ISSN 2522-9052

CyuacHi inpopmariitai cuctemu. 2023. T. 7, Ne 1

Intelligent information systems

UDC 004.7

Anton Havrashenko, Olesia Barkovska

doi: https://doi.org/10.20998/2522-9052.2023.1.08

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

ANALYSIS OF TEXT AUGMENTATION ALGORITHMS IN
ARTIFICIAL LANGUAGE MACHINE TRANSLATION SYSTEMS

Abstract. The work is devoted to the development of an organizational model of the machine translation system of
artificial languages. The main goal is the analysis of text augmentation algorithms, which are significant elements of the
developed machine translation system at the stage of improvement of new dictionaries created on the basis of already
existing dictionaries. In the course of the work was developed a model of the machine translation system, created
dictionaries based on texts and based on already existing dictionaries using augmentation methods such as back
translation and crossover; improved dictionary based on algorithms of n-grams, Knuth-Morris-Pratt and word search in
the text (such as binary search, tree search, sqrt decomposition). In addition, the work implements the possibility of
using the prepared dictionary for translation. Obtained results can improve existing systems of machine translation of
the text of artificial languages. Practical significance of this work is the analysis and improvement of text
augmentation algorithms by changing the prefix tree type. Compared to the conventional algorithm, the improved
algorithm reduced the memory usage by almost 13 times, which allows it to be used on much larger test data. This was
achieved by changing the internal system of the node of the prefix tree from constant references to an expandable list.

Keywords: translation; augmentation; prefix tree; dictionary; artificial language.

Introduction

There are 2500-3000 languages on Earth. These
languages differ both in prevalence and social functions,
as well as in phonetic and vocabulary features,
morphological and syntactic characteristics. In linguistics,
there are a number of classifications of languages. The
main ones are four: areal, genealogical, typological and
functional.

Genealogical classification is based on the
definition of family relationships between languages. At
the same time, the common origin of related languages is
proven and their development from a single language,
often reconstructed in special ways, which is called the
native language, is demonstrated. When genealogically
classifying languages, first of all, the degree of their
family relations and connections is clarified.

Typological (morphological), operates with classes
of languages, combined according to those features that
are selected as the most significant features that reflect
the language structure (for example, the way morphemes
are connected). The most famous morphological
classification of languages, according to which languages
are divided using the abstract concept of type into the
following four classes:

—insulating or amorphous,
Chinese language;

—agglutinative or agglutinative, for
Turkic and Bantu languages;

—incorporating, or polysynthetic, for example
Chukotka-Kamchatka language;

— inflectional languages, for example Slavic, Baltic.

Areal (classification of languages is possible both
within the genealogical classification of languages (for
example, the Polish area, which includes Belarusian-
Ukrainian dialects and slang [1, 2]), and for languages of
different genetic affiliation (for example, the Carpathian

for example, the

example

area of Hungarian-Slavic dialects). In areal classification,
an important role is played features related to contact
phenomena.

Areal classification is also possible within one
language in relation to its dialects, it is the basis of
linguistic geography. Geographical classification is
related to the place of distribution (primitive or late) of
this or that language (or dialect). Its purpose is to
determine the range of a language (or dialect) taking into
account the boundaries of its linguistic features. The main
method of research is linguo geographic. A special
category of areal classification of languages is formed by
linguistic conjunctions, which are formed as a result of
linguistic interaction in the sphere of economic and
household communication. Within the framework of a
linguistic conjunction, convergence of related and
unrelated languages included in it, etc dialects, which are
combined by a certain commonality of economic and
household vocabulary, syntactic constructions,
characteristic features of morphology and phonetics.
Thus, areal classification consists in the study of the
linguistic map of the world, the linguistic characteristics
of different countries, as well as the distribution of
individual languages or groups of languages (Fig. 1).

Artificial languages are specialized languages in
which vocabulary, phonetics, and grammar have been
specially developed to fulfill certain goals. It is
purposefulness that distinguishes artificial languages
from natural ones. Sometimes these languages are called
false languages. There are already more than a thousand
such languages, and new ones are constantly being
created [3].

The reasons for creating an artificial language are:
facilitating human communication (international auxiliary
languages, codes), providing fiction with additional
realism, linguistic experiments, providing communication
in a fictional world, language games and enjoyment.

