
ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 1

47

Intelligent information systems

UDC 004.7 doi: https://doi.org/10.20998/2522-9052.2023.1.08

Anton Havrashenko, Olesia Barkovska

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

ANALYSIS OF TEXT AUGMENTATION ALGORITHMS IN

ARTIFICIAL LANGUAGE MACHINE TRANSLATION SYSTEMS

Abstract . The work is devoted to the development of an organizational model of the machine translation system of

artificial languages. The main goal is the analysis of text augmentation algorithms, which are significant elements of the

developed machine translation system at the stage of improvement of new dictionaries created on the basis of already

existing dictionaries. In the course of the work was developed a model of the machine translation system, created

dictionaries based on texts and based on already existing dictionaries using augmentation methods such as back

translation and crossover; improved dictionary based on algorithms of n-grams, Knuth-Morris-Pratt and word search in

the text (such as binary search, tree search, sqrt decomposition). In addition, the work implements the possibility of

using the prepared dictionary for translation. Obtained results can improve existing systems of machine translation of

the text of artificial languages. Practical significance of this work is the analysis and improvement of text

augmentation algorithms by changing the prefix tree type. Compared to the conventional algorithm, the improved

algorithm reduced the memory usage by almost 13 times, which allows it to be used on much larger test data. This was

achieved by changing the internal system of the node of the prefix tree from constant references to an expandable list.

Key words: translation; augmentation; prefix tree; dictionary; artificial language.

Introduction

There are 2500-3000 languages on Earth. These

languages differ both in prevalence and social functions,

as well as in phonetic and vocabulary features,

morphological and syntactic characteristics. In linguistics,

there are a number of classifications of languages. The

main ones are four: areal, genealogical, typological and

functional.

Genealogical classification is based on the

definition of family relationships between languages. At

the same time, the common origin of related languages is

proven and their development from a single language,

often reconstructed in special ways, which is called the

native language, is demonstrated. When genealogically

classifying languages, first of all, the degree of their

family relations and connections is clarified.

Typological (morphological), operates with classes

of languages, combined according to those features that

are selected as the most significant features that reflect

the language structure (for example, the way morphemes

are connected). The most famous morphological

classification of languages, according to which languages

are divided using the abstract concept of type into the

following four classes:

− insulating or amorphous, for example, the

Chinese language;

− agglutinative or agglutinative, for example

Turkic and Bantu languages;

− incorporating, or polysynthetic, for example

Chukotka-Kamchatka language;

− inflectional languages, for example Slavic, Baltic.

Areal (classification of languages is possible both

within the genealogical classification of languages (for

example, the Polish area, which includes Belarusian-

Ukrainian dialects and slang [1, 2]), and for languages of

different genetic affiliation (for example, the Carpathian

area of Hungarian-Slavic dialects). In areal classification,

an important role is played features related to contact

phenomena.

Areal classification is also possible within one

language in relation to its dialects, it is the basis of

linguistic geography. Geographical classification is

related to the place of distribution (primitive or late) of

this or that language (or dialect). Its purpose is to

determine the range of a language (or dialect) taking into

account the boundaries of its linguistic features. The main

method of research is linguo geographic. A special

category of areal classification of languages is formed by

linguistic conjunctions, which are formed as a result of

linguistic interaction in the sphere of economic and

household communication. Within the framework of a

linguistic conjunction, convergence of related and

unrelated languages included in it, etc dialects, which are

combined by a certain commonality of economic and

household vocabulary, syntactic constructions,

characteristic features of morphology and phonetics.

Thus, areal classification consists in the study of the

linguistic map of the world, the linguistic characteristics

of different countries, as well as the distribution of

individual languages or groups of languages (Fig. 1).

Artificial languages are specialized languages in

which vocabulary, phonetics, and grammar have been

specially developed to fulfill certain goals. It is

purposefulness that distinguishes artificial languages

from natural ones. Sometimes these languages are called

false languages. There are already more than a thousand

such languages, and new ones are constantly being

created [3].

