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GENERATING CURRENCY EXCHANGE RATE DATA
BASED ON QUANT-GAN MODEL

Abstract. The aim of the research. This paper discusses the use of machine learning algorithms to generate data that
meets the demands of academia and industry in the context of exchange rate fluctuations. Research results. The paper
builds a Quant-GAN model using temporal convolutional neural networks (CNN) and trains it on end-of-day and intraday
high-frequency rates of currency pairs in the global market. The generated data is evaluated using various statistical
methods and is found to effectively simulate the real dataset. Experimental results show that data generated by the model
effectively fits statistical characteristics and typical facts of real training datasets with good overall fit. The results provide
effective means for global FX market participants to carry out various tasks such as stress tests and scenario simulations.
Future work includes accumulating data and increasing computing power, optimizing and improving GAN models, and
establishing evaluation standards for generating exchange rate price data. As computing power continues to grow, the GAN
model’s ability to process ultra-large-scale datasets is expected to improve.
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Introduction

The global foreign exchange market is one of the
most active financial markets. Exchange rate fluctuations
have a direct impact on market participants and can cause
potential risks to their economic status. However, relying
solely on historical data for research is not enough. It has
become necessary to use methods to generate data that
simulates market fluctuations for theoretical and practical
verification. In this context, economists and financial
traders have adopted various methods to generate financial
transaction simulation data. The best results are obtained
using artificial intelligence methods [1-6]. The Quant-
GAN studied in this paper is an emerging artificial
intelligence tool that uses machine learning to generate
time-series data of trading prices in financial markets.

1 Generative Adversarial Networks

Generative Adversarial Networks (GAN) is a
deep generative model machine learning algorithm that
generates realistic data by training a neural network.
Goodfellow et al. designed a game-like competition
where the generator learns to simulate data that is similar
to the real data distribution [7]. The specific algorithm of
GAN consists of the following components:

Generator G: Simulates data (images, texts,
sounds, time series, etc.) based on certain rules.

Discriminator D: The discriminator D is a
classifier that judges (or provides a probability) whether
the input data is from the real dataset.

Network training: First, the generator is fixed,
and the discriminator is trained using a batch of mixed
data that contains both real samples and data generated
by the generator. The binary cross-entropy function is
used as the loss function, and the discriminator can
distinguish between real and fake data after updating the
gradient through backpropagation. Second, the
discriminator is fixed, and the generator is trained by

generating data from random noise inputs. As the
discriminator has already been trained in the previous
stage, it can identify the authenticity of the input data, and
the generator’s ability is improved by updating its weight
through backpropagation.

Repeat this process so that the generator and the
discriminator compete with each other until they reach a
Nash equilibrium, completing the training of the entire
GAN algorithm. At this point, the data generated by the
generator is realistic enough in its distribution, and the
discriminator cannot determine whether the input data is
real or fake (output a probability of 50%). The
optimization problem can be expressed as the solution of
Equation:

min max V(D,G) =
G D

= IE:X~pdata(x) [log D(x)] +

+E;p, ) [l0g (1= D(6(2))|
It can be proved that in the function space D(x ; 04)
and G(z ; 8), there is a unique solution that makes G

reproduce the training data distribution, at this time
D(x) = 0.5.

2 Quant-GAN Method

Wiese et al. (2020) proposed the Quantitative
Generative Adversarial Network (Quant-GAN) model
[8], using the S&P 500 index from 2008 to 2018 as a
training set to simulate and generate stock index
sequence data. Compared to traditional GARCH,
ARIMA, and other machine learning methods, it
achieved better results.

Quant-GAN uses uses seven layers of the Temporal
Convolutional Networks (CNN) module, based on the
Dilated Causal Convolutional Networks architecture [9]
proposed by Bai et al. (2018). Each temporal block
consists of two one-dimensional expansion causal
convolutional layers and two PRelLU layers as the
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activation function. The main feature of CNN is the use
of dilated convolution, where the distance moved by the
convolution kernel is adjusted by a hyperparameter in
each iteration, thus increasing the receptive field without
increasing the size of the convolution kernel. At the same
time, a skip-connection method for both the generator
and discriminator's is also introduced to avoid the
gradient disappearance problem. Quant-GAN uses the
Wasserstein distance as the loss function, enabling the
generated logarithmic return random process to achieve
a risk-neutral distribution.

