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ANALYSIS OF MARCOVIAN SYSTEMS
WITH A GIVEN SET OF SELECTED STATES

Abstract. Analysis of stationary Marcovian systems is traditionally performed using systems of linear Kolmogorov
differential equations. Such systems make it possible to determine the probability of the analyzed system being in each of
its possible states at an arbitrary time. This standard task becomes more complicated if the set of possible states of systems
is heterogeneous and some special subset can be distinguished from it, in accordance with the specifics of the system
functioning. Subject of the study is technology development for such systems analysis. In accordance with this, the purpose
of the work is to find the distribution law of the random duration of such a system's stay on a set of possible states until it
falls into a selected subset of these states. Method for solving the problem is proposed based on splitting the entire set of
possible states of the system into two subsets. The first of them contains a selected subset of states, and the second contains
all the other states of the system. Now a subset of states is allocated from the second subset, from which a direct transition
to the states of the first subset is possible. Next, a system of differential equations describing the transitions between the
formed subsets is formed. The solution of this system of equations gives the desired result — distribution of the random
duration of the system's stay until the moment of the first hit in the selected subset of states. The method allows solving a
large number of practical problems, for example, in the theory of complex systems reliability with many different failure
states. In particular, finding the law of the uptime duration distribution, calculating the average duration of uptime.

Keywords: Marcovian systems; subset of special states; analysis of inhomogeneous systems states probabilities dynamics.

Introduction

Traditional technologies for queuing systems
analyzing are based on the use of Marcovian models of
these systems [1, 2]. Computational scheme for solving
the corresponding tasks is constructed as follows [3-5].

A set of Z discrete possible states of the system is
introduced. State of this system at each moment of time

t is determined by the {R(t)} probability distribution

of its being in states k € Z at that moment of time.
Evolution of the system states in the process of its
functioning is determined by the intensity matrix,
A(t) = (4; (1)), where %;(t) is the intensity of the
system transition from state i to state j e Z. Using this

matrix A¢), it is possible to write a system of
Kolmogorov differential equations [4-6] with respect to
unknown functions B (t). This system has the form:

=Tk _

pm 2. AkORO-R® X A ®. (1)

ieZ\k ieZ\k
Define the indicator
1, if direct transition from i to j is possible,
i :{O, if directtransition from i to jisimpossible.

Now introduce a stationary Marcovian process of
the system functioning, for which they do 7 (t) = 4;

not depend on t. Next, for an arbitrary k € Z enter:
Z¢ - set of system states from which a direct
transition to state k is possible,
Zg ={jtie€Z,R(j.k)=1};

Z, - set of states of the system into which a direct
transition from state k is possible,

Zc ={j: i<Z.Rg =1}.
In this case, equation (1) is simplified to the form:

ALY 4RO-RO L 4 keZ. @

iez) iezy
The resulting system of differential equations (2) is
solved using the Laplace transform. As is known, the

Laplace transform of the function u(t) is called the
function [3-6]

L(u(t)) = F(s) = j u(t)-e~Stdt. ©)
0
At the same time, it is clear that

L(u()) = Te*SIU(t)dt —u@) e t[Fe
0

o (4)
+s j u(t)-e~tdt = sL(u(t)) —u(0).
0

Using the Laplace transform (3), (4) for the system
of differential equations (2), we obtain

sz ()= B (0) = D Aiki () =7k (S) D i

iezy ieZy (5)
keZ,m(s) = L(R (V).

After the reduction of such terms in the equations
of system (5), we have the following system of
algebraic equations

boo770 (8) + 0171 (S) + ... + b7z (5) = €y,
bio7 (8) + by (S) +... + by () = ¢4,

(6)

bho7o () + b7 (S) +... + by 7y (S) = ¢4,
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where (n+1) is the number of elements of the set Z.
According to Kramer's rule, write down the system
solution:
A; ()

mi(s) = m (7

where Aj(s) , A(s) are the determinants of the

corresponding matrices. The desired set Pji(t) is found
using the inverse Laplace transform [2].