© Havrashenko A., Barkovska O., 2023

47

Advanced Information Systems. 2023. Vol. 7, No. 1

ISSN 2522-9052

[

Natural

h 4

‘ Functional \
Typological

A 4

Genealogical \

anguages

1

Y

Artificial
h 4 Y
0y ,f_;'
Universal Specialized
Esperanto Programming
Volapyuk languages
Linkos Formalized
Interlingua languages of science
Lozhban

Fig. 1. Language types

The term "artificial language" is sometimes used to
refer to planned languages and other languages designed
for human communication. Sometimes they prefer to call
such languages precisely "planned”, since the word
"artificial” can have a derogatory connotation in some
languages.

Most artificial languages are created by one
person, for example — Talos. But there are languages
that were created by a group of people, such as
Interlingua, developed by the International Assistive
Language Association, and Lojban, created by the
Logical Languages Group.

1 phase
1940-1960

2 phase
1960-1970
Artificial Intelligence

IMachine translation

Analysis of the literature

Natural-language processing (NLP) is a general area
of computer science, artificial intelligence and
mathematical linguistics. It studies the problems of
computer analysis and synthesis of natural language. In
terms of artificial intelligence, analysis means
understanding language, and synthesis means generating
intelligent text. Solving these problems will mean
creating a more convenient form of interaction between a
computer and a person. There are 4 stages of
development of natural language processing [4] (Fig. 2).

3 phase
1980-1990
Artificial intelligence
and semantics

4 phase

from 1990
Lexical approach to

grammar

Fig. 2. NLP history

Understanding natural language is sometimes
considered an Al-complete task because recognizing
living speech requires a system's vast knowledge of its
environment and the ability to interact with it. Defining
the meaning of the word "understand" is one of the main
tasks of artificial intelligence. Nowadays, ontologies,
such as WordNet, UWN, play a significant role in
solving natural language data processing problems. In
the process of natural language processing research,
significant results were achieved, including the
development of powerful lexicographic systems [5, 6],
programs for machine translation, electronic
dictionaries, etc. However, there is a problem that still
has not found its solution, it is rooted in the very nature
of human language.

The problem of understanding human speech lies
precisely in its ambiguity. Today, there are no programs
that "understand” all types of ambiguities in a wide
range of industries, but there are programs that can
correctly respond to ambiguities in very narrow areas.

In NLP, algorithms are distinguished by basic
algorithms (Fig. 3):

NLP
A 4 \
Tasks Metods
Data mining o
Synthesis of speech f_tatlsylc_al
inguistic
Speech recognition I
latural language generation Symbolic
N-gram

Machine translation

Fig. 3. NLP tasks and methods

—morphological analysis algorithms. They are
used to recognize the elements or the morphological
structure of the word - root, base, affixes, endings.
Examples are stemming and lemmatization;

—lexical analysis algorithms. Lexical units of the
text are used for recognition. The input of the algorithm
is text, the output is a list of lexical units of the text.

48

ISSN 2522-9052

CyuacHi inpopmariitai cuctemu. 2023. T. 7, Ne 1

Examples are lexical decomposition, which involves
breaking the text into tokens; accordingly, programs that
perform lexical decomposition are called tokenizers.

The problem formulation

The main goal of the project is the analysis of text
augmentation algorithms in machine translation
systems. To achieve the goal, the following tasks must
be solved:

—development of a machine translation system
model;

—creation of new dictionary based on the set of
parallel text;

—creation of new dictionaries on the basis of
already existing ones using augmentation methods [7];

—improvement of the dictionary thanks to the
algorithms of n-grams and Knuth-Morris-Pratt [8-11];

- implementation of the possibility of using the
prepared dictionary for translation;

—analysis of text augmentation algorithms.

Results and Discussion

A system with the following inputs, goals, and
limitations was developed to accomplish the tasks.

Let's consider the application at a more detailed
level.

The model consists of 4 main parts:

—a module for generating dictionaries based on
input texts;

—a module for generating dictionaries based on
already existing dictionaries of other languages;

—a module for updating probability of translation
and improving dictionaries;

—translator program for translating texts with the
help of dictionaries.

A generalized model of the proposed machine
translation system is shown in the Fig. 4.

The detailed structure is shown in the Fig. 5.

Parallel texts are needed to generate dictionaries.
These texts should have the same number of sentences.
Sentences are counted by the number of period signs
(«.»), exclamation mark («!»), question mark («?»),
three dots («...»).

