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Abstract .  The work is devoted to the development of an organizational model of the machine translation system of 

artificial languages. The main goal is the analysis of text augmentation algorithms, which are significant elements of the 

developed machine translation system at the stage of improvement of new dictionaries created on the basis of already 

existing dictionaries. In the course of the work was developed a model of the machine translation system, created 

dictionaries based on texts and based on already existing dictionaries using augmentation methods such as back 

translation and crossover; improved dictionary based on algorithms of n-grams, Knuth-Morris-Pratt and word search in 

the text (such as binary search, tree search, sqrt decomposition). In addition, the work implements the possibility of 

using the prepared dictionary for translation. Obtained results can improve existing systems of machine translation of 

the text of artificial languages. Practical significance of this work is the analysis and improvement of text 

augmentation algorithms by changing the prefix tree type. Compared to the conventional algorithm, the improved 

algorithm reduced the memory usage by almost 13 times, which allows it to be used on much larger test data. This was 

achieved by changing the internal system of the node of the prefix tree from constant references to an expandable list.  

Key words:  translation; augmentation; prefix tree; dictionary; artificial language. 

 

Introduction 

There are 2500-3000 languages on Earth. These 

languages differ both in prevalence and social functions, 

as well as in phonetic and vocabulary features, 

morphological and syntactic characteristics. In linguistics, 

there are a number of classifications of languages. The 

main ones are four: areal, genealogical, typological and 

functional. 

Genealogical classification is based on the 

definition of family relationships between languages. At 

the same time, the common origin of related languages is 

proven and their development from a single language, 

often reconstructed in special ways, which is called the 

native language, is demonstrated. When genealogically 

classifying languages, first of all, the degree of their 

family relations and connections is clarified. 

Typological (morphological), operates with classes 

of languages, combined according to those features that 

are selected as the most significant features that reflect 

the language structure (for example, the way morphemes 

are connected). The most famous morphological 

classification of languages, according to which languages 

are divided using the abstract concept of type into the 

following four classes: 

− insulating or amorphous, for example, the 

Chinese language; 

− agglutinative or agglutinative, for example 

Turkic and Bantu languages; 

− incorporating, or polysynthetic, for example 

Chukotka-Kamchatka language; 

− inflectional languages, for example Slavic, Baltic. 

Areal (classification of languages is possible both 

within the genealogical classification of languages (for 

example, the Polish area, which includes Belarusian-

Ukrainian dialects and slang [1, 2]), and for languages of 

different genetic affiliation (for example, the Carpathian 

area of Hungarian-Slavic dialects). In areal classification, 

an important role is played features related to contact 

phenomena.  

Areal classification is also possible within one 

language in relation to its dialects, it is the basis of 

linguistic geography. Geographical classification is 

related to the place of distribution (primitive or late) of 

this or that language (or dialect). Its purpose is to 

determine the range of a language (or dialect) taking into 

account the boundaries of its linguistic features. The main 

method of research is linguo geographic. A special 

category of areal classification of languages is formed by 

linguistic conjunctions, which are formed as a result of 

linguistic interaction in the sphere of economic and 

household communication. Within the framework of a 

linguistic conjunction, convergence of related and 

unrelated languages included in it, etc dialects, which are 

combined by a certain commonality of economic and 

household vocabulary, syntactic constructions, 

characteristic features of morphology and phonetics. 

Thus, areal classification consists in the study of the 

linguistic map of the world, the linguistic characteristics 

of different countries, as well as the distribution of 

individual languages or groups of languages (Fig. 1). 

Artificial languages are specialized languages in 

which vocabulary, phonetics, and grammar have been 

specially developed to fulfill certain goals. It is 

purposefulness that distinguishes artificial languages 

from natural ones. Sometimes these languages are called 

false languages. There are already more than a thousand 

such languages, and new ones are constantly being 

created [3]. 

The reasons for creating an artificial language are: 

facilitating human communication (international auxiliary 

languages, codes), providing fiction with additional 

realism, linguistic experiments, providing communication 

in a fictional world, language games and enjoyment. 
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Fig. 1. Language types 

 

The term "artificial language" is sometimes used to 

refer to planned languages and other languages designed 

for human communication. Sometimes they prefer to call 

such languages precisely "planned", since the word 

"artificial" can have a derogatory connotation in some 

languages. 

Most artificial languages are created by one 

person, for example – Talos. But there are languages 

that were created by a group of people, such as 

Interlingua, developed by the International Assistive 

Language Association, and Lojban, created by the 

Logical Languages Group. 

