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MOTION CAPTURE WITH MEMS SENSORS

Abstract. The object of this article is the registration and analysis of human movements based on sensors.
This paper presents a comparison of the basic methods of data processing from inertial micromechanical sensors
to collect data a device was implemented that captures movements. As result the device uses the motion data
from accelerometer and gyroscope to calculate the motion trajectory: the angle of rotation and acceleration. The
data is read by the microcontroller, after which it is filtered and processed by one of the filters (Complementary,
Kalman), and finally transferred to a computer for further analysis and display. The purpose of the article is to
compare several methods of data processing from microelectromechanical. The results obtained: device was
developed, obtained data that can be used to characterize the methods and analyze their work in the system.
Conclusions: In the course of the study, a device was developed for collecting and processing data from MEMS
sensors, which showed the effectiveness of the complementary filter in comparison with the Kalman filter in
real-time systems with limited computing power. Real results confirmed that the results of the complementary
method using less computational resources are not far behind the more costly Kalman filter without the use of
auxiliary sensors, like a digital compass.
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Introduction

Problem statement. The problem of recording the
movement of human limbs includes the task of accurately
tracking and analyzing the movements of various parts of
the body during various actions. There are various
approaches to capture human limb motion, including
optical computer vision (CV), inertial measurement
sensors (IMU), and electromyography (EMG). Each of
these methods has advantages and disadvantages, and the
choice of technique depends on the specific application
and the accuracy and precision required.

Optical motion capture systems use cameras to
track the position of a person's limbs using computer
vision algorithms. Additionally, this technology can use
markers attached to the object's limbs for greater
stability. These systems are highly accurate and can
capture detailed motion data, but are typically expensive
and require a controlled environment with minimal
interference.

They can also be affected by changes in lighting
conditions or occlusion in the scene. Computer vision
methods can also be more susceptible to noise and errors
than gyroscope sensors, especially if the camera is not
stabilized or if there are moving objects in the scene.

IMUs are sensors that are attached to limbs and
measure acceleration, angular velocity, and magnetic field
strength to detect changes in an object's orientation and
rotation. These sensors can be used in a wide range of
environments and are relatively inexpensive, but they can
suffer from drift and noise, which can affect measurement
accuracy. Gyro sensors are generally more accurate than
computer vision methods for detecting rotation and are less
susceptible to noise or errors. However, gyroscope sensors
are less flexible than computer vision methods because
they are designed specifically to detect rotation and cannot
detect other types of motion.

The EMG approach measures electrical activity in
limb muscles and can be used to determine limb

movement. This method is noninvasive and can be used
in a variety of situations, but it may have interference and
may not provide as accurate or detailed information about
limb motion as optical or IMU-based approaches.

So computer vision techniques can be more flexible
and can detect a wider range of motion, but they can also
be computationally expensive and more sensitive to noise
and errors. Gyro sensors are more accurate for detecting
rotation, but are less flexible and subject to drift over
time. The choice of method will depend on the specific
requirements of the application and available resources.

IMU sensors are most suitable in case of tracing
separate human body parts, the final result can be small
device, that connects to different limbs to precisely track
motions [1].

Main material

IMU sensors. One of the types of IMU sensors is a
digital gyroscope, it is a device that measures the angular
velocity, or the rate at which an object's orientation
changes over time. It is used in various applications such
as navigation, robotics and virtual reality. The last one
could help in areas of human-computer interaction. The
main principle of operation of a digital gyroscope is the
Coriolis effect. When an object rotates, a force acts on it
that is perpendicular to the direction of its motion. This
force is known as the Coriolis force. This force arises due
to the fact that different points of the rotating surface
move at different speeds, in other words, the Coriolis
effect can be considered as a force felt by all objects that
move along the surface of a rotating object. In a digital
gyroscope, this force is measured using a vibrating
structure known as a MEMS (Micro Electro-Mechanical
System) sensor. The MEMS sensor consists of a test mass
suspended from a spring. As the gyroscope rotates, the
Coriolis force causes the test mass to vibrate in a
direction perpendicular to the plane of rotation.
Capacitive sensors located at the edges of the reference
mass detect vibration.
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As the test mass moves (Fig 1, 2), the capacitance
between the test mass and the sensors changes, producing
an electrical signal proportional to the speed of rotation.