In addition, each sentence must have at least one
word. If, for example, there are only spaces, commas,
quotation marks and other punctuation marks between
the exclamation mark and the question mark, then it will
not be considered a sentence.

Learning imitators

Educational ranstated
sample ranslated texts
— Translator
Test sample
Algorithms

Fig. 4. A generalized model of the proposed machine
translation system

In addition, sentences with the same serial numbers
will be counted as translations of each other, that is, it is
not possible to change the order of sentences for the
correct operation of the program.

Methods of improving

dictionaries
Learning imitators I - :
g Two-way improvement |Dictionaries
Knuth-Morris-Pratt
! algorithms N-gram
. Test sample
Educational A program for *
sample plo,:i?!m_ o . Dictionaries Translated texts
—— generating dictionaries Translator
from text
Dictionaries

Text

processing
algorithms

A program for generating
dictionaries from
dictionaries

Translator algorithms

IWord search algorithms

Fig. 5. Detailed model of the proposed machine translation system

To generate dictionaries from other dictionaries
using the augmentation method, you need to perform
the following procedure. Suppose we have generated a

dictionary from language 1 to language 2, and from
language 2 to language 3. Then, for each word from
language 1, we must find translations in the language 3.

49

Advanced Information Systems. 2023. Vol. 7, No. 1

ISSN 2522-9052

For this, for each possible translation of this word into
language 2, we will find possible translations into
language 3 (Fig. 6).

R

Dictionaryl
Dictionary2
Dictionaryl
Dictionary3

L

Fig. 6. Diagram of dictionary generation
using an intermediate dictionary

Then the translation probabilities will depend on
the individual probabilities of these translations. If the
same word of language 3 occurs as a translation several
times, its probability increases. Since this dictionary can
then be used as a regular dictionary for translation, each

of the obtained probabilities must be normalized in the
range [0;1] (since the probability can increase due to
repeated results, it may not be normalized depending on
the calculation algorithm), and then multiplied by a
factor to reduce the impact of the results of this
algorithm.

Since the dictionary can be supplemented by
conventional algorithms using texts, the results obtained
using this method should affect the final result less than
the results of the conventional algorithm. Since all
results will be multiplied by this coefficient, it does not
affect the translation result.

We refer to the improvement of dictionaries as a
set of algorithms that are used depending on the input
languages. This list consists of such modules as:

- N-gram;

- two-way improvement;

—addition of the finished dictionary with other
texts;

- search for phraseological units;

- improvement based on morphological proximity.

As a result, we will get dictionaries of the
following form (Fig. 7).

BiH :
BaXKO !
Bam
BamM_BCEnuIn :

BNnacHa :
BHUZ
BOHM :
BOPOXWUA

BCe !
BCENUAN :
BCENUNN_Wo :
nBa

our @.8 about ©.6 own ©.6 what 0.4

3a40BONIEHHA
3HaUUTL
Aoemo

Kinbka :
Kpaw
NacKkaeBui
NoauMHL

NWAUHE

MUHY e
MOHTEpAaH

it ©.73333 is ©.68333 what 0.4 neither 0.3 world 0.26667 |

it 0.8 is ©.74667 difficult ©.69333 to ©.64 imagine ©.58667 |

: you ©.78667 have ©.56988 been ©.53975 that 0.4795 the @.35143 |

you @.8 have ©.75983 been 0.71967 that ©.63934 told ©.44762 |
BM : you @.8 die @.76522 to ©.73043 born ©.69565 should 8.69565 |

along @.74286 walk ©.71429 nothing ©.68571 if ©.65714 pushes 0.65714 |
that 0.8 is @.73846 they ©.73846 death ©.67692 are ©.67692 |

hostile .8 nor ©.7 to @.7 friendly ©.6 man 0.6 |

should @.76522 and ©.73043 be 0.73043 die ©.69565 tormented ©.69565 |
have @.8 you ©.75983 been ©.75983 that ©.6795 told @.47619 |

have ©.8 you ©.75983 been ©.75983 that ©.6795 told ©.47619 |

: two ©.8 these 0.64 images 0.64 are 0.48 incompatible ©.32 |

ne : world @.70476 where @.70476 both ©.70476 are ©.70476 the 0.70476 |

ave : of ©.8 miracle @.68571 miracles ©.68571 a ©.57143 be 0.45714 |
oveom : a 0.8 be ©.68571 miracle ©.68571 would ©.57143 of ©.57143 |

nna : to ©.66473 that ©.43618 you @.47536 a 0.46222 is ©.49348 |

oymkow : by 0.8 tormented @.76522 this @.76522 be 0.73043 thought @.73043
xusemo : live ©.8 told ©.77143 we ©.77143 been 0.74286 that ©.74286 |
KWTTA