Analysis of the literature 

Natural-language processing (NLP) is a general area 

of computer science, artificial intelligence and 

mathematical linguistics. It studies the problems of 

computer analysis and synthesis of natural language. In 

terms of artificial intelligence, analysis means 

understanding language, and synthesis means generating 

intelligent text. Solving these problems will mean 

creating a more convenient form of interaction between a 

computer and a person. There are 4 stages of 

development of natural language processing [4] (Fig. 2). 

 
Fig. 2. NLP history 

 

Understanding natural language is sometimes 

considered an AI-complete task because recognizing 

living speech requires a system's vast knowledge of its 

environment and the ability to interact with it. Defining 

the meaning of the word "understand" is one of the main 

tasks of artificial intelligence. Nowadays, ontologies, 

such as WordNet, UWN, play a significant role in 

solving natural language data processing problems. In 

the process of natural language processing research, 

significant results were achieved, including the 

development of powerful lexicographic systems [5, 6], 

programs for machine translation, electronic 

dictionaries, etc. However, there is a problem that still 

has not found its solution, it is rooted in the very nature 

of human language.  

The problem of understanding human speech lies 

precisely in its ambiguity. Today, there are no programs 

that "understand" all types of ambiguities in a wide 

range of industries, but there are programs that can 

correctly respond to ambiguities in very narrow areas. 

In NLP, algorithms are distinguished by basic 

algorithms (Fig. 3): 

 

Fig. 3. NLP tasks and methods 

− morphological analysis algorithms. They are 

used to recognize the elements or the morphological 

structure of the word - root, base, affixes, endings. 

Examples are stemming and lemmatization; 

− lexical analysis algorithms. Lexical units of the 

text are used for recognition. The input of the algorithm 

is text, the output is a list of lexical units of the text. 
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Examples are lexical decomposition, which involves 

breaking the text into tokens; accordingly, programs that 

perform lexical decomposition are called tokenizers. 

The problem formulation 

The main goal of the project is the analysis of text 

augmentation algorithms in machine translation 

systems. To achieve the goal, the following tasks must 

be solved: 

− development of a machine translation system 

model; 

− creation of new dictionary based on the set of 

parallel text; 

− creation of new dictionaries on the basis of 

already existing ones using augmentation methods [7]; 

− improvement of the dictionary thanks to the 

algorithms of n-grams and Knuth-Morris-Pratt [8-11]; 

− implementation of the possibility of using the 

prepared dictionary for translation; 

− analysis of text augmentation algorithms. 

Results and Discussion 

A system with the following inputs, goals, and 

limitations was developed to accomplish the tasks.  

Let's consider the application at a more detailed 

level. 

The model consists of 4 main parts: 

− a module for generating dictionaries based on 

input texts; 

− a module for generating dictionaries based on 

already existing dictionaries of other languages; 

− a module for updating probability of translation 

and improving dictionaries; 

− translator program for translating texts with the 

help of dictionaries. 

A generalized model of the proposed machine 

translation system is shown in the Fig. 4. 

The detailed structure is shown in the Fig. 5. 

Parallel texts are needed to generate dictionaries. 

These texts should have the same number of sentences. 

Sentences are counted by the number of period signs 

(«.»), exclamation mark («!»), question mark («?»), 

three dots («...»). 

In addition, each sentence must have at least one 

word. If, for example, there are only spaces, commas, 

quotation marks and other punctuation marks between 

the exclamation mark and the question mark, then it will 

not be considered a sentence. 

 

Fig. 4. A generalized model of the proposed machine 

translation system 

In addition, sentences with the same serial numbers 

will be counted as translations of each other, that is, it is 

not possible to change the order of sentences for the 

correct operation of the program. 

 

Fig. 5. Detailed model of the proposed machine translation system 

To generate dictionaries from other dictionaries 

using the augmentation method, you need to perform 

the following procedure. Suppose we have generated a 

dictionary from language 1 to language 2, and from 

language 2 to language 3. Then, for each word from 

language 1, we must find translations in the language 3. 
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For this, for each possible translation of this word into 

language 2, we will find possible translations into 

language 3 (Fig. 6).  

 
Fig. 6. Diagram of dictionary generation 

using an intermediate dictionary 

Then the translation probabilities will depend on 

the individual probabilities of these translations. If the 

same word of language 3 occurs as a translation several 

times, its probability increases. Since this dictionary can 

then be used as a regular dictionary for translation, each 

of the obtained probabilities must be normalized in the 

range [0;1] (since the probability can increase due to 

repeated results, it may not be normalized depending on 

the calculation algorithm), and then multiplied by a 

factor to reduce the impact of the results of this 

algorithm. 