C1=C2
Fig. 1. Normal sensor status

force
-

C1>C2
Fig. 2. Sensor status under force

Hardware. Comparison of algorithms requires data
from sensors, and to obtain data, a device was developed
that tracks the movements of human limbs, which
includes boards with a microprocessor and inertial
micromechanical sensors.

The STM32F401CCU6 microcontroller was chosen
as the central computing module, and the MPU-6050
microelectromechanical sensor as a gyroscope and
accelerometer.

The STM32F401CCU microcontroller is a
microcontroller from STMicroelectronics' STM32F4
series, which is based on the ARM Cortex-M4 processor
core. It has a clock speed about 84 MHz, 512 KB of Flash
memory, and 96 KB of SRAM. But mostly
STM32F401CCU is suitable for our purpose, because it
provides several features:

— 12C bus for MEMS sensor connection;

— USB bus to transfer data to the computer;

— FPU(floating point unit) to speed up calculating
mathematical formulas.

Additional advantages are its low cost and high
availability.

The MPU-6050 is a 6-axis sensor that conveniently
combines a gyroscope and an accelerometer in a small
package, which makes it possible to use single physical
connection and collect data over common 12C bus. MPU-
6050 is also suitable to this project due to its low cost and
ease of use [2].

As already mentioned, the sensor is connected to the
microcontroller via the 12C bus (Fig 3), since the SDA
and SCL lines are open drain, which means that they can
only sink current, but not give it away, so 4.7 kQ pull-up
resistors are used.

The USB bus is used to transfer prepared data for
further processing and visualization using virtual serial
port technology (Fig 4), which represents UART
(universal asynchronous receiver-transmitter) protocol
over USB.

The circuit also receives power from the USB port
when connected to a computer, the linear regulator
lowers it from 5 volts to 3.3 volts, which is acceptable for
the microcontroller and sensor.

Complementary filter. Another problem in the
way of motion capture is the methods of processing data
received from sensors, since in fact these data are noisy
digitalized signals that are not related to each other in any
way. To calculate the rotation angle, was used a
complementary filter, which combines the gyroscope and
accelerometer data together to obtain a more accurate
estimate of the object's orientation. The gyroscope
provides high frequency angular velocity measurements
and the accelerometer provides low frequency gravity
measurements [3]. To implement the complementary
filter, the algorithm needs to calculate an orientation
using the gyroscope data. This can be done using the
trapezoid integration algorithm; the trapezoidal rule is a
numerical integration method that can be used to estimate
the value of an integral by approximating the area under
a curve. In the context of integrating raw data from a
gyroscope, the trapezoidal rule can be used to estimate
the object's orientation over time:

6[N 1] = 0[0] + §1£(w[i]+w[i _1])%} o

where 0[0] is the initial value of the angle (usually zero);
O[N-1] is the calculated end value of the angle; w[0],
w[1], ..., W[N-1] — sequence of N samples of angular
velocity; At — time delta.

A simple representation of a given formula ina C
programming language is shown in Listing 1.

#define SAMPLE_TIME ©.01

// Function to integrate the gyroscope data using
the trapezoidal rule

double integrate_data(double *gyro_data, int
num_samples)

double area = 0.0;
for (int i = 1; 1 < num_samples; i++) {
double avg = (gyro_data[i] + gyro_data[i-
1]) / 2.e;
area += avg * SAMPLE_TIME;
}

return area;

Listing 1. Estimation the object's orientation over time

Now it is important to process raw data from the
accelerometer and get its orientation, it can be done with
atan2 function. This function is a mathematical function
that calculates the arctangent of two arguments, y and x,
given as atan2(y, x). It returns the angle between the
positive x-axis and the point (x, y) in the Cartesian plane,
measured in radians (Fig 5):

6 =arctg (y/x). )

Its representation in code is shown in Listing 2.