: should 0.8 be ©.76522 tormented ©.73043 and ©.69565 by ©.69565 |
3 : whis 0.8 a ©.68571 of 0.68571 be 0.57143 miracles ©.57143 |
! was 0.8 world 0.74667 created 0.74667 the ©.69333 solely 9.69333 |
: means ©.8 afraid ©.7619 it @.7619 be ©.72381 of ©.72381 |
go ©.8 an ©.77143 but ©.77143 of ©.74286 even ©.74286 |
some @.8 to ©.74667 with ©.74667 you ©.69333 a @.69333 |
: edge 9.68571 live @.68571 on ©.68571 the @.68571 of ©.68571 |
: friendly .8 is ©.7 neither 0.7 it @.6 nor @.6 |
man @.8 hostile ©.7 to 0.7 nor 9.6 friendly @.5 |
man ©.8 been @.76522 that 0.76522 have ©.73843 a 0.73043 |
Mi ¢ the ©.72381 we 08.68571 of ©.64762 on ©.45714 edge 0.45714 |
: old @.8 moral ©.74286 have ©.74286 values ©.68571 sunk ©.68571 |
: monterlant ©.8 wrote ©.73846 meaningless ©.67692 are ©.61538 they 0.55385 |

Fig. 7. Dictionary example

Various methods can be used to save and search
for text, such as:

—storage of words in the order in which they are
presented;

— storage of words in alphabetical order;

—a balanced tree;

—hash table;

- root decomposition;

— prefix tree.

To improve the augmentation method in this work,
we consider a prefix tree.

Strictly speaking, a prefix tree is a tree in which
each node represents some string (the root represents the
null string - €). On the edges between the nodes, 1 letter
is written, thus, going along the edges from the root to
some nodes and targeting the letters from the edges in

50

ISSN 2522-9052

CyuacHi inpopmariitai cuctemu. 2023. T. 7, Ne 1

the order of traversal, we will get a line corresponding
to this node. The definition of a prefix tree as a tree also
implies the unity of the path between the root and any
node, therefore, exactly one row corresponds to each
node (in the future, we will equate the nodes with the
row it denotes).

We will build the prefix tree by sequentially
adding the lines. At first, we have 1 node, the root is an
empty string. Adding a line is done as follows: starting
from the root, we move along our tree, each time
choosing an edge that corresponds to the next letter of

the line. If there is no such edge, we create it together
with the node.

Here is an example of a constructed prefix tree for
the strings:

1) “acab”,

2) “accc”,

3) “acac”,

4) “baca”,

5) “abb”,

6) “z”,

7) “ac”.

Fig. 8. Example of a prefix tree a) usual tree b) a tree with labeled node

Note that when we add line 7, we don't need to add
nodes at all, so we need to add a label if this node is the
end of any line.

Obviously, searching for a word will be performed
similarly to adding a new word. If the path does not
exist, then instead of adding a node, we return the
answer that the word does not exist. If at the end of the
word there was no additional label in the last node, then
we also return the same answer.

To test the effectiveness of the algorithm, we will
use a method based on a previously known alphabet of
26 characters. We will use the following method to
conduct the experiment algorithm. Let's generate the
required number of long words (8-12 characters). Then
we will generate the same number of words, and for
each of the new words we will find it in the dictionary.

After the experiments, the following results were
obtained (Table 1, Fig. 9).

Table 1 — Prefix tree runtime results

Size of input data, |) 4rq | 3x10n6 | 107 | 31077 | 1078
number of words
Operating time, sec| 1 3 8 4* 12*

As it became known during the experiment, with a
very large amount of input data, despite the fact that the
algorithm works quite quickly, it requires quite large
amounts of memory. This makes it impossible to work
on a tree of large volumes.

Time sec.