Since the dictionary can be supplemented by 

conventional algorithms using texts, the results obtained 

using this method should affect the final result less than 

the results of the conventional algorithm. Since all 

results will be multiplied by this coefficient, it does not 

affect the translation result. 

We refer to the improvement of dictionaries as a 

set of algorithms that are used depending on the input 

languages. This list consists of such modules as:  

− N-gram; 

− two-way improvement;  

− addition of the finished dictionary with other 

texts; 

− search for phraseological units;  

− improvement based on morphological proximity. 

As a result, we will get dictionaries of the 

following form (Fig. 7). 
 

 
Fig. 7. Dictionary example 

 

Various methods can be used to save and search 

for text, such as: 

− storage of words in the order in which they are 

presented; 

− storage of words in alphabetical order; 

− a balanced tree; 

− hash table; 

− root decomposition; 

− prefix tree.  

To improve the augmentation method in this work, 

we consider a prefix tree. 

Strictly speaking, a prefix tree is a tree in which 

each node represents some string (the root represents the 

null string - ε). On the edges between the nodes, 1 letter 

is written, thus, going along the edges from the root to 

some nodes and targeting the letters from the edges in 
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the order of traversal, we will get a line corresponding 

to this node. The definition of a prefix tree as a tree also 

implies the unity of the path between the root and any 

node, therefore, exactly one row corresponds to each 

node (in the future, we will equate the nodes with the 

row it denotes). 

We will build the prefix tree by sequentially 

adding the lines. At first, we have 1 node, the root is an 

empty string. Adding a line is done as follows: starting 

from the root, we move along our tree, each time 

choosing an edge that corresponds to the next letter of 

the line. If there is no such edge, we create it together 

with the node.  

Here is an example of a constructed prefix tree for 

the strings:  

1) “acab”,  

2) “accc”,  

3) “acac”,  

4) “baca”,  

5) “abb”,  

6) “z”,  

7) “ac”. 

  
а                                                                                                     b 

Fig. 8. Example of a prefix tree a) usual tree b) a tree with labeled node 

Note that when we add line 7, we don't need to add 

nodes at all, so we need to add a label if this node is the 

end of any line. 

Obviously, searching for a word will be performed 

similarly to adding a new word. If the path does not 

exist, then instead of adding a node, we return the 

answer that the word does not exist. If at the end of the 

word there was no additional label in the last node, then 

we also return the same answer. 

To test the effectiveness of the algorithm, we will 

use a method based on a previously known alphabet of 

26 characters. We will use the following method to 

conduct the experiment algorithm. Let's generate the 

required number of long words (8-12 characters). Then 

we will generate the same number of words, and for 

each of the new words we will find it in the dictionary. 

After the experiments, the following results were 

obtained (Table 1, Fig. 9). 

 
Table 1 – Prefix tree runtime results 

Size of input data, 

number of words 
10^6 3*10^6 10^7 3*10^7 10^8 

Operating time, sec 1 3 8 4* 12* 

 

As it became known during the experiment, with a 

very large amount of input data, despite the fact that the 

algorithm works quite quickly, it requires quite large 

amounts of memory. This makes it impossible to work 

on a tree of large volumes. 

 
Fig. 9. Dependence of the execution time  

of the traditional prefix tree algorithm on the input data 

Therefore, changes were made for the last two 

tests: 

− instead of a tree built on 3*10^7 and 10^8 words, 

a tree was built from the first 10^6 words repeated 30 or 

100 times, respectively; 

− then they made the same 3*10^7 or 10^8 times 

requests to find the word. 
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Since the tree does not grow when entering the 

same word, the speed of work has decreased several 

times compared to the expected. Therefore, we can 

conclude that this version of the prefix tree has a limit 

close to 10^7 words when using the algorithm on a 

regular PC.  

That is enough for ordinary languages. 

Let's try to modify the algorithm so that it works 

under the necessary conditions. Since each node in the 

prefix tree keeps a reference to 26 other nodes, even if 

they don't exist, with a large amount of data, the 

standard implementation of the method does not meet 

our needs at all, or it requires computers that may have 

more memory available for work. However, since we 

don't know in which alphabet, we will use our program, 

things get much worse.  

Therefore, we will try to make modifications to the 

operation of the algorithm, which will save memory 

regardless of time. 

To save memory, we will change the structure of 

the nodes. If earlier we used static links to each letter, 

now we will use an expandable array, which will require 

us to spend more time accessing one letter, but will 

allow us to reduce the cost of the necessary memory. 

After the experiments, the following results were 

obtained (Table 2, Fig. 10).  