#define RAD_TO_DEG 57.295779513082
double pitch = atan2(accel_x_raw, accel_z_raw)
* RAD_TO_DEG;

Listing 2. Representation in formula code (2)
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Fig. 3. Connection circuit of the microcontroller, sensor, and USB port
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Fig. 5. Angle 6 between the ray to the point (x, y)
and the positive x-axis

Then it is possible to proceed to the calculation of
the filter itself with this value. The filter is a weighted
average of the two scores, where the weights are chosen
to balance the accuracy and stability of the filter (Fig 6,
G(s) represents the transfer function for the low-pass
filter, whereas G™(s) is the transfer function of the high-
pass filter, such that G(s) + G™(s) = 1.). The basic idea is
to use the gyroscope value to correct for drift in the
accelerometer estimate and use the accelerometer
estimate to correct high frequency noise in the gyroscope
estimate (Fig 7).

In the result of the filters work the estimate of the
object's orientation will be more accurate [4].

OnFig6and 7:

orientation = (orientationgymsmpe * coef) +
(Orientationaccelerometer * (1 - Coef))1

where orientationgy,oscope IS @ gyroscope orientation,
orientationg ceierometer is an  accelerometer
orientation, coef is a weighting factor from 0 to 1 that
determines the balance between gyroscope and
accelerometer estimates.

Red line is gyroscope values, blue is accelerometer
values, green is a result.

Orientation from ol =i

accelerometer » Gle)y="1=008f

Orientation from % _
gyroscope »  G(s) = coef

Fig. 6. Basic structure of Complementary Filter.
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Fig. 7. Complementary filter result
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Over time, the gyroscope values will begin to drift
due to noise and bias in the sensor data. The
complementary filter will detect this drift and slowly put
more weight on the accelerometer estimate, resulting in a
more accurate estimate of the object's orientation. In
addition, this approach shows a good result when hitting
the device (Fig. 8).

sensor data

1004 accelerometer values

gyroscope values

oF————

result '

-100++

time, ms

L

1 1
0 100 200 300

Fig. 8. Result of Complementary filter with hits

Main disadvantage. This method of calculation is
poorly applicable for calculating the angle of rotation
along the Z-axis, since its calculation will require the
projections accel_angle_x and accel_angle_y, and in this
case, they are almost equal to zero.

When x and y are both zero, the point (X, y) is
located at the origin of the Cartesian plane. At the origin,
the direction of the vector (x, y) is undefined since it has
no direction. Therefore, it is not possible to determine the
angle between the positive x-axis and the point (X, y)
using atan2 when x and y are both zero.

arctg(y/x), if x>0;
arctg(y/x)+m, if x<0&y=>0;
arctg(y/x)-mn, if x<0&y<0;

atan2(y,x)= 3
(%) +7/2, if x=0&y>0; )
-1/2, if x=0&y<0;
undefined, if x=0&y=0;

So that is why, the calculation of this angle is not
possible or will be performed with a large error.
Calculation of the desired angle should be made only by
the value of the gyroscope, without filtering (Fig. 9).

z

Fig. 9. Axes projection demonstration

In addition, to obtain a more accurate angle of
rotation along the Z-axis, an alternative is to use an
auxiliary magnetometer module - a digital compass.

Magnetometer module can provide the raw
magnetic field data, which are measurements in the X, Y,
and Z directions. By calculation and subtraction the
magnetic declination angle from the inclination angle,
the Z-axis rotation angle can be obtained.

Kalman filter. Another filter that can be reviewed
and compared to complementary filter is Kalman filter. It
is a mathematical algorithm that estimates the state of a
system by combining noisy measurements and a model
of the system dynamics. It is commonly used in many
applications, including navigation, control systems, and
signal processing.

The main idea of the Kalman filter is to recursively
update an estimate of the state of the system based on two
sources of information: measurements from sensors and
predictions from a mathematical model of the system.
The filter maintains two key components: a state estimate
and a covariance matrix.

The state estimate is a vector that represents the best
guess of the current state of the system, based on all
available information up to the current time. The
covariance matrix is a measure of the uncertainty or error
in the state estimate [5].

The Kalman filter operates in two stages: the
prediction stage and the update stage. In the prediction
stage, the filter uses the mathematical model to predict
the state of the system at the next time step, based on the
current state estimate. This prediction is then used to
calculate the covariance matrix for the predicted state [6].

