
ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 2 

57 

УДК 004.9 DOI: https://doi.org/10.20998/2522-9052.2023.2.08 
 

Dmytro Dashkov, Oleksii Liashenko 
 

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine 
 

MOTION CAPTURE WITH MEMS SENSORS 
 

Abstract .  The object of this article is the registration and analysis of human movements based on sensors. 

This paper presents a comparison of the basic methods of data processing from inertial micromechanical sensors 

to collect data a device was implemented that captures movements. As result the device uses the motion data 

from accelerometer and gyroscope to calculate the motion trajectory: the angle of rotation and acceleration. The 

data is read by the microcontroller, after which it is filtered and processed by one of the filters (Complementary, 

Kalman), and finally transferred to a computer for further analysis and display. The purpose of the article is to 

compare several methods of data processing from microelectromechanical. The results obtained: device was 

developed, obtained data that can be used to characterize the methods and analyze their work in the system. 

Conclusions: In the course of the study, a device was developed for collecting and processing data from MEMS 

sensors, which showed the effectiveness of the complementary filter in comparison with the Kalman filter in 

real-time systems with limited computing power. Real results confirmed that the results of the complementary 

method using less computational resources are not far behind the more costly Kalman filter without the use of 

auxiliary sensors, like a digital compass. 
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Introduction 

Problem statement. The problem of recording the 

movement of human limbs includes the task of accurately 

tracking and analyzing the movements of various parts of 

the body during various actions. There are various 

approaches to capture human limb motion, including 

optical computer vision (CV), inertial measurement 

sensors (IMU), and electromyography (EMG). Each of 

these methods has advantages and disadvantages, and the 

choice of technique depends on the specific application 

and the accuracy and precision required. 

Optical motion capture systems use cameras to 

track the position of a person's limbs using computer 

vision algorithms. Additionally, this technology can use 

markers attached to the object's limbs for greater 

stability. These systems are highly accurate and can 

capture detailed motion data, but are typically expensive 

and require a controlled environment with minimal 

interference. 

They can also be affected by changes in lighting 

conditions or occlusion in the scene. Computer vision 

methods can also be more susceptible to noise and errors 

than gyroscope sensors, especially if the camera is not 

stabilized or if there are moving objects in the scene. 

IMUs are sensors that are attached to limbs and 

measure acceleration, angular velocity, and magnetic field 

strength to detect changes in an object's orientation and 

rotation. These sensors can be used in a wide range of 

environments and are relatively inexpensive, but they can 

suffer from drift and noise, which can affect measurement 

accuracy. Gyro sensors are generally more accurate than 

computer vision methods for detecting rotation and are less 

susceptible to noise or errors. However, gyroscope sensors 

are less flexible than computer vision methods because 

they are designed specifically to detect rotation and cannot 

detect other types of motion. 

The EMG approach measures electrical activity in 

limb muscles and can be used to determine limb 

movement. This method is noninvasive and can be used 

in a variety of situations, but it may have interference and 

may not provide as accurate or detailed information about 

limb motion as optical or IMU-based approaches. 

So computer vision techniques can be more flexible 

and can detect a wider range of motion, but they can also 

be computationally expensive and more sensitive to noise 

and errors. Gyro sensors are more accurate for detecting 

rotation, but are less flexible and subject to drift over 

time. The choice of method will depend on the specific 

requirements of the application and available resources. 

IMU sensors are most suitable in case of tracing 

separate human body parts, the final result can be small 

device, that connects to different limbs to precisely track 

motions [1]. 

Main material 

IMU sensors. One of the types of IMU sensors is a 

digital gyroscope, it is a device that measures the angular 

velocity, or the rate at which an object's orientation 

changes over time. It is used in various applications such 

as navigation, robotics and virtual reality. The last one 

could help in areas of human-computer interaction. The 

main principle of operation of a digital gyroscope is the 

Coriolis effect. When an object rotates, a force acts on it 

that is perpendicular to the direction of its motion. This 

force is known as the Coriolis force. This force arises due 

to the fact that different points of the rotating surface 

move at different speeds, in other words, the Coriolis 

effect can be considered as a force felt by all objects that 

move along the surface of a rotating object. In a digital 

gyroscope, this force is measured using a vibrating 

structure known as a MEMS (Micro Electro-Mechanical 

System) sensor. The MEMS sensor consists of a test mass 

suspended from a spring. As the gyroscope rotates, the 

Coriolis force causes the test mass to vibrate in a 

direction perpendicular to the plane of rotation. 