The reasons for creating an artificial language are:

facilitating human communication (international auxiliary

languages, codes), providing fiction with additional

realism, linguistic experiments, providing communication

in a fictional world, language games and enjoyment.

© Havrashenko A., Barkovska O., 2023

Advanced Information Systems. 2023. Vol. 7, No. 1 ISSN 2522-9052

48

Fig. 1. Language types

The term "artificial language" is sometimes used to

refer to planned languages and other languages designed

for human communication. Sometimes they prefer to call

such languages precisely "planned", since the word

"artificial" can have a derogatory connotation in some

languages.

Most artificial languages are created by one

person, for example – Talos. But there are languages

that were created by a group of people, such as

Interlingua, developed by the International Assistive

Language Association, and Lojban, created by the

Logical Languages Group.

Analysis of the literature

Natural-language processing (NLP) is a general area

of computer science, artificial intelligence and

mathematical linguistics. It studies the problems of

computer analysis and synthesis of natural language. In

terms of artificial intelligence, analysis means

understanding language, and synthesis means generating

intelligent text. Solving these problems will mean

creating a more convenient form of interaction between a

computer and a person. There are 4 stages of

development of natural language processing [4] (Fig. 2).

Fig. 2. NLP history

Understanding natural language is sometimes

considered an AI-complete task because recognizing

living speech requires a system's vast knowledge of its

environment and the ability to interact with it. Defining

the meaning of the word "understand" is one of the main

tasks of artificial intelligence. Nowadays, ontologies,

such as WordNet, UWN, play a significant role in

solving natural language data processing problems. In

the process of natural language processing research,

significant results were achieved, including the

development of powerful lexicographic systems [5, 6],

programs for machine translation, electronic

dictionaries, etc. However, there is a problem that still

has not found its solution, it is rooted in the very nature

of human language.

The problem of understanding human speech lies

precisely in its ambiguity. Today, there are no programs

that "understand" all types of ambiguities in a wide

range of industries, but there are programs that can

correctly respond to ambiguities in very narrow areas.

In NLP, algorithms are distinguished by basic

algorithms (Fig. 3):

Fig. 3. NLP tasks and methods

− morphological analysis algorithms. They are

used to recognize the elements or the morphological

structure of the word - root, base, affixes, endings.

Examples are stemming and lemmatization;

− lexical analysis algorithms. Lexical units of the

text are used for recognition. The input of the algorithm

is text, the output is a list of lexical units of the text.

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 1

49

Examples are lexical decomposition, which involves

breaking the text into tokens; accordingly, programs that

perform lexical decomposition are called tokenizers.

The problem formulation

The main goal of the project is the analysis of text

augmentation algorithms in machine translation

systems. To achieve the goal, the following tasks must

be solved:

− development of a machine translation system

model;

− creation of new dictionary based on the set of

parallel text;

− creation of new dictionaries on the basis of

already existing ones using augmentation methods [7];

− improvement of the dictionary thanks to the

algorithms of n-grams and Knuth-Morris-Pratt [8-11];

− implementation of the possibility of using the

prepared dictionary for translation;

− analysis of text augmentation algorithms.

Results and Discussion

A system with the following inputs, goals, and

limitations was developed to accomplish the tasks.

Let's consider the application at a more detailed

level.

The model consists of 4 main parts:

− a module for generating dictionaries based on

input texts;

− a module for generating dictionaries based on

already existing dictionaries of other languages;

− a module for updating probability of translation

and improving dictionaries;

− translator program for translating texts with the

help of dictionaries.

A generalized model of the proposed machine

translation system is shown in the Fig. 4.

The detailed structure is shown in the Fig. 5.

Parallel texts are needed to generate dictionaries.

These texts should have the same number of sentences.

Sentences are counted by the number of period signs

(«.»), exclamation mark («!»), question mark («?»),

three dots («...»).