In the update stage, the filter uses the actual
measurement data to correct the predicted state estimate
and covariance matrix. The Kalman filter calculates the
Kalman gain, which is a weighting factor that determines
how much to trust the predicted state estimate versus the
measurement. The measurement is then used to update
the state estimate and covariance matrix, which are then
used in the next prediction stage.

The Kalman filter is designed to handle noisy or
incomplete measurements, and it is able to incorporate
new measurements as they become available,
continuously refining its estimate of the system state. By
using both the mathematical model and the actual
measurements, the Kalman filter is able to provide a more
accurate and robust estimate of the system state than
either of these sources alone (Fig 10).
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Fig. 10. Kalman filter result
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Red line is original coordinate, green is sensor
values, and blue Kalman filter is result.

Complementary filter and Kalman filter are both
used for sensor fusion in order to improve the accuracy
of the sensor readings. However, they differ in their
underlying algorithms, complexity, and computational
requirements (Table 1).

Table 1. Comparison of method

Complementary filter is a simple algorithm that
combines the readings from an accelerometer and a
gyroscope to estimate the orientation of an object. It is
easy to implement and requires less computational power
than a Kalman filter. However, it may not be as accurate
as a Kalman filter, especially in the presence of noise or
other sources of error.

Complementary filter

Kalman filter

Algorithm complexity | Simple, easy to implement

More complex, requires more computational resources and
expertise to implement

Accuracy Low accuracy, particularly in noisy

environments

High accuracy

Sensor fusion ability Limited to combining data from two
sensors, typically an accelerometer

and a gyroscope

Can fuse data from multiple sensors, such as accelerometer,
gyroscope, magnetometer, and GPS, allowing for more
accurate tracking and compensation for various external
factors

noise

Real-time Real-time processing is possible Real-time processing is possible but can be limited by the

performance complexity of the algorithm and the available
computational resources

Robustness Less robust to sudden changes and More robust to sudden changes and noise due to its ability

to estimate the noise and uncertainty in the system

Kalman filter, on the other hand, is a more complex
algorithm that uses a mathematical model of the system
and the sensor measurements to estimate the state of the
system.

It is able to handle more complex systems and can
incorporate multiple sensors and other sources of
information to improve the accuracy of the estimate.
However, it requires more computational power than a
complementary filter and can be more challenging to
implement.

In general, a complementary filter may be suitable
for simple applications where accuracy is not so critical
as performance, while a Kalman filter may be more
appropriate for more complex systems where accuracy is
critical and more computational power is available. It is
also possible to use both filters in combination to take
advantage of their strengths and improve overall
accuracy.

DSP and DMP. It is also necessary to note several
approaches that can speed up work with data and even
increase the accuracy of the calculation result.

The first approach is to use a digital signal processor
(DSP), which is a specialized microprocessor designed to
process digital signals in real time. Unlike general-
purpose microprocessors, DSPs are optimized for signal
processing, which typically involves performing a lot of
mathematical operations on data samples such as
processing vectors or matrix.

Their special hardware functions can significantly
speed up the processing of raw data from MEMS sensors,
e.g. multiply floating point numbers in one cycle.

Also, DSPs usually have a specialized memory
architecture that allows them to access data quickly and

efficiently, and moreover DSPs often have multiple
processor cores that allow them to process different
signals  from  gyroscope, accelerometer  and
magnetometer in parallel.

Another type of hardware accelerator is a digital
motion processor (DMP), besides of DSP, motion
processor are embedded in MEMS sensors and are able
to fuse the data from these sensors to provide more
accurate measurements of the device's orientation,
motion, and position in space. Such component is often
integrated into microcontrollers or microprocessors and
used in motion detection applications such as
smartphones, smart watches, and game controllers [7].

DMP is designed to offload some processing tasks
from the main processor, such as sensor data combining
and motion processing, and provides more accurate and
reliable motion detection capabilities. In other words,
DMP is already a full-fledged replacement for motion
detection algorithms for MEMS sensors, which is
implemented in hardware as a coprocessor.

Conclusions

For the tasks of processing "raw" data for tracking,
the complementary filter and the Kalman filter are
effective tools that provide a means to accurately
estimate the state of the system based on noise
measurements.