Capacitive sensors located at the edges of the reference 

mass detect vibration.  
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As the test mass moves (Fig 1, 2), the capacitance 

between the test mass and the sensors changes, producing 

an electrical signal proportional to the speed of rotation. 
 

 
Fig. 1. Normal sensor status 

 

 
Fig. 2. Sensor status under force 

 

Hardware. Comparison of algorithms requires data 

from sensors, and to obtain data, a device was developed 

that tracks the movements of human limbs, which 

includes boards with a microprocessor and inertial 

micromechanical sensors. 

The STM32F401CCU6 microcontroller was chosen 

as the central computing module, and the MPU-6050 

microelectromechanical sensor as a gyroscope and 

accelerometer. 

The STM32F401CCU microcontroller is a 

microcontroller from STMicroelectronics' STM32F4 

series, which is based on the ARM Cortex-M4 processor 

core. It has a clock speed about 84 MHz, 512 KB of Flash 

memory, and 96 KB of SRAM. But mostly 

STM32F401CCU is suitable for our purpose, because it 

provides several features: 

− I2C bus for MEMS sensor connection; 

− USB bus to transfer data to the computer; 

− FPU(floating point unit) to speed up calculating 

mathematical formulas. 

Additional advantages are its low cost and high 

availability. 

The MPU-6050 is a 6-axis sensor that conveniently 

combines a gyroscope and an accelerometer in a small 

package, which makes it possible to use single physical 

connection and collect data over common I2C bus. MPU-

6050 is also suitable to this project due to its low cost and 

ease of use [2]. 

As already mentioned, the sensor is connected to the 

microcontroller via the I2C bus (Fig 3), since the SDA 

and SCL lines are open drain, which means that they can 

only sink current, but not give it away, so 4.7 kΩ pull-up 

resistors are used. 

The USB bus is used to transfer prepared data for 

further processing and visualization using virtual serial 

port technology (Fig 4), which represents UART 

(universal asynchronous receiver-transmitter) protocol 

over USB.  

The circuit also receives power from the USB port 

when connected to a computer, the linear regulator 

lowers it from 5 volts to 3.3 volts, which is acceptable for 

the microcontroller and sensor. 

Complementary filter. Another problem in the 

way of motion capture is the methods of processing data 

received from sensors, since in fact these data are noisy 

digitalized signals that are not related to each other in any 

way. To calculate the rotation angle, was used a 

complementary filter, which combines the gyroscope and 

accelerometer data together to obtain a more accurate 

estimate of the object's orientation. The gyroscope 

provides high frequency angular velocity measurements 

and the accelerometer provides low frequency gravity 

measurements [3]. To implement the complementary 

filter, the algorithm needs to calculate an orientation 

using the gyroscope data. This can be done using the 

trapezoid integration algorithm; the trapezoidal rule is a 

numerical integration method that can be used to estimate 

the value of an integral by approximating the area under 

a curve. In the context of integrating raw data from a 

gyroscope, the trapezoidal rule can be used to estimate 

the object's orientation over time: 

       ( )
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where θ[0] is the initial value of the angle (usually zero); 

θ[N-1] is the calculated end value of the angle; w[0], 

w[1], ..., w[N-1] – sequence of N samples of angular 

velocity; Δt – time delta. 

A simple representation of a given formula in a C 

programming language is shown in Listing 1. 
 

