
Advanced Information Systems. 2023. Vol. 7, No. 2 ISSN 2522-9052

92

UDC 004.231.3 (004.056.55) doi: https://doi.org/10.20998/2522-9052.2023.2.13

Dmytro Salnikov, Dmytro Karaman, Viktoriia Krylova

National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

HIGHLY RECONFIGURABLE SOFT-CPU BASED PERIPHERAL MODULES DESIGN

Abstract . Research motivation. When developing microcontrollers, manufacturers try to include as many different types of

peripherals as possible in order to increase the marketing attractiveness of their products. On the one hand, with a large assortment

of various peripheral modules, it is very difficult to implement several devices of the same type in the microcontroller:

manufacturers are mainly limited to 1-2 instances, in rare cases 4 modules of the same type are included. On the other hand,

most software projects do not use all the peripherals of modern microcontrollers and many devices are left unused, while there

may be a shortage of other types of modules. Another problem that has become especially noticeable for microcontrollers used

in the field of IoT is the cryptographic protection of data that is transmitted through built-in information exchange interfaces.

The main efforts of researchers and developers of cryptographic data protection methods were aimed at reducing energy-

intensive operations, memory access iterations and speeding up encryption processes while maintaining a high level of

cryptographic protection and enabling efficient data distribution within IoT devices networks. Research results. This paper

presents an alternative approach to the manufacture of peripheral modules as part of microcontrollers. The authors propose to

use a configurable software processor module based on the MIPS architecture with a reduced instruction set and limited

capabilities. Conclusions. This approach would make it possible to dynamically change the functionality of peripheral modules

in accordance with the requirements of the developed software solution, which in turn will increase the efficiency of the

microcontroller chips capabilities utilization. In addition, the transfer of data stream encryption functions to the reconfigurable

core of the peripheral module will provide fast and transparent cryptographic protection, as well as allow offloading the

microcontroller core and increasing the energy efficiency of chips while reducing their production cost.

Keywords: peripheral module; soft-CPU; RISC; MIPS architecture; FPGA; internet of things; encryption, lightweight

cryptography; AEAD; Ascon.

Introduction

Modern microcontrollers must have the widest

possible capabilities so that devices based on them can

meet the requirements of users. To do this,

microcontroller manufacturers are constantly improving

the computing cores in microcontrollers, as well as

increasing the number and expanding the functionality of

peripheral modules. However, this approach leads to a

narrowing of promising areas of application of

microcontrollers, especially from electronic devices with

intelligent capabilities for everyday life, as part of smart

home systems, as well as distributed systems with

stringent requirements for energy efficiency: wireless

sensor networks, devices as part of the Internet of Things

(IoT) etc.

At the moment, the problem of the efficiency of the

use of energy resources is one of the most important on the

European continent and even in the world. At the same

time, humanity uses millions of electrical devices that use

microcontrollers to deliver specific features to their users.

Internet of things devices are widely used in most

modern homes in the form of climate control systems,

safety or security systems, voice-controlled assistants etc.

The number of such devices continues to grow. Thus, each

device's efficiency impacts energy usage.

Despite the relatively low level of energy

consumption of each such device, the total costs for

millions of sold devices are significant, and optimizing the

energy consumption of each of them is an important task

of modern science and technology.

Another feature that has become relevant recently

for distributed embedded systems, especially for IoT, is

ensuring the security, integrity and confidentiality of

transmitted information, as well as providing protection

from unauthorized access. Implementations of traditional

encryption, integrity and confidentiality methods are

very resource intensive. During their development, first

of all, the issues of reliability and resistance to

cryptanalytic attacks were considered, rather than the

possibility of use on platforms with limited computing

capabilities and limited power supplies. That is why

recently there have been many attempts to adapt existing

solutions to the operating conditions of IoT devices, as

well as to search for new algorithms that initially take

into account the limitations of the IoT platform elements

and provide a level of protection no less than traditional

cryptographic methods.

Relevance of the topic and related works

The design of electronic devices is directly related

to the choice of optimal microprocessor used to

implement all planned functional capabilities of the

device. Modern microcontrollers use different

architectures of the processor core and have a different

set of peripheral units that can be configured to perform

various tasks. Selection of an appropriate architecture

and a set of such peripheral blocks affects a possibility to

expand and/or improve the functional capabilities of the

device. With this in mind, electronics and software

engineers often use overpowered devices to avoid

problems in the future and let the project grow without

significant printed circuit boards and software changes.