Network training: In the first stage, the generator
is fixed, and the discriminator is trained. A batch of real
samples and the mixed data generated by the generator
are used as inputs. The Wasserstein distance is used as
the loss function, and the discriminator updates the
gradient through backpropagation to identify real and
virtual data. In the second stage, the discriminator trains
the generator once every 5 iterations. The discriminator
discriminates the generator's randomly inputted data and
updates the generator's weights through
backpropagation. Repeat the above process for a certain
number of times, and the generator and the discriminator
compete with each other until they reach the Nash
equilibrium, thus completing the training of the entire
Quant-GAN. At this point, the generator can generate
realistic financial time series data, and the discriminator
cannot distinguish between the input data's source
whether it is from a real dataset or generated by a
generator (with an output probability of 50%).

Data preprocessing: Step 1: Convert the absolute
value of the series into logarithmic rate of return: Steps 2
and 4: Standardize (normalize) the log return to a
standard normal distribution with mean 0 and variance 1;
Step 3: Apply the Inverse Lambert W function
transformation to the data; Step 5: For the receptive field
T of the discriminator, use a sliding window of the
corresponding length to preprocess the logarithmic return
sequence.

3 Exchange Rate Data Generation

3.1 Selection, Processing of Data Sets

The foreign exchange transaction dataset used to
train the Quant-GAN model comes from the Dukascopy
trading platform. The descriptive statistics of the
unprocessed original dataset are shown in Table 1.

Table 1 — Descriptive statistics of preprocessed
exchange rate time series data

currency pair AUDUSD
date 2019.5.6
type intraday
amount 4120
maximum value 9.70985
minimum value 9.04364
range 18.75349
average 0
median 0.02582
standard deviation 1
Skewness 0.58207
kurtosis 9.28550

Finally, after steps 1 and 2, the dataset is divided
into a training set and a test set according to the ratio of
9:1. used to train the model, and to calculate the fitting
error.

3.2 Stylized Facts for Time Series Data
in Financial Markets

Aiming at the characteristics of typical financial
market time series data represented by stock prices and
foreign exchange rates, Cont (2001) summarized some
common stylized facts revealed by many studies [10].

Linear Autocorrelation of returns is usually not
significant (except for very small intraday time scales),
that is, the autocorrelation function converges to near 0
very quickly.

Heavy-tailed distribution refers to the distribution of
the return series showing a power-law distribution or
Pareto distribution tail characteristics. Leverage effect
refers to the price reacting differently to positives and
negatives.

Usually, the negative price movement due to bad
news is greater. To test the leverage effect, Nelson (1991)
used the EGARCH model to estimate the standard
deviation of price fluctuations. Asymptotic normality,
also known as Aggregational Gaussianity, refers to the
phenomenon where the distribution of returns gradually
approaches a normal distribution as the time scale
increases. Volatility clustering refers to the positive
autocorrelation of different volatility measures of a price
series within a few time periods. This can be measured
with the absolute value correlation coefficient of the
return rate.

3.3 Results and Model Evaluation

3.3.1 Data features and model evaluation
methods. The exchange rate data generated by the
generator after rounds of training is compared with the
real dataset. The main features of the recorded data
include mean, standard deviation, minimum, quantiles,
maximum, skewness and kurtosis. Some typical facts of
financial market time series data introduced in the
previous section such as autocorrelation, heavy-tailed
distribution, leverage effect, aggregational Gaussianity
and volatility clustering were tested using both real and
generated datasets.

M. Heusel et al. (2017) proposed using Inception
Score (IS) and Fréchet Inception Distance (FID) as
indicators [11] to evaluate the performance of GAN
models. A lower score indicates a more realistic image.
According to Xu et al. (2020), this paper trains a KNN
classifier to evaluate the performance of the GAN model.
When the model is well-trained, the average scores of
KNN classifiers calculated using different k values are all
around 0.5.