#define SAMPLE_TIME 0.01 
// Function to integrate the gyroscope data using 
the trapezoidal rule 
double integrate_data(double *gyro_data, int 
num_samples) 
{ 
    double area = 0.0; 
    for (int i = 1; i < num_samples; i++) { 
        double avg = (gyro_data[i] + gyro_data[i-
1]) / 2.0; 
        area += avg * SAMPLE_TIME; 
    } 
    return area; 
} 

Listing 1. Estimation the object's orientation over time 
 

Now it is important to process raw data from the 

accelerometer and get its orientation, it can be done with 

atan2 function. This function is a mathematical function 

that calculates the arctangent of two arguments, y and x, 

given as atan2(y, x). It returns the angle between the 

positive x-axis and the point (x, y) in the Cartesian plane, 

measured in radians (Fig 5): 

( )arctg y x = .                           (2) 

Its representation in code is shown in Listing 2. 
 

#define RAD_TO_DEG 57.295779513082 
double pitch = atan2(accel_x_raw, accel_z_raw) 
* RAD_TO_DEG; 

Listing 2. Representation in formula code (2) 
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Fig. 3. Connection circuit of the microcontroller, sensor, and USB port 

 

 

Fig. 4. Diagram of the data pipeline 

 

 

Fig. 5. Angle θ between the ray to the point (x, y)  

and the positive x-axis 

 

Then it is possible to proceed to the calculation of 

the filter itself with this value. The filter is a weighted 

average of the two scores, where the weights are chosen 

to balance the accuracy and stability of the filter (Fig 6, 

G(s) represents the transfer function for the low-pass 

filter, whereas G  ̄̄ ̄(s) is the transfer function of the high-

pass filter, such that G(s) + G ̄  ̄(̄s) = 1.). The basic idea is 

to use the gyroscope value to correct for drift in the 

accelerometer estimate and use the accelerometer 

estimate to correct high frequency noise in the gyroscope 

estimate (Fig 7).  

In the result of the filters work the estimate of the 

object's orientation will be more accurate [4]. 

On Fig 6 and 7: 

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = (𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑔𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 ∗  𝑐𝑜𝑒𝑓) +

(𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 ∗ (1 − 𝑐𝑜𝑒𝑓)), 

where 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑔𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 is a gyroscope orientation, 

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟  is an accelerometer 

orientation, 𝑐𝑜𝑒𝑓 is a weighting factor from 0 to 1 that 

determines the balance between gyroscope and 

accelerometer estimates. 

Red line is gyroscope values, blue is accelerometer 

values, green is a result.  

 

 

Fig. 6. Basic structure of Complementary Filter. 

 

 

Fig. 7. Complementary filter result 
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Over time, the gyroscope values will begin to drift 

due to noise and bias in the sensor data. The 

complementary filter will detect this drift and slowly put 

more weight on the accelerometer estimate, resulting in a 

more accurate estimate of the object's orientation. In 

addition, this approach shows a good result when hitting 

the device (Fig. 8). 

 

 

Fig. 8. Result of Complementary filter with hits 

 

Main disadvantage. This method of calculation is 

poorly applicable for calculating the angle of rotation 

along the Z-axis, since its calculation will require the 

projections accel_angle_x and accel_angle_y, and in this 

case, they are almost equal to zero. 

When x and y are both zero, the point (x, y) is 

located at the origin of the Cartesian plane. At the origin, 

the direction of the vector (x, y) is undefined since it has 

no direction. Therefore, it is not possible to determine the 

angle between the positive x-axis and the point (x, y) 

using atan2 when x and y are both zero. 
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 So that is why, the calculation of this angle is not 

possible or will be performed with a large error. 

Calculation of the desired angle should be made only by 

the value of the gyroscope, without filtering (Fig. 9). 
 

 

Fig. 9. Axes projection demonstration 

 

In addition, to obtain a more accurate angle of 

rotation along the Z-axis, an alternative is to use an 

auxiliary magnetometer module - a digital compass.  

Magnetometer module can provide the raw 

magnetic field data, which are measurements in the X, Y, 

and Z directions. By calculation and subtraction the 

magnetic declination angle from the inclination angle, 
the Z-axis rotation angle can be obtained. 

