Dmytro Salnikov — Candidate of Technical Sciences, Senior Lecturer of the Department of automation and control in technical
systems, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.
e-mail: dmytro.salnikov@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0007-6201-5370.

Kapaman [Imutpo I'puropoBuu — crapmuii BukiIagad kadeapr aBTOMATHKH Ta YIPABIiHHA B TEXHIYHHX CHCTEMax,
HamioHanpHU# TeXHIYHUE yHIBEPCUTET «XapKiBCHKUH NOMITEXHIYHUI IHCTUTYT», XapKiB, YKpaiHa;
Dmytro Karaman —Senior Lecturer of the Department of automation and control in technical systems, National Technical
University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.
e-mail: dmytro.karaman@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0002-7252-3172.

KpusoBa Bikropiss AHaTojiiBHA — KaHIMIAT TEXHIYHUX HAyK, JOUEHT Kadenpu aBTOMATHUKH Ta YIPAaBIiHHSA B TEXHIYHHX
cucremax, HarmoHanpHU TEXHIYHUHA YHIBEPCUTET «XapKiBCHKHUH MOMITEXHIYHUH IHCTUTYT», XapKiB, YKpaiHa;
Viktoriia Krylova — Candidate of Technical Sciences, Associate Professor of the Department of automation and control in
technical systems, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.
e-mail: vika.hpi@outlook.com; ORCID ID: http://orcid.org/0000-0002-4540-8670.

ApXxiTeKkTypa rHy4ko KoH}pirypoBaHux nepudepiiinux MoayJiB Ha 6a3i mporpaMoBaHUX NMPOLECOPHUX 1EP
. B. Canbnikos, /1. I'. Kapaman, B. A. Kpusosa

AHoTaunisi. MortuBauia aociaimkenns. [Ipu po3poOIi MIKPOKOHTPOJEPIB BHPOOHWKH HAMAaraloThCS BKIIOUHUTH
SIKHAHOLIBIIE PI3HUX BUIB epu(epiiHUX MPHUCTPOIB, MO0 MiABUIIUTH MapKETUHTOBY NPHBAOINBICTE CBOET MPOAYKIIii. 3 OJJHOTO
OOKyY, TIpH BEIMKOMY ACOPTUMEHTI Pi3HHUX nepudepiiiHuX MOIYIIIB Ay>Ke CKIIaJHO BKIFOUYNTH 10 CKIIay MIKPOKOHTPOJIEPa BETHKY
KIBKICTh MPUCTPOIB OJHOTO THUIY: BUPOOHHMKH NMEPEBaKHO OOMEKYIOTHCsS 1-2 eK3eMIULIpaMu, JyXe pifko 3ycTpiuaroThes 4
MOAYJi OHAKOBOTO THIY. 3 iHIIOrO GOKy, OLNBIIICTE MPOrPaMHUX MPOEKTIB HE BUKOPUCTOBYIOTH BCIO MepH(epito CydacHHX
MIKPOKOHTPOJIEPIiB 1 0arato MpHUCTPOIB 3aJMIIAIOTHECS HE3aAiTHUMH, TOJI SIK MOXKE Bi4yBaTHCS HECTaya MOJYJIB iHILIOTO THILY.
[lle omuiero mpobiemoro, sika craja OCOONMBO BiAYYTHOI A MIKPOKOHTPOJEpIB, IIO 3acTocoByloThcs y chepi IT, me
KpunTorpadiyHnil 3aXUCT MaHHX, SKi IeperaroThca depe3 BOymoBaHi iHTepdeiicn oOMiHy iHdopmamiero. OCHOBHI 3ycHis
JOCHIJTHAKIB Ta PO3POOHUKIB KPHITOrpaiuHMX METOIIB 3aXHCTy AaHUX OYJIH CIpPSMOBAHI Ha 3HIKEHHS E€HEPrOBHUTPATHUX
omepanii, 3BepHEHb O TaM'sATi Ta MPHUCKOPEHHS TPOIECiB MHU(PPYyBaHHS 32 OJHOYACHOTO 30epeKEHHS BUCOKOTO pIBHS
KpUNTOrpadiqyHOro 3axucry Ta 3abe3NedYeHHS MOMKIMBOCTI €(QEKTHBHOTO IOILIMPEHHS MaHUX y Mepexax mnpuctpoi IoT.
PesyabTaT gociimkenHs. Y poOoTi NoAaHO ajbTepHATHBHHUN MiJXiJ 10 BHTOTOBICHHS NepudepiiiHMX MOAyJiB y CKiami
MIKpOKOHTpOJIepiB. [IpONOHY€eTHCSI BUKOPUCTOBYBATH KOH(DIrypOBaHUH MOJyYJb MPOTPaMHOTO Mpoliecopa Ha 0a3i apXiTeKTypH
MIPS 3 ykopoueHuM HaOOpOM KOMaH] Ta OOMEKXEHUMH MOXIMBOCTSIMHU. BucHoBkHM. Takuii miaxin 103BoJs€ TUHAMIYHO
3MiHIOBaTH (QyHKIIOHAT HeprudepiifHMX MOIYJIB BiIMOBIIHO O BUMOT NMPOTPAMHOTO PIllIEHHS, 10 PO3POOISETHCS, IO B CBOIO
4epry JO3BOJHUTH IIBUINUTH €()EKTHBHICTH BUKOPHCTaHHS MOXJIMBOCTEH MiKpocxeM MikpokoHTposiepiB. Kpim Toro,
nepeHeceHHs (QYHKIiH mmuppyBaHHS IMOTOKY AaHHX B SAApPO TepudepiiHOro MOy, IO PEKOH(DIrypyeThCs, JO3BOJNUTH
3a0e3MeynTH IBHAKUHA 1 Mpo3opuit kpunrtorpadiqHUil 3aXHCT, a TAKOX JO3BOJHTH PO3BAHTAXKHUTH SIPO MIKPOKOHTpoiepa i
MTiABHUIIATH €HEPTroe(EeKTUBHICTh MIKPOCXEM TIPH OJTHOYACHOMY 3HIDKEHHI cO0iBapTOCTI IX BUPOOHHUIITBA.

Kawuosi caoBa: mnepudepiitnuii moxyns; codr-npouecop; RISC; apxirexkrypa MIPS; IUIIC; inTepHer pedei;
mm¢pyBaHHs; Jerka kpunrorpadis; AEAD-pexum, Ascon.

97

https://doi.org/10.1109/FCCM.2016.39
https://doi.org/10.1109/NOCARC.2018.8541158
http://orcid.org/0000-0007-6201-5370
http://orcid.org/0000-0002-7252-3172
http://orcid.org/0000-0002-4540-8670