In addition, each sentence must have at least one

word. If, for example, there are only spaces, commas,

quotation marks and other punctuation marks between

the exclamation mark and the question mark, then it will

not be considered a sentence.

Fig. 4. A generalized model of the proposed machine

translation system

In addition, sentences with the same serial numbers

will be counted as translations of each other, that is, it is

not possible to change the order of sentences for the

correct operation of the program.

Fig. 5. Detailed model of the proposed machine translation system

To generate dictionaries from other dictionaries

using the augmentation method, you need to perform

the following procedure. Suppose we have generated a

dictionary from language 1 to language 2, and from

language 2 to language 3. Then, for each word from

language 1, we must find translations in the language 3.

Learning imitators

Translated texts

Algorithms

Test sample

Educational

sample

Translated texts

Translator algorithms

Test sample
Educational

sample

Learning imitators Dictionaries

Dictionaries

Two-way improvement

Knuth-Morris-Pratt

algorithms N-gram

Dictionaries

Word search algorithms

Text
processing

algorithms

Advanced Information Systems. 2023. Vol. 7, No. 1 ISSN 2522-9052

50

For this, for each possible translation of this word into

language 2, we will find possible translations into

language 3 (Fig. 6).

Fig. 6. Diagram of dictionary generation

using an intermediate dictionary

Then the translation probabilities will depend on

the individual probabilities of these translations. If the

same word of language 3 occurs as a translation several

times, its probability increases. Since this dictionary can

then be used as a regular dictionary for translation, each

of the obtained probabilities must be normalized in the

range [0;1] (since the probability can increase due to

repeated results, it may not be normalized depending on

the calculation algorithm), and then multiplied by a

factor to reduce the impact of the results of this

algorithm.

Since the dictionary can be supplemented by

conventional algorithms using texts, the results obtained

using this method should affect the final result less than

the results of the conventional algorithm. Since all

results will be multiplied by this coefficient, it does not

affect the translation result.

We refer to the improvement of dictionaries as a

set of algorithms that are used depending on the input

languages. This list consists of such modules as:

− N-gram;

− two-way improvement;

− addition of the finished dictionary with other

texts;

− search for phraseological units;

− improvement based on morphological proximity.

As a result, we will get dictionaries of the

following form (Fig. 7).

Fig. 7. Dictionary example

Various methods can be used to save and search

for text, such as:

− storage of words in the order in which they are

presented;

− storage of words in alphabetical order;

− a balanced tree;

− hash table;

− root decomposition;

− prefix tree.

To improve the augmentation method in this work,

we consider a prefix tree.

Strictly speaking, a prefix tree is a tree in which

each node represents some string (the root represents the

null string - ε). On the edges between the nodes, 1 letter

is written, thus, going along the edges from the root to

some nodes and targeting the letters from the edges in

D
ic

ti
o

n
ar

y1

D
ic

ti
o

n
ar

y2

D
ic

ti
o

n
ar

y1

D
ic

ti
o

n
ar

y3

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 1

51

the order of traversal, we will get a line corresponding

to this node. The definition of a prefix tree as a tree also

implies the unity of the path between the root and any

node, therefore, exactly one row corresponds to each

node (in the future, we will equate the nodes with the

row it denotes).

We will build the prefix tree by sequentially

adding the lines. At first, we have 1 node, the root is an

empty string. Adding a line is done as follows: starting

from the root, we move along our tree, each time

choosing an edge that corresponds to the next letter of

the line. If there is no such edge, we create it together

with the node.

Here is an example of a constructed prefix tree for

the strings:

1) “acab”,

2) “accc”,

3) “acac”,

4) “baca”,

5) “abb”,

6) “z”,

7) “ac”.

а b

Fig. 8. Example of a prefix tree a) usual tree b) a tree with labeled node

Note that when we add line 7, we don't need to add

nodes at all, so we need to add a label if this node is the

end of any line.