Most of the changes in the software can be related

to the lack of peripheral modules of the required type or

the inability to configure them to work in the required

mode.

Problems of this kind can be solved by including

CPLD or FPGA configurable blocks in the circuit [1, 2, 3].

In this case, the programmer can include the

implementation of the necessary peripheral modules in the

Verilog or VHDL hardware description languages as part

© D. Salnikov, D. Karaman, V. Krylova, 2023

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 2

93

of the project. Which requires additional programming

skills and, more importantly, significantly increases the

cost of such solutions and the process of working with

them [4]. Solutions with embedded CPU and FPGA in a

single chip are available from most semiconductor

manufacturers like Intel FPGA, AMD Xilinx, Analog

Devices [5, 6], etc. Another option is highly configurable

hybrid ICs like Cypress microcontrollers [7].

Flexible combination of the embedded

microprocessor functions core (CPU) and the

programmable part (FPGA) allows developers, if

necessary, to expand the functionality of the designed

solution by transferring complex and intensive

operations for the CPU to be executed in a separate

specialized module in the FPGA part. In the same way,

you can expand the pool of available peripherals, since

the FPGA part in most cases has access to the lines and

I/O ports of the chip.

The issue of creating flexible auxiliary peripheral

modules has been considered for the past decade. For

example, [8] studies the possibility of expanding the

capabilities of the PIC microcontroller by connecting

external programmable peripherals to general purpose

I/O ports. This solution allows you to add the missing

peripheral module, but occupies one of the few

input/output ports of the microcontroller. In addition, this

approach requires the involvement of external additional

hardware resources.

The use of hardware emulation through software is

proposed in [9] that allows you to recreate the behavior

of the I2C serial bus controller through the GPIO ports in

a microcontroller based on the RISC-V core. Thus, the

expansion of the functionality of the microcontroller

without the involvement of additional equipment is

provided. However, in this case, the kernel receives an

additional load, since it must spend additional processor

time emulating the I2C transceiver. In addition, questions

arise regarding the performance parameters of such a

solution. Definitely, such a module will not be able to

work with devices on the bus at high data exchange rates.

A specific way to use custom peripheral modules is

discussed in [10]. The authors create digital hardware

twins of peripheral modules using FPGA, which make it

easier for students to learn embedded systems in distance

education. Access to the modules is provided via the

Internet using a client-server architecture.

Another example of a remote peripheral module is

discussed in [11]. A method for remote control of

microcontroller input/output interfaces using WebUSB

technology is proposed.

Thus, the problem of the efficient, easy to use and

low-cost architecture for microcontroller peripheral unit

implementation is a relevant topic to research and

development nowadays.

The issues of security and data protection for

elements of the Internet of Things (IoT) system have

become especially acute since the concept was adopted

by leading electronics manufacturers and began to be

massively introduced into various fields of human

activity. The methods and technologies that initially

relied on that concept of devices networking did not

assume that devices would be available to a wide range

of users, among which there could be many intruders.

Numerous attempts to adapt existing methods of

cryptographic protection and authentication have shown

that in order to implement these methods in systems with

limited resources, it is necessary either to take resources

from other functions in the IoT system, or to curtail the

capabilities or even modify the main algorithms [12],

which can lead to a decrease in cryptographic resilience

or the emergence of vulnerabilities.

This state of affairs led to the need to develop a

separate class of cryptographic protection methods –

lightweight cryptography [13]. These methods had to

take into account the features of distributed embedded

systems: reduced power supply and low level of

performance, and at the same time provide a level of

protection that is not inferior to traditional methods.

Authenticated Encryption with Attached Data

(AEAD) [14] occupies a special place among the

methods of lightweight cryptography. Their peculiarity

lies in the fact that not the entire message is encrypted,

but only a part of it with the most sensitive data, while

the entire message is authenticated. This allows you to

ensure data protection and message integrity, while the

data necessary for successful and efficient routing

remains open.