They are particularly useful for motion tracking
systems that include multiple sensors, such as
gyroscopes, accelerometers, and magnetometers,
because they can efficiently combine measurements from
these sensors to obtain a more accurate representation of
the system's motion.
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They can be used for a wide range of motion
tracking applications, including gait analysis, sports
performance monitoring, and rehabilitation [8].

However, the effectiveness of filters in motion
tracking systems depends on careful parameter setting
and model selection. The parameters of the Kalman filter
must be chosen to balance accuracy and sensitivity, and
the model used must accurately represent the dynamics
of the monitored system. Overall, the choice between
Complementary filter and Kalman filter depends on the

specific application and the available resources.
Complementary filter is a simple and efficient algorithm
that can be useful for applications where real-time
performance [9] and simplicity are important, such as in
simple robotic systems or basic motion tracking.

On the other hand, Kalman filter provides higher
accuracy and more robustness to noise and sudden
changes, making it more suitable for complex and high-
precision applications, such as aerospace and
autonomous vehicles.
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3axonJieHHs pyXy 3a JonoMorow aarynkis MEMS
J. €. Jamkos, O. C. JIsmieHko

AnoTtanis. IIpexMeToM IocTizKeHHs JAHOI CTAaTTi € peecTpallis Ta aHali3 pyXiB JIOJUHH 32 JOMOMOIOI0 JaTYHKIiB. Y
JaHiif poOOTI MpeCTaBICHO NOPIBHIHHI OCHOBHHUX METOIiB 0OPOOKHM TaHUX IHEPLIHHUX MIKpOMEeXaHIYHUX AaT4uKiB. s 300py
JaHUX OyJo peanizoBaHO MPHCTPil, mo Qikcye pyxu. Y pe3yibTaTi NPHUCTPIH BUKOPHUCTOBYE NaHI pPyXy 3 akcelepoMmerpa Ta
ripockora Jutsi po3paxyHKy TPAa€eKTOPIl pyXy: KyTa HOBOPOTY Ta MPUCKOPEHHs. [{aHi 3YUTYIOThCS MiKpPOKOHTPOJIEPOM, ITiCIIs 4OTO
GUTBTPYIOTBCS Ta 0OpOONAIOTHCS OXHUM 13 QimbTpiB (momarkoBuM, Kammana) i, HapemTi, mepenaroTbess HA KOMIT IOTEp IS
MOJANBIIOTO aHaNi3y Ta BigoOpaxkeHHs. MeTO0 CTATTi € TOpIBHSAHHSA KUTBKOX METONIB OOpOOKH JaHHX 3
MikpoenekTpoMexaHiyHux. OTpuMaHi pe3yJabTaTH: PO3poOJICHO MPUCTPii, OTPUMaHI JaHi, sSKi MOXKHA BUKOPHCTOBYBATH IS
XapaKTepUCTHKU METO/IB Ta aHali3y X poOOTH B cucTeMi. BucHOBKHI: Y X011 HocnimKeHHs Oyio po3po6ieHo MpUCTpii s 300py
Ta 00poOkn nmanux Bin matunkiB MEMS, skuii moka3aB e(eKTHBHICTh KOMIUIEMEHTapHOro (inpTpa MOPIBHIHO 3 (GiIBTPOM
KanmaHa B cucTeMax peajbHOro 4acy 3 OOMEKEHOI0 OOYMCIIOBAJIBHOIO MOTY)KHICTIO. PeanbHi pe3ynbTaTé MiATBEpAWIIH, L0
pe3yabTaTH I0AATKOBOTO METOLY 3 BHKOPUCTAHHAM MEHIINX 0OUHCIIIOBAIIBHIX PECYpCiB HEHA0araTo NOCTYHAIThCS TOPOKIOMY
¢ineTpy Kanvana 6e3 BUKOpUCTaHHS JOAATKOBHX JAaTYHKIB, TAKUX K I(POBHUil KomItac.

KawuoBi cmoBa: MikpoMexaHiuHI [IaT4MK{; MIKPOKOHTpPOJIEP; TiPOCKOI; aKCEIepOMETp; NCTeKTYyBaHHS PYXY;
noaatkoBuil GinbTp; GpinsTp Kanmana.
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