Obviously, searching for a word will be performed

similarly to adding a new word. If the path does not

exist, then instead of adding a node, we return the

answer that the word does not exist. If at the end of the

word there was no additional label in the last node, then

we also return the same answer.

To test the effectiveness of the algorithm, we will

use a method based on a previously known alphabet of

26 characters. We will use the following method to

conduct the experiment algorithm. Let's generate the

required number of long words (8-12 characters). Then

we will generate the same number of words, and for

each of the new words we will find it in the dictionary.

After the experiments, the following results were

obtained (Table 1, Fig. 9).

Table 1 – Prefix tree runtime results

Size of input data,

number of words
10^6 3*10^6 10^7 3*10^7 10^8

Operating time, sec 1 3 8 4* 12*

As it became known during the experiment, with a

very large amount of input data, despite the fact that the

algorithm works quite quickly, it requires quite large

amounts of memory. This makes it impossible to work

on a tree of large volumes.

Fig. 9. Dependence of the execution time

of the traditional prefix tree algorithm on the input data

Therefore, changes were made for the last two

tests:

− instead of a tree built on 3*10^7 and 10^8 words,

a tree was built from the first 10^6 words repeated 30 or

100 times, respectively;

− then they made the same 3*10^7 or 10^8 times

requests to find the word.

Advanced Information Systems. 2023. Vol. 7, No. 1 ISSN 2522-9052

52

Since the tree does not grow when entering the

same word, the speed of work has decreased several

times compared to the expected. Therefore, we can

conclude that this version of the prefix tree has a limit

close to 10^7 words when using the algorithm on a

regular PC.

That is enough for ordinary languages.

Let's try to modify the algorithm so that it works

under the necessary conditions. Since each node in the

prefix tree keeps a reference to 26 other nodes, even if

they don't exist, with a large amount of data, the

standard implementation of the method does not meet

our needs at all, or it requires computers that may have

more memory available for work. However, since we

don't know in which alphabet, we will use our program,

things get much worse.

Therefore, we will try to make modifications to the

operation of the algorithm, which will save memory

regardless of time.

To save memory, we will change the structure of

the nodes. If earlier we used static links to each letter,

now we will use an expandable array, which will require

us to spend more time accessing one letter, but will

allow us to reduce the cost of the necessary memory.

After the experiments, the following results were

obtained (Table 2, Fig. 10).

Table 2. Modified prefix tree runtime results

Size of input

data, number

of words

10^6 3*10^6 10^7 3*10^7 10^8

Operating

time, sec
0 1 3 10 33

Fig. 10. Dependence of the execution time

of the modified prefix tree algorithm on the input data

As we can see from the results, the time growth

rate is linear with size of the input data. Therefore, on

large data, this algorithm is slightly faster than binary

search, which has logarithmic complexity. However, the

time used to search for a letter is comparable to the

logarithm, and will increase with the increase of the

used alphabet, which can lead to a deterioration of the

algorithm's results on words from a larger alphabet.

Therefore, we cannot unequivocally say that this

algorithm is better, it is necessary to pay attention to the

data on which it will work, since it depends more on

them compared to other algorithms.

You may also find it surprising that the algorithm

that sacrifices time for the sake of memory began to

work faster than the usual algorithm. There are two

reasons for this. The first - since we make only one

request for each word, the advantage of the usual

algorithm, which responds to requests faster, is negated.

Second, we have to allocate space for all 26 links, this

takes some time. And so the time to build the tree

begins to play a larger role in the overall running time

of the program. Since we use generated words, one of

the important quantities, such as the power of prefixes,

grows as quickly as possible, which may not happen in

ordinary text.

Let's understand what the power of prefixes is.

Since we can see from the structure of the prefix tree

(Fig. 7) that two words can contain common nodes, it is

clear that the larger their common prefix (in this case,

we consider the prefix not a morphological prefix, but a

substring that begins with the beginning of the word),

the tree will have less nodes.