In February 2023, the US National Institute of

Standards and Technology (NIST) announced the results

of a competition to select a lightweight cryptography

algorithm [15] that will form the basis of the

corresponding standard. As a result of many years of

thorough selection among 57 applicants, the family of

cryptographic algorithms Ascon [16] was chosen. The

implementation of the block cipher algorithm, which is

part of this family, is discussed in this article.

Soft-CPU-based peripheral module

From the authors' point of view, the complexity of

implementing peripheral modules in hardware

significantly reduces the possibilities of their usage, and

most companies prefer usage-ready solutions that do not

require additional development process.

At the same time, most programmers involved in

the creation of microcontroller-based systems have an

understanding of the processes and operations which take

place in peripheral units and can create their

programmatical description using C/C++ or assembler

language.

Worthless to say that availability of mature

programming development tools, in particular, a C

language compiler and/or an assembly parser, plays an

even more important role in the life cycle of any software

project.

Thus, it is promising to use general purpose CPU

architectures without additional license conditions,

mature development tools and well-known instruction

sets, such as MIPS, RISC-V etc.

At the current stage, a software processor that uses

MIPS architecture has been chosen to construct the

experimental architecture. Issues of the efficiency of

MIPS/RISC-V software processors and development for

such systems on chip are widely considered in the

literature, particularly in [17].

Advanced Information Systems. 2023. Vol. 7, No. 2 ISSN 2522-9052

94

Basic architecture of MIPS soft processor was

modified for this experiment. Modules for working with

data memory were removed. Registers $a0-$a3 were

used to load data from the queue. Registers $s0-$s7 – for

setting the output GPIO lines to the required state. Other

registers are available to the programmer for intermediate

calculations.

For such a system, basic UART module can be

executed in the form of the following program assembly

language (Listing 1).

_start:
 li $t1, 10 # set bit counter st+8d+sp
 move $t0, $a0 # load data from queue to tx buffer
 andi $t0, $t0, 0xFF # cut data to 1 byte with mask
 sll $t0, $t0, 1 # prepare start bit
 or $t0, $t0, 0x01
loops:
 move $s0, $t0 # copy to s0.0 bit data to tx from buf
 jal baud_delay
 srl $t0, $t0, 1 # prepare next bit to tx
 subu $t1, $t1, 1 # count bits transmitted
 bgtz $t1, loops # test if tx complete
 # rest of code
 nop
 j _start
baud_delay:
 # delay routine according to baudrate
 jr $ra

Listing 1

The process of designing and manufacturing ICs is

overcomplicated and involves significant workforce

requirements with licensing expenses. It is not possible for

small IT companies to plan a set of required peripherals

and produce a chip or ASIC which matches needs of a

project exactly. It increases time-to-market of the device,

expenses and complexity of any device. Moreover, there is

no way to deal with changes in requirements. It is not

possible to reconfigure such chips in future. A possible

way of solving this problem presented in [8], while our

proposal is more generic and configurable.

Implementation of some peripheral modules

consume significant hardware resources. This affects

chip cost and energy consumption. Thus, widely adopted

practice is to use cheaper devices and implement required

peripheral in software using general purpose input/output

pins. An example of such a study is presented in [9]. It

provides software implementation of I2C peripheral.

Proposed in this work, MIPS-based block, is 3 times

smaller in terms of consumed FPGA resources.

Another field where highly reconfigurable

peripherals are needed is a study laboratory. Any

university in the world now has remote laboratory classes

and requires students to perform experiments and

laboratory assignments from home. A solution that uses

FPGA logic to mimic some type of hardware is proposed

in [10, 11, 19]. In addition, hardware emulated using

FPGA can be used to improve testing methods [18], and

to measure and characterize network architectures [19].

Our approach of realization of peripheral blocks may

simplify implementation of generic execution units

suitable for remote/concurrent usage.

We can't analyze hardware expenses to create

specific peripheral blocks in ASIC. It depends on the

technical process of the manufacturer and a lot of design

choices of the engineer. We assume that ASIC resource

consumption is compatible with FPGA resources

consumed to implement such blocks. Mentioned blocks

and their configuration can be seen in [20].

In Table 1 one can see resource consumption for

widely used Intel FPGA peripheral IP blocks. Note that

some of them use additional memory which is not used

to implement register memory maps, queues or FIFO

buffers. Thus, additional memory is required to

implement an interface to control them.