3.3.2 AUDUSD intraday high frequency data.
Using the AUDUSD intraday (2019.05.06) high-
frequency data, the Quant-GAN model was trained for
500 rounds. The specific parameters are shown in Table
2: Major adjustments include increasing the number of
stacked layers in the CNN module to 11 layers in both
generator and discriminator and increasing batch size to
2048; increasing stacked layers in CNN module for
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daytime data to nine layers and increasing batch size to
512. In addition, due to the small absolute value, the
learning rate was increased to 0.0002 and gradient
clipping value was decreased.

After the model training is completed, random
Gaussian noise is used to generate exchange rate
logarithmic return data, and the generated data is used to
simulate the exchange rate fluctuation path trend (Fig. 1).

Table 2 — Model hyperparameters

Table 3 — KNN classifier results

generator accuracy 0.49891920

The data distribution generated by the model is
shown in Fig. 3, and the statistics are shown in Table 4.
Compared with the training data set, various statistics
such as quantile, mean, standard deviation, skewness,
and kurtosis can be effectively fitted.

Table 4 — Descriptive statistics for real datasets

gradient clipping 0.01 and model-generated data
learning rate 0.0002 real fake
training rounds 500 count 54487 54487
batch size 32 mean 0.00000006 0.00000013
sliding window 2048 std dev 0.00002522 0.00002310
CNN layers 11 min - 0.00057339 - 0.00053218
25% -0.00001430 -0.00001037
Wit_h_the increase of trginipg _batches, the generator 50% 0.00000000 0.00000023
loss stabilizes at 0 and the discriminator loss stabilizes at 5
-0.5 (Fig. 2). The training set and the generated data FID 75% 0.00001430 0.00001068
score is stably approaching 0, the test set FID score is max 0.00060206 0.00039266
approaching the training set (Fig. 2), and the mixed data skew -0.34678190 -1.43902695
set KNN clas_smer discriminant result of generated data KUrtosis 59 04555456 3737598038
and real data is very close to 0.5 (Table 3).
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Fig. 1. Generated AUDUSD exchange rate yield trend simulation data
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Fig. 2. Quant-GAN model AUDUSD data set learning curve
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Fig. 3. Generated and real AUDUSD exchange rate logarithmic return distribution
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Typical facts of the dataset: as the lag period
increases, the autocorrelation between the data generated
by the model and the training data is close to 0 (Fig. 4),
showing that both lack autocorrelation, the correlation
coefficient with the absolute value of the training data set
sequence is not 0 and does not decrease as the lag period
increases (Fig. 4), indicating an volatility aggregation
effect; the tails of the cumulative frequency distribution
of the sequence of the training data are far more than
those of the normal distribution and the power- law
distribution (Fig. 5), indicating that both distributions
present heavy tails; the EGARCH parameter estimation
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results of the model are significant, and the p-value of the
coefficient of the asymmetric ARCH term is less than
0.05 (see Table 5), indicating that both sequences have
leverage effects.

Various periods of time-lag distribution diagrams
show that the two series are gradually approaching the
normal distribution as the time scale t increases (Fig. 6).

Results show that the data generated by the Quant-
GAN model are in consistent with the training data in
terms of main typical facts, such as autocorrelation,
distribution heavy tail, leverage effect, aggregational
Gaussianity, volatility aggregation, etc.
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Fig. 4. Generated AUDUSD exchange rate logarithmic rate of return autocorrelation distribution
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Fig. 5. Generated AUDUSD exchange rate logarithmic
return cumulative frequency distribution

Table 5 — Estimated results of GARCH asymmetric term

coeff std err t P>|t| 95.0% Conf. Int.
fake: alpha[ 1] 0.0935 3.065e-02 3.050 2.289e-03 [3.341e-02, 0.154]
real: alpha[ 1] 0.0250 6.337e-03 3.952 7.751e-05 [1.262e-02, 3.746e-02]
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Fig. 6. Distribution of the generated AUDUSD exchange rate logarithmic rate of return

4 Summary and Discussion

This paper introduces the problem of simulating
financial market transaction price time series data and
related work on machine learning using Generative
Adversarial Network (GAN) models. Price data from
major currency pairs traded in international markets is
selected as the training set to build and train a Quant-
GAN model.

The trained model is used to generate exchange rate
return rate series data for each currency pair in different
time dimensions. Experimental results show that data
generated by the model effectively fits statistical
characteristics and typical facts of real training datasets
with good overall fit.