 
Table 2. Modified prefix tree runtime results 

Size of input 

data, number 

of words 

10^6 3*10^6 10^7 3*10^7 10^8 

Operating 

time, sec 
0 1 3 10 33 

 

 

Fig. 10. Dependence of the execution time  

of the modified prefix tree algorithm on the input data 

 

As we can see from the results, the time growth 

rate is linear with size of the input data. Therefore, on 

large data, this algorithm is slightly faster than binary 

search, which has logarithmic complexity. However, the 

time used to search for a letter is comparable to the 

logarithm, and will increase with the increase of the 

used alphabet, which can lead to a deterioration of the 

algorithm's results on words from a larger alphabet. 

Therefore, we cannot unequivocally say that this 

algorithm is better, it is necessary to pay attention to the 

data on which it will work, since it depends more on 

them compared to other algorithms. 

You may also find it surprising that the algorithm 

that sacrifices time for the sake of memory began to 

work faster than the usual algorithm. There are two 

reasons for this. The first - since we make only one 

request for each word, the advantage of the usual 

algorithm, which responds to requests faster, is negated. 

Second, we have to allocate space for all 26 links, this 

takes some time. And so the time to build the tree 

begins to play a larger role in the overall running time 

of the program. Since we use generated words, one of 

the important quantities, such as the power of prefixes, 

grows as quickly as possible, which may not happen in 

ordinary text. 

Let's understand what the power of prefixes is. 

Since we can see from the structure of the prefix tree 

(Fig. 7) that two words can contain common nodes, it is 

clear that the larger their common prefix (in this case, 

we consider the prefix not a morphological prefix, but a 

substring that begins with the beginning of the word), 

the tree will have less nodes. 

For example, let's try to add the words “acca” and 

“eb” to the already considered prefix tree. Since the 

word “accc” already exists in the tree, adding this word 

will create one additional node. The word “eb” will 

create 2 new nodes, since there was no word starting 

with “e” yet.  

Therefore, a longer word can produce fewer nodes 

than shorter. 

In ordinary language, we have quite a lot of same 

rooted words, and words that begin with the same 

prefix, as languages were formed naturally. Therefore, 

in contrast to randomly generated sequences of letters 

that we consider a word, the prefix tree will show itself 

much better on ordinary words of a certain language. 

This is because the number of different prefixes in the 

generated sequence of letters will be much greater than 

the number of prefixes in a normal language. And since 

each nodes of the tree contains one prefix, as the power 

of the prefixes increases, the volume of the tree will also 

increase. 

Conclusions 

In the course of the work, an analysis of the 

machine text translation system for artificial languages 

and the augmentation methods used in it was carried 

out.  

Improvements were made to the method of storing 

dictionaries using the prefix tree method, which was 

changed to save memory, which allowed it to be used 

on a home PC on large volumes of text. 

Compared to the conventional algorithm, the 

improved algorithm reduced the memory usage by 

almost 13 times, which allows it to be used on much 
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larger test data. This was achieved by changing the 

internal system of the nodes of the prefix tree from 

constant references to an expandable list. 

The model has quite a high potential for use in 

cases where there are no conventional translators. With 

a growing number of languages, this problem may 

worsen, as the number of translators cannot grow at the 

same rate. 

REFERENCES 

1. Manuel, K., Indukuri, K.V. and Krishna, P.R. (2010), “Analyzing Internet Slang for Sentiment Mining”, 2010 Second 

Vaagdevi International Conference on Information Technology for Real World Problems, pp. 9–11, doi: 

https://doi.org/10.1109/VCON.2010.9 

2. Ren, F. and Matsumoto, K. (2016), “Semi-Automatic Creation of Youth Slang Corpus and Its Application to Affective 

Computing”, IEEE Transactions on Affective Computing, April-June 2016, vol. 7, no. 2, pp. 176–189, doi: 

https://doi.org/10.1109/TAFFC.2015.2457915 

3. Kazakov, D. (2017), “Artificial naturalness”, Science and life, no. 10, pp. 100–107, available at: 

https://www.nkj.ru/archive/articles/32254/ 

4. Karen, S. Jones (2001), Natural language processing: a historical review, Cambridge: Computer Laboratory, University of 

Cambridge, available at: https://link.springer.com/chapter/10.1007/978-0-585-35958-8_1 

5. Ryzhkova, V. (2020), “Possibilities of Computer Lexicography in Compiling Highly Specialized Terminological Printed and 

Electronic Dictionaries (Field of Aviation Engineering)”, Ivannikov Memorial Workshop (IVMEM) 2020, pp. 40–42, doi: 

https://doi.org/10.1109/IVMEM51402.2020.00013 

6. Ranaivo-Malançon, B., Saee, S. and Wilfred Busu, J.F. (2014), “Discovering linguistic knowledge by converting printed 

dictionaries of minority languages into machine readable dictionaries”, 2014 International Conference on Asian Language 

Processing (IALP), pp. 140–143, doi: https://doi.org/10.1109/IALP.2014.6973522 

7. Chumarina, G.R. (2013), “Classification of electronic dictionaries in modern lexicography and lexicologists and features of 

their use”, Baltic Humanitarian Journal, No. 4, pp. 123–126.  