To verify the solutions proposed in the article, we

used a 5CSEBA6U23I7 device of Intel Cyclone V SoC

with 2-core ARM Cortex A9 FPGA.

Table 1 – FPGA Resources consumption for different

types of IP cores

 Regis-

ters

ALM

blocks

Block me-

mory bits

Modified MIPS core 74 72 0

Intel SPI IP Core 56 23 0

Intel 16550 UART IP Core 156 114 0

Intel UART IP Core 0 1 0

Intel I2C Host IP Core 215 143 40

In addition to peripheral blocks, we provide

resources consumed to synthesize a modified MIPS

processor suitable for software implementation of the

listed peripherals. The structure of the synthesized CPU

is show on Fig. 1.

Fig. 1. Structure of the synthesized MIPS core

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 2

95

Modern CPU implementations use pipelining to

allow computing cores to work faster by using higher

frequencies. The problem is that on high frequencies

timing delay on logic used to implement CPU becomes

significant. Such delay limits frequency and, as a result,

CPU performance. Thus, adding a pipeline (e.g., save

intermediate states of signals to registers) to the design

allows to improve capabilities of the CPU.

Moreover, it is a common practice to include hazard

units to CPU implementations to allow pipelining of the

CPU and achieve higher performance. In contradiction to

common CPUs, reconfigurable peripheral modules do

not have a requirement to run with frequencies higher

than 30-40MHz. Such relaxation of the requirements

allows to drop these modules and significantly reduce

resources required to implement peripheral module.

As most peripheral blocks of modern

microcontrollers the suggested implementation requires

additional FIFO buffers and input/output multiplexers to

achieve efficient signal transmitting/receiving. Such

logic can be connected to the registers of the peripheral

module as shown on Fig. 2.

Fig. 2. Additional logic needed to used proposed modules

In this article we don’t compute resources that

required to implement such buffers and interconnect. In

most cases resources spent to synthesize such logic is

equivalent to the resources needed for functioning of

regular peripheral block.

Implementing Encryption Functions

in the Peripheral Module

One of the modern requirements for devices that are

oriented to work as part of the IoT is to support a certain

stack of cryptographic data protection methods: block or

stream encryption, various ciphertext block chaining

modes, hash sum calculation, message authentication

mechanism (MAC) and even digital signature generation.

In most cases, the necessary protection mechanisms are

implemented at the software level and are executed by

the main computing core of the microcontroller.

Peripheral modules are not involved in the process in any

way and perform only the functions of receiving,

transmitting and transport integrity control of data

packets.

Much less common are devices in which

cryptographic functions or their composite operations are

implemented at the level of the computing core

(hardware support for cryptographic operations).

However, despite the excellent speed of the encryption

and authentication processes, the use of such tools faces

significant limitations: high price and export control by

government agencies.

Since the core of the MIPS soft processor was used

in the development of the reconfigurable peripheral

module, the possibility of transferring the execution of

encryption functions from the main core of the

microcontroller to the soft processor core of the

peripheral module was considered.

Such a solution will allow to unload the main core

of the microcontroller and making the encryption process

transparent: in the main program, it will only be enough

to send data for transmission and read the received data,

the peripheral module will automatically perform

encryption during transmission and decryption during

reception. In the main program code, it is only necessary

to provide for the process of initial initialization of

encryption functions in the peripheral module (loading

keys, initialization vectors, mode selection), which is

performed when the system is initialized after switching

on or by special request.

As an example, the family of lightweight algorithms

Ascon [16] was considered. It includes an authenticated

encryption algorithm and a hash function calculation

algorithm. Both algorithms use a transformation called

the sponge function. The authors of the algorithm set

offer a wide range of software implementations for

various microprocessor architectures with different

degrees of optimization in public repository on GitHub.

The implementation of the entire set of algorithms

by means of a peripheral module does not seem

appropriate, since after compilation, the entire code,

taking into account optimizations, occupies at least 6456

bytes in memory. Therefore, it is proposed to perform all

operations for initialization and preparation of the

encryption process in the main core of the

microcontroller, and to transfer the initial state for the

encryption or decryption functions to the peripheral

module.