This research provides global foreign exchange
market participants with an effective means of generating
exchange rate simulation data for stress testing, scenario
simulation, trading strategy and portfolio back-testing,
derivatives pricing and more. Applying GAN models to

generate and evaluate high-frequency financial time
series simulation data expands practical application
scenarios for machine learning algorithms such as GAN.

Future work includes accumulating data and
increasing computing power, optimizing and improving
GAN models, and establishing evaluation standards for
generating exchange rate price data. The foreign
exchange market is a global over-the-counter (OTC)
market where each trader has access to only a small
portion of transactions.

Obtaining as much accurate exchange rate
transaction data (especially high-frequency data) as
possible is essential for model processing. Good data
supports good model performance and helps avoid
“garbage in, garbage out” situations. Processing massive
high-frequency data also requires powerful computing
power.

As computing power continues to grow, the GAN
model’s ability to process ultra-large-scale datasets is
expected to improve.
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Ienepanist naHuX Npo 0OMiHHMIA KypC BaJIOTH
Ha ocHOBi Mozesi Quant-GAN

Jyus Bao, O. 0. 3akoBoporauit, H. I'. Kyuyk

AHoTanisi. Merta mociigkenHs. Y 1bOMY JOKYMEHTI OOTOBOPIOETHCS BHKOPHCTAHHS alIrOPUTMIB MAIIMHHOTO
HaBYaHHS Ui TeHepamii JaHWX, SKi BiANOBIZarOTh BHMOTaM HAyKOBHMX KiJl Ta MPOMHCIOBOCTI B KOHTEKCTI KOJINBaHb
obMmiHHOTO Kypcy. Pesyabrarm gocaigxenHst. Y crarri ctBopeHo monens Quant-GAN 3 BHUKOPHCTaHHSM YacOBUX
3roptkoBux HelpoHHHX Mepex (CNN) i HaBueHO ii Ha BHCOKOYACTOTHMX KypcaX BalllOTHHX Iap HAa CBITOBOMY PHHKY
HaIllpUKIHII JIHS Ta BCEpeOWHI AHsS. 3TeHEpOBaHI JaHI OIIHIOIOTHCA 3a JOMOMOTOK Pi3HUX CTATHCTUYHHX METOMIB 1
BUSIBIIIIOTHCSA TaKHMH, IO €)EKTHBHO IMITYIOTH pealbHHH HaOip AaHuX. EKClIepUMEHTaIbHI Pe3yJIbTaTH MOKa3yTh, 110
JlaHi, 3reHepoBaHi MOJEIII0, epEeKTHUBHO BiANOBIAAIOTH CTATHCTUYHUM XapaKTEPHCTHUKaM i TUIMOBHM (akTaM pealbHUX
HaBYaJbHUX HAaOOpIB NaHWX i3 3arajbHOI0 XOPOIIOIO BiANOBiAHICTIO. Pe3ynbraTh HagaroTh yYacHHMKaM TIJI00aIbHOTO
BaJIOTHOTO PUHKY ¢(PEeKTHBHI 3aCO0H IJIsl BUKOHAHHS PI3HOMAaHITHHX 3aBlaHb, TAKHX SAK CTPEC-TECTH Ta MOJCIIOBAHHS
cueHapiiB. MaiiGyTHsi po6oTa BKIIIOYaE HAKOITMYCHHS JaHUX 1 301JIbIICHHS 00YNCITIOBAIBHOT MOTYKHOCTI, ONTUMI3aLiI0 Ta
BIOCcKoHaNeHHS Mojeneit GAN, a Takok BCTAHOBJICHHS CTaHJapTiB OI[iHKH IS TeHepalil JaHuX PO MiHU OOMIHHOTO KypCy.
OcKkinbKy 009HCITIOBANBHA MOTYKHICTh IPOJOBXYE 3pOCTATH, OUIKYETHCs, IO 34aTHICTE Moeni GAN 00po0OisiTH HaABETHKI
MacHUBH JIAHUX HOKPAIUTHCS.

KarwouoBi cioBa: 3ropTkoBa HEfipoHHA Mepexa; reHepaTHBHI 3MarajibHi MEpesKi; BaJIOTHUH Kypc.
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