Note that when solving many practical problems of
evaluating the system effectiveness, it becomes
necessary to determine the duration of its stay on some
specially selected subset of the set of possible states of
this system [7-9]. Consider the problem of finding the
distribution law of the corresponding random variable.

We introduce Z — the set of possible states of the
system. Divide this set into two subsets Z, and Zj,
ZO UZl :Zl’ZO ﬁZl =(.

Let Pi(0) be the probability of the system being in

a state i e Z; at time to, Ziezo R (0) =1. introduce T —

the random duration of wandering through states
belonging to Z, before leaving for a subset of Z;. Now,
from the subset Z;, we select a subset Zo: containing
only those elements Z; into which the system can move
from Z, directly, that is

Zoy ={itjezy, exists i e Zg,R(i, j) =1},

Thus, the random duration T of the system's
wandering through the states Z, before the transition to
Z; is equal to the time spent in Zy before entering Zo1. To
find the distribution law of a random variable T, assume
that all states of the subset Zo; are absorbing, that is,
%ij =0, j €Zpy, i€ Z. Now let Ft)=P(z<T) be the

desired distribution function of a random variable T.
Introduce

Pj(t) - the probability of the system being in a state
j€Zg attimet. Then

F)= > Pt
ieZoy

Hence the distribution density of the random
variable T is

> P,

i€z
Now, using (2), given that %;; =0, j € Zgy, i € Z,
we have
Pi)= 3 %P0, jeZor ©)
ieZg
Substituting (9) into (8), we get
fty=> > %P
i€z jeZo

Thus, the task of finding the desired distribution
density of a random variable T is reduced to calculating
a set of probabilities. R (t),i e Zy. These probabilities

can be found by integrating a system of differential

(10)

equations (2), taking into account that the transition
from the states of the subset Z; is possible only to the
states Zo and the states of the subset Zo, all states of
which are absorbing. From here we have

R =
=2 A;iPjO-R®)- X % —Pi(t) > & = (11)

ieZg ieZg i€Zoy
= 2 AiPi-RO > AjieZ,

iezg iezguzg

System of differential equations (11) should be
solved taking into account the initial conditions, for

example, {Plo 0)=1 R(0)=0,i= io}. Computational
scheme for solving this problem is described in detail

[71.

Consider an example of solving the simplest
problem of analyzing a system using the described
methodology.

Let the service system receive a random stream of
two types of applications, for processing which two
corresponding devices A; and Az are used. At the same
time, the first of these devices is quite reliable, and the
second fails with an intensity u.

The system that serves applications of the first
type with device A1, when an application of the second
type is received with an intensity of 112, transmits it to
device A, for service. Similarly, when an application of
the first type with intensity 21 is received, it begins to
be serviced by device A;. Let's introduce the system
states:

E; — device A; serves the first type of application,

E, — device A, serves the second type of
application,

Es — recovery status of the failed device A,.

It is required to find the distribution law of the
duration of system's stay on the set of operating states
E: and E; before the first failure.

Let

P1(t) is the probability of the system being in state
E; attimet,

P2(t) is the probability of the system being in state
E; attime t.

Initial conditions: P1(0) = 1, P(0) = 0.

The graph of states and transitions and the
cdfksponding infinitesimal matrix have the form

0 4 O
A= /121 0 M.
0 0 1

Introduce a set of states Zy = {Ej,E,} and the set
of states Zy; = {Es}.

At this the state E; eZgy,, will be considered

absorbing, which is shown in Fig.1 and in the matrix 4.
Write down the differential equations with respect
to the desired functions P1(t) and Pa(t).