An estimate of the size of the executable code is

given in Table 2. For estimation, a general

implementation version of the algorithm was compiled

from the authors' repository on GitHub, ascon128v12

version for 32-bit processors with instructions on integer

Advanced Information Systems. 2023. Vol. 7, No. 2 ISSN 2522-9052

96

operands (bi32). The compilation was done on mips gcc

ver. 12.2.0, emulation and debugging were performed on

the MIPS32r5 generic kernel simulator.

Table 2 – Estimation of the code size of the encryption

system

Implemented function Code size, bytes

Full implementation of the algorithm

stack
6456

Implementation of encryption and

decryption (auxiliary code)
5344 (3928)

Encryption function only (including

auxiliary code)
4544

Decryption function only (including

auxiliary code)
4720

An example of the previously discussed program

for the operation of the UART module with the

implementation of preliminary encryption of the

transmitted data is shown below (Listing 2).

Conclusions

The use of processor architectures with reduced

command and pipeline functionality is seen as a

profitable replacement for traditional configurable

peripheral modules that are widely used at the moment.

The FPGA implementation of software-based

MIPS core, modified to be lightweight from the recourse

usage perspective, shows that such design consumes

comparable, with most peripheral blocks, among FPGA

resources.
Thus, microcontrollers with 10 to 20 such modules

may be a competitive replacement to widely used
solutions.

_start:
 move $t0, $a0 # load plaintext from queue to buffer
 xor $t0, $t0, $t4 # plain text being xored with

state block to get ciphertext
 jal ascon_encrypt # call encryption function -

permutations of state block
 li $t1, 10 # set bit counter st+8d+sp
 andi $t0, $t0, 0xFF # cut data to 1 byte with mask
 sll $t0, $t0, 1 # prepare start bit
 or $t0, $t0, 0x01
loops:
 move $s0, $t0 # copy to s0.0 bit data to tx from buf
 jal baud_delay
 srl $t0, $t0, 1 # prepare next bit to tx
 subu $t1, $t1, 1 # count bits transmitted
 bgtz $t1, loops # test if tx complete
 # rest of code
 nop
 j _start
baud_delay:
 # delay routine according to baudrate
 jr $ra

Listing 2

The transfer of encryption functions for

transmitted/received data from the main core program of

the microcontroller to the core of the soft-processor

allows to significantly reduce load of the main core,

increase performance, and also make the processes of

ensuring the protection and authentication of data

transmitted by IoT devices transparent to user software.

As the results of the implementation showed, the transfer

of all encryption functions to the microcode that is

executed in the peripheral module can lead to a high

consumption of a very limited amount of soft processor

memory and reduce the performance of the peripheral

module. In this regard, the issue of implementing

hardware support for encryption at the level of assembler

commands of a soft-processor is considered.

REFERENCES

1. Liu, C., Liu Q. and Cheng L. (2011), “CPLD based MCU coprocessor design and experiment platform”, 2011 Int. Conf. on Electronics,

Communications and Control, Ningbo, China, 2011, pp. 1365-1368, doi: https://doi.org/10.1109/ICECC.2011.6066408.

2. Schiavone, P.D., Rossi, D., Mauro, A. Di, Gürkaynak, F.K., Saxe, T., Wang, M., Yap, K,C. and Benini, L. (2021), “Arnold:

An eFPGA-Augmented RISC-V SoC for Flexible and Low-Power IoT End Nodes”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 29, no. 4, pp. 677-690, April 2021, doi: https://doi.org/10.1109/TVLSI.2021.3058162.

3. Matsumura, T., Okada, N., Kawamura, Y., Nii, K., Arimoto, K., H. Makino and Y. Matsuda (2014), “The LSI implementation

of a memory based field programmable device for MCU peripherals”, 17th Int. Symposium on Design and Diagnostics of

Electronic Circuits & Systems, Warsaw, Poland, pp. 183-188, doi: https://doi.org/10.1109/DDECS.2014.6868787.

4. Amano, H., Abe, S., Hasegawa, Y., Deguchi, K. and Suzuki, M. (2005), “Performance and cost analysis of time-multiplexed

execution on the dynamically reconfigurable processor”, Proc. IEEE Symposium on Field-Programmable Custom Computing

Machines, pp. 315-316, doi: https://doi.org/10.1109/FCCM.2005.52.

5. (2023), Intel® Products / Intel® FPGAs and SoC FPGAs, available at:

https://www.intel.com/content/www/us/en/products/details/fpga.html.