13

12

11

10

0 Words
10000000 30000000 50000000

70000000 10000000¢

Fig. 9. Dependence of the execution time
of the traditional prefix tree algorithm on the input data

Therefore, changes were made for the last two
tests:

—instead of a tree built on 3*1077 and 108 words,
a tree was built from the first 1076 words repeated 30 or
100 times, respectively;

—then they made the same 3*10"7 or 10"8 times
requests to find the word.

51

Advanced Information Systems. 2023. Vol. 7, No. 1

ISSN 2522-9052

Since the tree does not grow when entering the
same word, the speed of work has decreased several
times compared to the expected. Therefore, we can
conclude that this version of the prefix tree has a limit
close to 107 words when using the algorithm on a
regular PC.

That is enough for ordinary languages.

Let's try to modify the algorithm so that it works
under the necessary conditions. Since each node in the
prefix tree keeps a reference to 26 other nodes, even if
they don't exist, with a large amount of data, the
standard implementation of the method does not meet
our needs at all, or it requires computers that may have
more memory available for work. However, since we
don't know in which alphabet, we will use our program,
things get much worse.

Therefore, we will try to make modifications to the
operation of the algorithm, which will save memory
regardless of time.

To save memory, we will change the structure of
the nodes. If earlier we used static links to each letter,
now we will use an expandable array, which will require
us to spend more time accessing one letter, but will
allow us to reduce the cost of the necessary memory.

After the experiments, the following results were
obtained (Table 2, Fig. 10).

Table 2. Modified prefix tree runtime results

Size of input
data, number | 106 | 3*10"6 1077 | 3*1017 | 10M8
of words
Operating | 1 3 10 | 33
time, sec
Time sec.
35
30
25
20
15
10
5
0 ‘Words

10000000 30000000 50000000 70000000 10000000C

Fig. 10. Dependence of the execution time
of the modified prefix tree algorithm on the input data

As we can see from the results, the time growth
rate is linear with size of the input data. Therefore, on
large data, this algorithm is slightly faster than binary

search, which has logarithmic complexity. However, the
time used to search for a letter is comparable to the
logarithm, and will increase with the increase of the
used alphabet, which can lead to a deterioration of the
algorithm's results on words from a larger alphabet.
Therefore, we cannot unequivocally say that this
algorithm is better, it is necessary to pay attention to the
data on which it will work, since it depends more on
them compared to other algorithms.

You may also find it surprising that the algorithm
that sacrifices time for the sake of memory began to
work faster than the usual algorithm. There are two
reasons for this. The first - since we make only one
request for each word, the advantage of the usual
algorithm, which responds to requests faster, is negated.
Second, we have to allocate space for all 26 links, this
takes some time. And so the time to build the tree
begins to play a larger role in the overall running time
of the program. Since we use generated words, one of
the important quantities, such as the power of prefixes,
grows as quickly as possible, which may not happen in
ordinary text.

Let's understand what the power of prefixes is.
Since we can see from the structure of the prefix tree
(Fig. 7) that two words can contain common nodes, it is
clear that the larger their common prefix (in this case,
we consider the prefix not a morphological prefix, but a
substring that begins with the beginning of the word),
the tree will have less nodes.

For example, let's try to add the words “acca” and
“eb” to the already considered prefix tree. Since the
word “accc” already exists in the tree, adding this word
will create one additional node. The word “eb” will
create 2 new nodes, since there was no word starting
with “e” yet.

Therefore, a longer word can produce fewer nodes
than shorter.

In ordinary language, we have quite a lot of same
rooted words, and words that begin with the same
prefix, as languages were formed naturally. Therefore,
in contrast to randomly generated sequences of letters
that we consider a word, the prefix tree will show itself
much better on ordinary words of a certain language.
This is because the number of different prefixes in the
generated sequence of letters will be much greater than
the number of prefixes in a normal language. And since
each nodes of the tree contains one prefix, as the power
of the prefixes increases, the volume of the tree will also
increase.

Conclusions

In the course of the work, an analysis of the
machine text translation system for artificial languages
and the augmentation methods used in it was carried
out.

Improvements were made to the method of storing
dictionaries using the prefix tree method, which was
changed to save memory, which allowed it to be used
on a home PC on large volumes of text.