8. Anggreani, D., Putri, D.P.I., Handayani, A.N. and Azis, H. (2020), “Knuth Morris Pratt Algorithm in Enrekang-Indonesian 

Language Translator”, 2020 4th International Conference on Vocational Education and Training (ICOVET), 2020, pp. 144–

148, doi: https://doi.org/10.1109 / ICOVET50258.2020.9230139 

9. Zaiceva, S. and Barkovska, O. (2020), ”Analysis of Accelerated Problem Solutions of Word Search in Texts”, The Fourth 

International Scientific and Technical Conference «Computer and information systems and technologies», NURE Kharkiv, 

p. 66, doi: https://doi.org/10.30837/IVcsitic2020201445 

10. Barkovska, Olesia, Mikhal, Oleg, Pyvovarova, Daria, Liashenko, Oleksii, Diachenko, Vladyslav and Volk, Maxim (2020), 

“Local Concurrency in Text Block Search Tasks”, International Journal of Emerging Trends in Engineering Research, 

Vol. 8. No. 3, March 2020, pp. 690–694,  doi: https://doi.org/10.30534/ijeter/2020/13832020 

11. Barkovska, О., Pyvovarova, D., Serdechnyi, V. and Liashova, А. (2019), “Accelerated word-image search algorithm in text 

with adaptive decomposition of input data”, Control, Navigation and Communication Systems, vol. 4 (56), pp. 28–34, doi: 

https://doi.org/10.26906/SUNZ.2019.4.028 (in Ukrainian) 

Received (Надійшла) 14.12.2022 

Accepted for publication (Прийнята до друку) 22.02.2023 

ABOUT THE AUTHORS / ВІДОМОСТІ ПРО АВТОРІВ  

Гаврашенко Антон Олегович – аспірант кафедри електронних обчислювальних машин, Харківський національний 

університет радіоелектроніки, Харків, Україна; 

Anton Havrashenko – postgraduate student at of Electronic Computers Department, Kharkiv National University of Radio 

Electronics, Kharkiv, Ukraine; 

e-mail: anton.havrashenko@nure.ua; ORCID ID: http://orcid.org/0000-0002-8802-0529. 

Барковська Олеся Юріївна – кандидат технічних наук, доцент, доцент кафедри електронних обчислювальних машин, 

Харківський національний університет радіоелектроніки, Харків, Україна; 

Olesia Barkovska – Candidate of Technical Sciences, Associate Professor, Associate Professor of Electronic Computers 

Department, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine; 

e-mail: olesia.barkovska@nure.ua; ORCID ID: http://orcid.org/0000-0001-7496-4353. 

 

Аналіз алгоритмів аугментації тексту в системах машинного перекладу штучних мов 

А. О. Гаврашенко, О. Ю. Барковська 

Анотація .  Робота присвячена розробці організаційної моделі системи машинного перекладу штучних мов. 

Головною метою є аналіз алгоритмів аугментації тексту, які є значущими елементами розробленої системи машинного 

перекладу на етапі вдосконалення створених нових словників на основі вже існуючих словників. В ході виконання 

роботи була розроблена модель системи машинного перекладу, створені словники на основі текстів та на основі вже 

існуючих словників методами аугментації такими, як зворотній переклад та кросовер; вдосконалено створений словник 

на основі  алгоритмів n-грамм, Кнута-Моріса-Пратта та пошуку слів у тексті (таких, як бінарний пошук, пошук в дереві, 

пошук в кореневій декомпозиції). Окрім того, в роботі реалізована можливість використання підготовленого словнику 

для перекладу.  Отримані результати можуть покращити існуючі системи машинного перекладу тексту штучних мов. 

Практичною значущістю даної роботи є аналіз та покращення алгоритмів аугментації тексту за допомогою зміну типу 

префіксного дерева(бора).Порівняно зі звичайним алгоритмом, покращений алгоритм дозволив скоротити використання 

пам’яті майже в 13 разів, що дозволяє використовувати його на набагато більших тестових даних. Це було досягнуто 

завдяки зміні внутрішньої системи вершини бору із константних посилань, на розширюваний список.  

Ключові  слова:  переклад, аугментація, префіксне дерево, словник, штучна мова. 
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