Kalman filter. Another filter that can be reviewed 

and compared to complementary filter is Kalman filter. It 

is a mathematical algorithm that estimates the state of a 

system by combining noisy measurements and a model 

of the system dynamics. It is commonly used in many 

applications, including navigation, control systems, and 

signal processing. 

The main idea of the Kalman filter is to recursively 

update an estimate of the state of the system based on two 

sources of information: measurements from sensors and 

predictions from a mathematical model of the system. 

The filter maintains two key components: a state estimate 

and a covariance matrix. 

The state estimate is a vector that represents the best 

guess of the current state of the system, based on all 

available information up to the current time. The 

covariance matrix is a measure of the uncertainty or error 

in the state estimate [5]. 

The Kalman filter operates in two stages: the 

prediction stage and the update stage. In the prediction 

stage, the filter uses the mathematical model to predict 

the state of the system at the next time step, based on the 

current state estimate. This prediction is then used to 

calculate the covariance matrix for the predicted state [6]. 

In the update stage, the filter uses the actual 

measurement data to correct the predicted state estimate 

and covariance matrix. The Kalman filter calculates the 

Kalman gain, which is a weighting factor that determines 

how much to trust the predicted state estimate versus the 

measurement. The measurement is then used to update 

the state estimate and covariance matrix, which are then 

used in the next prediction stage. 

The Kalman filter is designed to handle noisy or 

incomplete measurements, and it is able to incorporate 

new measurements as they become available, 

continuously refining its estimate of the system state. By 

using both the mathematical model and the actual 

measurements, the Kalman filter is able to provide a more 

accurate and robust estimate of the system state than 

either of these sources alone (Fig 10). 

 
Fig. 10. Kalman filter result 



ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 2 

61 

Red line is original coordinate, green is sensor 

values, and blue Kalman filter is result. 

Complementary filter and Kalman filter are both 

used for sensor fusion in order to improve the accuracy 

of the sensor readings. However, they differ in their 

underlying algorithms, complexity, and computational 

requirements (Table 1). 

Complementary filter is a simple algorithm that 

combines the readings from an accelerometer and a 

gyroscope to estimate the orientation of an object. It is 

easy to implement and requires less computational power 

than a Kalman filter. However, it may not be as accurate 

as a Kalman filter, especially in the presence of noise or 

other sources of error. 

 
Table 1. Comparison of method 

 Complementary filter Kalman filter 

Algorithm complexity Simple, easy to implement More complex, requires more computational resources and 

expertise to implement 

Accuracy Low accuracy, particularly in noisy 

environments 

High accuracy 

Sensor fusion ability Limited to combining data from two 

sensors, typically an accelerometer 

and a gyroscope 

Can fuse data from multiple sensors, such as accelerometer, 

gyroscope, magnetometer, and GPS, allowing for more 

accurate tracking and compensation for various external 

factors 

Real-time 

performance 

Real-time processing is possible Real-time processing is possible but can be limited by the 

complexity of the algorithm and the available 

computational resources 

Robustness Less robust to sudden changes and 

noise 

More robust to sudden changes and noise due to its ability 

to estimate the noise and uncertainty in the system 

 

Kalman filter, on the other hand, is a more complex 

algorithm that uses a mathematical model of the system 

and the sensor measurements to estimate the state of the 

system.  

It is able to handle more complex systems and can 

incorporate multiple sensors and other sources of 

information to improve the accuracy of the estimate. 

However, it requires more computational power than a 

complementary filter and can be more challenging to 

implement. 

In general, a complementary filter may be suitable 

for simple applications where accuracy is not so critical 

as performance, while a Kalman filter may be more 

appropriate for more complex systems where accuracy is 

critical and more computational power is available. It is 

also possible to use both filters in combination to take 

advantage of their strengths and improve overall 

accuracy. 

DSP and DMP. It is also necessary to note several 

approaches that can speed up work with data and even 

increase the accuracy of the calculation result. 
The first approach is to use a digital signal processor 

(DSP), which is a specialized microprocessor designed to 

process digital signals in real time. Unlike general-

purpose microprocessors, DSPs are optimized for signal 

processing, which typically involves performing a lot of 

mathematical operations on data samples such as 

processing vectors or matrix.  