Compared to the conventional algorithm, the
improved algorithm reduced the memory usage by
almost 13 times, which allows it to be used on much

52

ISSN 2522-9052 CyuacHi inpopmariitai cuctemu. 2023. T. 7, Ne 1

larger test data. This was achieved by changing the cases where there are no conventional translators. With

internal system of the nodes of the prefix tree from a growing number of languages, this problem may

constant references to an expandable list. worsen, as the number of translators cannot grow at the
The model has quite a high potential for use in same rate.

REFERENCES

1. Manuel, K., Indukuri, K.V. and Krishna, P.R. (2010), “Analyzing Internet Slang for Sentiment Mining”, 2010 Second
Vaagdevi International Conference on Information Technology for Real World Problems, pp. 9-11, doi:
https://doi.org/10.1109/\VCON.2010.9

2. Ren, F. and Matsumoto, K. (2016), “Semi-Automatic Creation of Youth Slang Corpus and Its Application to Affective
Computing”, IEEE Transactions on Affective Computing, April-June 2016, vol. 7, no. 2, pp. 176-189, doi:
https://doi.org/10.1109/TAFFC.2015.2457915

3. Kazakov, D. (2017), <“Artificial naturalness”, Science and life, no. 10, pp. 100-107, available at:
https://www.nkj.ru/archive/articles/32254/

4. Karen, S. Jones (2001), Natural language processing: a historical review, Cambridge: Computer Laboratory, University of
Cambridge, available at: https:/link.springer.com/chapter/10.1007/978-0-585-35958-8 1

5. Ryzhkova, V. (2020), “Possibilities of Computer Lexicography in Compiling Highly Specialized Terminological Printed and
Electronic Dictionaries (Field of Aviation Engineering)”, Ivannikov Memorial Workshop (IVMEM) 2020, pp. 40-42, doi:
https://doi.org/10.1109/IVMEM51402.2020.00013

6. Ranaivo-Malangon, B., Saee, S. and Wilfred Busu, J.F. (2014), “Discovering linguistic knowledge by converting printed
dictionaries of minority languages into machine readable dictionaries”, 2014 International Conference on Asian Language
Processing (IALP), pp. 140-143, doi: https://doi.org/10.1109/IALP.2014.6973522

7. Chumarina, G.R. (2013), “Classification of electronic dictionaries in modern lexicography and lexicologists and features of
their use™, Baltic Humanitarian Journal, No. 4, pp. 123-126.

8. Anggreani, D., Putri, D.P.l., Handayani, A.N. and Azis, H. (2020), “Knuth Morris Pratt Algorithm in Enrekang-Indonesian
Language Translator”, 2020 4th International Conference on Vocational Education and Training (ICOVET), 2020, pp. 144—
148, doi: https://doi.org/10.1109 / ICOVET50258.2020.9230139

9. Zaiceva, S. and Barkovska, O. (2020), Analysis of Accelerated Problem Solutions of Word Search in Texts”, The Fourth
International Scientific and Technical Conference «Computer and information systems and technologies», NURE Kharkiv,
p. 66, doi: https://doi.org/10.30837/1Vcsitic2020201445

10. Barkovska, Olesia, Mikhal, Oleg, Pyvovarova, Daria, Liashenko, Oleksii, Diachenko, Vladyslav and Volk, Maxim (2020),
“Local Concurrency in Text Block Search Tasks”, International Journal of Emerging Trends in Engineering Research,
Vol. 8. No. 3, March 2020, pp. 690-694, doi: https://doi.org/10.30534/ijeter/2020/13832020

11. Barkovska, O., Pyvovarova, D., Serdechnyi, V. and Liashova, A. (2019), “Accelerated word-image search algorithm in text
with adaptive decomposition of input data”, Control, Navigation and Communication Systems, vol. 4 (56), pp. 28-34, doi:
https://doi.org/10.26906/SUNZ.2019.4.028 (in Ukrainian)

Received (Hanxiiinora) 14.12.2022
Accepted for publication (ITpuitasara no apyky) 22.02.2023

ABOUT THE AUTHORS / BIZIOMOCTI ITPO ABTOPIB

I'aBpamenko AHTOH QueroBu4 — acmipanT Kadenpu eNeKTPOHHHX OOYHCITIOBATbHUX MAIIMH, XapKiBCHKHN HAaIliOHAIBEHHH
YHIBEpCHTET paiOeNeKTPOHIKH, XapKiB, YKpaiHa;
Anton Havrashenko — postgraduate student at of Electronic Computers Department, Kharkiv National University of Radio
Electronics, Kharkiv, Ukraine;
e-mail: anton.havrashenko@nure.ua; ORCID ID: http://orcid.org/0000-0002-8802-0529.