For example, let's try to add the words “acca” and

“eb” to the already considered prefix tree. Since the

word “accc” already exists in the tree, adding this word

will create one additional node. The word “eb” will

create 2 new nodes, since there was no word starting

with “e” yet.

Therefore, a longer word can produce fewer nodes

than shorter.

In ordinary language, we have quite a lot of same

rooted words, and words that begin with the same

prefix, as languages were formed naturally. Therefore,

in contrast to randomly generated sequences of letters

that we consider a word, the prefix tree will show itself

much better on ordinary words of a certain language.

This is because the number of different prefixes in the

generated sequence of letters will be much greater than

the number of prefixes in a normal language. And since

each nodes of the tree contains one prefix, as the power

of the prefixes increases, the volume of the tree will also

increase.

Conclusions

In the course of the work, an analysis of the

machine text translation system for artificial languages

and the augmentation methods used in it was carried

out.

Improvements were made to the method of storing

dictionaries using the prefix tree method, which was

changed to save memory, which allowed it to be used

on a home PC on large volumes of text.

Compared to the conventional algorithm, the

improved algorithm reduced the memory usage by

almost 13 times, which allows it to be used on much

ISSN 2522-9052 Сучасні інформаційні системи. 2023. Т. 7, № 1

53

larger test data. This was achieved by changing the

internal system of the nodes of the prefix tree from

constant references to an expandable list.

The model has quite a high potential for use in

cases where there are no conventional translators. With

a growing number of languages, this problem may

worsen, as the number of translators cannot grow at the

same rate.

REFERENCES

1. Manuel, K., Indukuri, K.V. and Krishna, P.R. (2010), “Analyzing Internet Slang for Sentiment Mining”, 2010 Second

Vaagdevi International Conference on Information Technology for Real World Problems, pp. 9–11, doi:

https://doi.org/10.1109/VCON.2010.9

2. Ren, F. and Matsumoto, K. (2016), “Semi-Automatic Creation of Youth Slang Corpus and Its Application to Affective

Computing”, IEEE Transactions on Affective Computing, April-June 2016, vol. 7, no. 2, pp. 176–189, doi:

https://doi.org/10.1109/TAFFC.2015.2457915

3. Kazakov, D. (2017), “Artificial naturalness”, Science and life, no. 10, pp. 100–107, available at:

https://www.nkj.ru/archive/articles/32254/

4. Karen, S. Jones (2001), Natural language processing: a historical review, Cambridge: Computer Laboratory, University of

Cambridge, available at: https://link.springer.com/chapter/10.1007/978-0-585-35958-8_1

5. Ryzhkova, V. (2020), “Possibilities of Computer Lexicography in Compiling Highly Specialized Terminological Printed and

Electronic Dictionaries (Field of Aviation Engineering)”, Ivannikov Memorial Workshop (IVMEM) 2020, pp. 40–42, doi:

https://doi.org/10.1109/IVMEM51402.2020.00013

6. Ranaivo-Malançon, B., Saee, S. and Wilfred Busu, J.F. (2014), “Discovering linguistic knowledge by converting printed

dictionaries of minority languages into machine readable dictionaries”, 2014 International Conference on Asian Language

Processing (IALP), pp. 140–143, doi: https://doi.org/10.1109/IALP.2014.6973522

7. Chumarina, G.R. (2013), “Classification of electronic dictionaries in modern lexicography and lexicologists and features of

their use”, Baltic Humanitarian Journal, No. 4, pp. 123–126.