6. (2023), AMD Xilinx Products / Adaptive SoCs: ZYNQ and Versal, available at: https://www.xilinx.com/products/silicon-

devices/soc.html.

7. (2023), Cypress PSoC® 6 Microcontrollers Purpose-Built for the Internet of Things, available at:

https://www.infineon.com/dgdl/Infineon-PSoC_6_MCU_The_New_Standard_for_the_Internet_of_Things-ProductBrochure-

v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f64f95450c7.

8. Penteado, C.G. and Moreno, E.D. (2009), “A Specialized Processor for Emulating Peripherals of the PIC Microcontroller”,

IEEE Latin America Transactions, vol. 7, no. 2, pp. 133-140, June 2009, doi: https://doi.org/10.1109/TLA.2009.5256820.

9. Molina-Robles, R., García-Ramírez, R., Chacón-Rodríguez, A., Rimolo-Donadio, R. and Arnaud, A. (2021), “Low-level

algorithm for a software-emulated I2C I/O module in general purpose RISC-V based microcontrollers”, 2021 IEEE URUCON,

Montevideo, Uruguay, pp. 90-94, doi: https://doi.org/10.1109/URUCON53396.2021.9647309.

10. Buysse, L., Van den Broucke, Q., Verslype, S., Peuteman, J., Boydens, J. and Pissoort, D. (2021), “FPGA-based digital twins

of microcontroller peripherals for verification of embedded software in a distance learning environment”, 2021 XXX Int.

Scientific Conference Electronics (ET), Sozopol, Bulgaria, pp. 1-4, doi: https://doi.org/10.1109/ET52713.2021.9579770.

11. Huang, L. and Shu, Y. (2022), “Design and Research of Microcontroller I/O Control Technology”, 2022 IEEE 4th International

Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 2022, pp. 263-266, doi:

https://doi.org/10.1109/ICPICS55264.2022.9873583.

https://doi.org/10.1109/FCCM.2005.52

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 2

97

12. Kane, L. E., Chen, J. J., Thomas, R., Liu, V. and Mckague, M. (2020), “Security and Performance in IoT: A Balancing Act”,

IEEE Access, vol. 8, pp. 1219.69-1219.86, doi: https://doi.org/10.1109/ACCESS.2020.3007536.

13. Biryukov, A. and Perrin, L. (2017), “State of the art in lightweight symmetric cryptography”, Cryptology ePrint Archive, Nov.

2017, available at: https://eprint.iacr.org/2017/511.pdf.

14. Jutla, C. S. (2008), “Encryption Modes with Almost Free Message Integrity”, Journal of Cryptology, vol. 21, pp. 547–578, doi:

https://doi.org/10.1007/s00145-008-9024-z.

15. (2023), NIST Selects ‘Lightweight Cryptography’ Algorithms to Protect Small Devices, National Institute of Standards and

Technology (NIST) Website, February 07, 2023, available at: https://www.nist.gov/news-events/news/2023/02/nist-selects-

lightweight-cryptography-algorithms-protect-small-devices.

16. Dobraunig, C., Eichlseder, M., Mendel, F. and Schläffer, M. (2023), Ascon: Lightweight Authenticated Encryption & Hashing,

available at: https://ascon.iaik.tugraz.at/index.html.

17. Dewangan, G. K., Prasad, G. and Mandi, B.C. (2021), “Design and Implementation of 32 bit MIPS based RISC Processor”,

2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2021, pp. 998-1002,

doi: https://doi.org/10.1109/SPIN52536.2021.9566007.

18. Li, T. and Liu, Q. (2016), “Cost effective partial scan for hardware emulation", 2016 IEEE 24th Annual Int. Symposium on

Field-Programmable Custom Computing Machines (FCCM), pp. 131-134, doi: https://doi.org/10.1109/FCCM.2016.39.

19. Khamis, M., El-Ashry, S., Shalaby, A., AbdElsalam M. and El-Kharashi M. W. (2018), “A configurable risc-v for noc-based

mpsocs: A framework for hardware emulation”, 2018 11th International Workshop on Network on Chip Architectures

(NoCArc), pp. 1-6, doi: https://doi.org/10.1109/NOCARC.2018.8541158.