BapkoBcbka Onecs FOpiiBHa — KaHAWAAT TEXHIYHUX HAYK, JOICHT, TOLUEHT Kadeapu eNeKTPOHHUX O0YMCITIOBAIEHIX MAIUH,
XapKiBChbKHUil HAIIIOHATLHUHN YHIBEPCUTET PAIiOCICKTPOHIKU, XapKiB, YKpaiHa;
Olesia Barkovska — Candidate of Technical Sciences, Associate Professor, Associate Professor of Electronic Computers
Department, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine;
e-mail: olesia.barkovska@nure.ua; ORCID ID: http://orcid.org/0000-0001-7496-4353.

AHaji3 anropuTMiB ayrMeHTanii TEKCTy B CHCTeMaX MAIIMHHOTO MepeKIaay ITYYHHX MOB
A. O. I'aBpamrenxo, O. 0. bapkoBcbka

AHoTanisi. PobGora mpucesueHa po3poOIili opraHizariffiHol MoOeTl CHCTEMH MAIIMHHOTO TMEPEKIaay MITYYHHX MOB.
['0JI0BHOIO METOI0 € aHAJIi3 aIrOPUTMIB ayrMEHTAIlil TEKCTY, Ki € 3HAYYIIUMHU eIeMEHTaMH PO3pPOOJICHOT CHCTEMH MAIIMHHOTO
nepekyiagy Ha eramni BJOCKOHAJCHHS CTBOPEHHMX HOBHMX CJIOBHHKIB Ha OCHOBI BXKE iCHYFOYMX CJIOBHHKIB. B XoIi BHKOHaHHS
pobotu Oyna po3pobiieHa MOJIENb CHCTEMH MAIIMHHOTO TEPEKIaay, CTBOPEHI CIIOBHHUKM Ha OCHOBI TEKCTIB Ta Ha OCHOBI BXKE
ICHYIOUHX CIIOBHUKIB METOJaMH ayTrMEHTallil TAKUMH, K 3BOPOTHIH IepeKiIa Ta KpOCOBEpP; BAOCKOHAICHO CTBOPEHUH CIIOBHUK
Ha OCHOBI ayropuTMiB n-rpamm, Kayra-Mopica-IIparTa Ta momyky ciiB y TEeKCTi (TakKuX, K OIHAPHUI MOIIYK, MONIYK B JIEPEBI,
HOIIYK B KOpeHeBii aexomno3uii). OkpiM Toro, B poOoTi peanizoBaHa MOXIJIMBICTh BUKOPUCTAHHS ITiATOTOBJICHOTO CIOBHHKY
st epekiany. OTpuMaHi pe3yJbTaTH MOXYTb ITOKPALIMTH iCHYIOYi CHCTEMH MAIIHHHOTO MEepeKiIaay TeKCTY LITYYHHX MOB.
ITpaKTHYHOO 3HAYYUIICTIO aHOi POOOTH € aHaji3 Ta MOKPALICHHS AITOPUTMIB ayrMeHTallii TeKCTY 3a JOIIOMOTOI0 3MiHY THITY
npedikcHoro nepesa(6opa).ITopiBHAHO 31 3BUYAHUM aITOPUTMOM, MTOKPAIICHUI aIrOPUTM J03BOJUB CKOPOTHTH BUKOPHUCTAHHS
mam’siTi Maibke B 13 pasiB, o0 J03BOJISIE BUKOPHCTOBYBATH HOro Ha Habarato OUTBIIMX TECTOBHX AaHHX. Lle Oyno mocsarHyTo
3aBISKU 3MiHI BHYTPIIIHBO{ CHCTEMH BEPIIMHY OOPY i3 KOHCTAaHTHUX MOCHJIaHb, Ha PO3IINPIOBAHUH CITUCOK.

KawuoBi ciaoBa: mepekian, ayrMeHrallis, npedikcHe AepeBo, CIOBHHK, IITyYHa MOBA.

53

https://www.nkj.ru/archive/articles/32254/
http://dx.doi.org/10.30534/ijeter/2020/13832020
http://orcid.org/0000-0002-8802-0529
http://orcid.org/0000-0001-7496-4353