8. Anggreani, D., Putri, D.P.I., Handayani, A.N. and Azis, H. (2020), “Knuth Morris Pratt Algorithm in Enrekang-Indonesian

Language Translator”, 2020 4th International Conference on Vocational Education and Training (ICOVET), 2020, pp. 144–

148, doi: https://doi.org/10.1109 / ICOVET50258.2020.9230139

9. Zaiceva, S. and Barkovska, O. (2020), ”Analysis of Accelerated Problem Solutions of Word Search in Texts”, The Fourth

International Scientific and Technical Conference «Computer and information systems and technologies», NURE Kharkiv,

p. 66, doi: https://doi.org/10.30837/IVcsitic2020201445

10. Barkovska, Olesia, Mikhal, Oleg, Pyvovarova, Daria, Liashenko, Oleksii, Diachenko, Vladyslav and Volk, Maxim (2020),

“Local Concurrency in Text Block Search Tasks”, International Journal of Emerging Trends in Engineering Research,

Vol. 8. No. 3, March 2020, pp. 690–694, doi: https://doi.org/10.30534/ijeter/2020/13832020

11. Barkovska, О., Pyvovarova, D., Serdechnyi, V. and Liashova, А. (2019), “Accelerated word-image search algorithm in text

with adaptive decomposition of input data”, Control, Navigation and Communication Systems, vol. 4 (56), pp. 28–34, doi:

https://doi.org/10.26906/SUNZ.2019.4.028 (in Ukrainian)

Received (Надійшла) 14.12.2022

Accepted for publication (Прийнята до друку) 22.02.2023

ABOUT THE AUTHORS / ВІДОМОСТІ ПРО АВТОРІВ

Гаврашенко Антон Олегович – аспірант кафедри електронних обчислювальних машин, Харківський національний

університет радіоелектроніки, Харків, Україна;

Anton Havrashenko – postgraduate student at of Electronic Computers Department, Kharkiv National University of Radio

Electronics, Kharkiv, Ukraine;

e-mail: anton.havrashenko@nure.ua; ORCID ID: http://orcid.org/0000-0002-8802-0529.

Барковська Олеся Юріївна – кандидат технічних наук, доцент, доцент кафедри електронних обчислювальних машин,

Харківський національний університет радіоелектроніки, Харків, Україна;

Olesia Barkovska – Candidate of Technical Sciences, Associate Professor, Associate Professor of Electronic Computers

Department, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine;

e-mail: olesia.barkovska@nure.ua; ORCID ID: http://orcid.org/0000-0001-7496-4353.

Аналіз алгоритмів аугментації тексту в системах машинного перекладу штучних мов

А. О. Гаврашенко, О. Ю. Барковська

Анотація . Робота присвячена розробці організаційної моделі системи машинного перекладу штучних мов.

Головною метою є аналіз алгоритмів аугментації тексту, які є значущими елементами розробленої системи машинного

перекладу на етапі вдосконалення створених нових словників на основі вже існуючих словників. В ході виконання

роботи була розроблена модель системи машинного перекладу, створені словники на основі текстів та на основі вже

існуючих словників методами аугментації такими, як зворотній переклад та кросовер; вдосконалено створений словник

на основі алгоритмів n-грамм, Кнута-Моріса-Пратта та пошуку слів у тексті (таких, як бінарний пошук, пошук в дереві,

пошук в кореневій декомпозиції). Окрім того, в роботі реалізована можливість використання підготовленого словнику

для перекладу. Отримані результати можуть покращити існуючі системи машинного перекладу тексту штучних мов.

Практичною значущістю даної роботи є аналіз та покращення алгоритмів аугментації тексту за допомогою зміну типу

префіксного дерева(бора).Порівняно зі звичайним алгоритмом, покращений алгоритм дозволив скоротити використання

пам’яті майже в 13 разів, що дозволяє використовувати його на набагато більших тестових даних. Це було досягнуто

завдяки зміні внутрішньої системи вершини бору із константних посилань, на розширюваний список.

Ключові слова: переклад, аугментація, префіксне дерево, словник, штучна мова.

https://www.nkj.ru/archive/articles/32254/
http://dx.doi.org/10.30534/ijeter/2020/13832020
http://orcid.org/0000-0002-8802-0529
http://orcid.org/0000-0001-7496-4353