20. (2021), Embedded Peripherals IP User Guide for Quartus Prime 21.4, Intel, UG-01085, available at:

https://www.intel.com/content/www/us/en/docs/programmable/683130/21-4/introduction.html.

Received (Надійшла) 24.02.2023

Accepted for publication (Прийнята до друку) 10.05.2023

ВІДОМОСТІ ПРО АВТОРІВ / ABOUT THE AUTHORS

Сальніков Дмитро Валентинович – кандидат технічних наук, старший викладач кафедри автоматики та управління в

технічних системах, Національний технічний університет «Харківський політехнічний iнститут», Харків, Україна;

Dmytro Salnikov – Candidate of Technical Sciences, Senior Lecturer of the Department of automation and control in technical

systems, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.

e-mail: dmytro.salnikov@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0007-6201-5370.

Караман Дмитро Григорович – старший викладач кафедри автоматики та управління в технічних системах,

Національний технічний університет «Харківський політехнічний iнститут», Харків, Україна;

Dmytro Karaman –Senior Lecturer of the Department of automation and control in technical systems, National Technical

University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.

e-mail: dmytro.karaman@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0002-7252-3172.

Крилова Вікторія Анатоліївна – кандидат технічних наук, доцент кафедри автоматики та управління в технічних

системах, Національний технічний університет «Харківський політехнічний iнститут», Харків, Україна;

Viktoriia Krylova – Candidate of Technical Sciences, Associate Professor of the Department of automation and control in

technical systems, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine.

e-mail: vika.hpi@outlook.com; ORCID ID: http://orcid.org/0000-0002-4540-8670.

Архітектура гнучко конфігурованих периферійних модулів на базі програмованих процесорних ядер

Д. В. Сальніков, Д. Г. Караман, В. А. Крилова

Анотація . Мотивація дослідження. При розробці мікроконтролерів виробники намагаються включити

якнайбільше різних видів периферійних пристроїв, щоб підвищити маркетингову привабливість своєї продукції. З одного

боку, при великому асортименті різних периферійних модулів дуже складно включити до складу мікроконтролера велику

кількість пристроїв одного типу: виробники переважно обмежуються 1-2 екземплярами, дуже рідко зустрічаються 4

модулі однакового типу. З іншого боку, більшість програмних проектів не використовують всю периферію сучасних

мікроконтролерів і багато пристроїв залишаються незадіяними, тоді як може відчуватися нестача модулів іншого типу.

Ще однією проблемою, яка стала особливо відчутною для мікроконтролерів, що застосовуються у сфері ІТ, це

криптографічний захист даних, які передаються через вбудовані інтерфейси обміну інформацією. Основні зусилля

дослідників та розробників криптографічних методів захисту даних були спрямовані на зниження енерговитратних

операцій, звернень до пам'яті та прискорення процесів шифрування за одночасного збереження високого рівня

криптографічного захисту та забезпечення можливості ефективного поширення даних у мережах пристроїв ІоТ.

Результати дослідження. У роботі подано альтернативний підхід до виготовлення периферійних модулів у складі

мікроконтролерів. Пропонується використовувати конфігурований модуль програмного процесора на базі архітектури

MIPS з укороченим набором команд та обмеженими можливостями. Висновки. Такий підхід дозволяє динамічно

змінювати функціонал периферійних модулів відповідно до вимог програмного рішення, що розробляється, що в свою

чергу дозволить підвищити ефективність використання можливостей мікросхем мікроконтролерів. Крім того,

перенесення функцій шифрування потоку даних в ядро периферійного модуля, що реконфігурується, дозволить

забезпечити швидкий і прозорий криптографічний захист, а також дозволить розвантажити ядро мікроконтролера і

підвищити енергоефективність мікросхем при одночасному зниженні собівартості їх виробництва.

Ключові слова: периферійний модуль; софт-процесор; RISC; архітектура MIPS; ПЛІС; інтернет речей;

шифрування; легка криптографія; AEAD-режим, Ascon.

https://doi.org/10.1109/FCCM.2016.39
https://doi.org/10.1109/NOCARC.2018.8541158
http://orcid.org/0000-0007-6201-5370
http://orcid.org/0000-0002-7252-3172
http://orcid.org/0000-0002-4540-8670