Their special hardware functions can significantly 

speed up the processing of raw data from MEMS sensors, 

e.g. multiply floating point numbers in one cycle.  

Also, DSPs usually have a specialized memory 

architecture that allows them to access data quickly and 

efficiently, and moreover DSPs often have multiple 

processor cores that allow them to process different 

signals from gyroscope, accelerometer and 

magnetometer in parallel. 

Another type of hardware accelerator is a digital 

motion processor (DMP), besides of DSP, motion 

processor are embedded in MEMS sensors and are able 

to fuse the data from these sensors to provide more 

accurate measurements of the device's orientation, 

motion, and position in space. Such component is often 

integrated into microcontrollers or microprocessors and 

used in motion detection applications such as 

smartphones, smart watches, and game controllers [7].  

DMP is designed to offload some processing tasks 

from the main processor, such as sensor data combining 

and motion processing, and provides more accurate and 

reliable motion detection capabilities. In other words, 

DMP is already a full-fledged replacement for motion 

detection algorithms for MEMS sensors, which is 

implemented in hardware as a coprocessor. 

Conclusions 

For the tasks of processing "raw" data for tracking, 

the complementary filter and the Kalman filter are 

effective tools that provide a means to accurately 

estimate the state of the system based on noise 

measurements.  

They are particularly useful for motion tracking 

systems that include multiple sensors, such as 

gyroscopes, accelerometers, and magnetometers, 

because they can efficiently combine measurements from 

these sensors to obtain a more accurate representation of 

the system's motion.  
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They can be used for a wide range of motion 

tracking applications, including gait analysis, sports 

performance monitoring, and rehabilitation [8]. 

However, the effectiveness of filters in motion 

tracking systems depends on careful parameter setting 

and model selection. The parameters of the Kalman filter 

must be chosen to balance accuracy and sensitivity, and 

the model used must accurately represent the dynamics 

of the monitored system. Overall, the choice between 

Complementary filter and Kalman filter depends on the 

specific application and the available resources. 

Complementary filter is a simple and efficient algorithm 

that can be useful for applications where real-time 

performance [9] and simplicity are important, such as in 

simple robotic systems or basic motion tracking.  

On the other hand, Kalman filter provides higher 

accuracy and more robustness to noise and sudden 

changes, making it more suitable for complex and high-

precision applications, such as aerospace and 

autonomous vehicles.
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Захоплення руху за допомогою датчиків MEMS 

Д. Є. Дашков, О. С. Ляшенко 

Анотація .  Предметом дослідження даної статті є реєстрація та аналіз рухів людини за допомогою датчиків. У 

даній роботі представлено порівняння основних методів обробки даних інерційних мікромеханічних датчиків. Для збору 

даних було реалізовано пристрій, що фіксує рухи. У результаті пристрій використовує дані руху з акселерометра та 

гіроскопа для розрахунку траєкторії руху: кута повороту та прискорення. Дані зчитуються мікроконтролером, після чого 

фільтруються та обробляються одним із фільтрів (додатковим, Калмана) і, нарешті, передаються на комп’ютер для 

подальшого аналізу та відображення. Метою статті є порівняння кількох методів обробки даних з 

мікроелектромеханічних. Отримані результати: розроблено пристрій, отримані дані, які можна використовувати для 

характеристики методів та аналізу їх роботи в системі. Висновки: У ході дослідження було розроблено пристрій для збору 

та обробки даних від датчиків MEMS, який показав ефективність комплементарного фільтра порівняно з фільтром 

Калмана в системах реального часу з обмеженою обчислювальною потужністю. Реальні результати підтвердили, що 

результати додаткового методу з використанням менших обчислювальних ресурсів ненабагато поступаються дорожчому 

фільтру Калмана без використання додаткових датчиків, таких як цифровий компас.  

Ключові  слова :  мікромеханічні датчики; мікроконтролер; гіроскоп; акселерометр; детектування руху; 

додатковий фільтр; фільтр Калмана. 
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