R(t) = AP (t) — R () Az,
Py (t) = A2 R (1) — Po (1) (Apg + 12).
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Fig. 1. Graph of States and Transitions

Converting these equations by Laplace, we get
sm1(8) — RL(0) = o172 () — m1(S) Az,
$72(8) = P2 (0) = Ao (5) — 712 (8)(Ap1 + 14).-

Give similar terms taking into account the initial
conditions.

(s+A2)m(s) — Ao (s) =1,
A4271(S) — (S + Ag1 + )y (s) = 0.
Further

(12)

75(5) = #q(s).

Substituting (13) into (12), we have

(13)

(54 Ap)m(s) - 22721 q) =

S+ Ay +u

= ;rl(s){s+212 - fl/lzjziy} =

() (S+Ap)(S+ A1 + 1) = Mpfpy
S+Ay +u
2
ST SAg +SptShp + plyy + Map— Ap Ay _
S+ Ay +u

2
S"+s(Anthp + M)+ Aam
S+ Ay +

=m =m1(S) x

=my(s)

From here
S+ Ao+ u

m(s) = > ;
S +8(Ap1 + Ao + ) + Ao

(14)

A
—A2__7(s)=
S+ 121 +u

M2 S+Ap + 4 _

S+ Ap i s? 4 S(igy +dag + )+ Al

_ 412 _
$%+5( Ay + Mg + 1) + Aot

In order to perform the inverse Laplace transform,
we find the roots of the polynomial in the denominator
of the ratio (14).

s%+5(Apy + g + 1)+ Aot = 0,

mo(s) =

(15)

) gyt Aap +40) £\ Uy +Aag +40)2~ bagst
2 > (16)
_ U+ g + 1) 4D
= 5 .
Find the discriminant:

D = Aip” + Ap1” + 1% + 20ap g1 + 20 p1 + 2011
~Blappt =" + dpt” + 1+ 2hp 01 + 201 -
2004 = (ag + 201)* + i + 2141 ~ J2)-

Then

(A1 + 412 +,u)i\/(ﬂiz +121)2 +ul+
+24(A1 ~ Aaz)

2

The ratio (17) is not convenient for further
analysis. In this regard, we obtain an approximate, but
significantly simpler formula for calculating the roots of
equation (15). We have

S12 = (A7)

S12 =

_(ay + A +10) £\ + 24 + ) =41 =
_ U+ +y)2: (Gor+Aip+4)
X\/1—4112,u/(/121+/112 +u)’
Utz +y)i2(/121+/112 ()
2
Xl—%zﬂ/(ﬂn g +p)° ,
2

(18)

From here

_ A+ )+ (A + A +4)
2

S1

2iupk Akt (19)

200y + Ay + 4) =_/121+412 +#;

_ Ut t ) -UrtAp +4)
2

2
Xl—zhzﬂ/(/lu thptu) | Jp+Aptu
2 2
oy + g + 1) + 22014/ Uiy + lap +44) _
2
= —(Ao1 + Ao + 1)+ 211 [( Aoy + A + 1)

Now let's perform the inverse Laplace transform.
We have

S2

(20)

71(s) = S+ Ay +u _ S+ Ao+ _
2+ S(Apy + App + )+ Apu (5=51)(5—5y)
_a o _a(s-s)+ap(s-S)
$S=% S-% (s—s1)(s—57)
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_Slm+ap) -y — a8
(s—s1)(s—52)

The unknown parameters a; and a2 are found by

equating the coefficients for the same degrees s on the

left and right in the ratio (21). In this case, we obtain a
system of equations

(21)

o +an =1,
(22)
—04Sy — Q8 = gy +
From here
a9y :1—0.’1;
—Sy —(l—oy)sy =—oySy =S + oSy = (23)
= (8 —S2)— S =1 + 445
alz/lZl"_:u"'sl; (24)
-85
ap =(1—051)=1——)L21+'u+31 =
-5
(25)
_ S-Sy mpu—8 _ JptptSy.
-5 S1—S2

Substituting (23) and (24) into (21), we get
Aoq + u+ 1 +u+S 1
”1(5) _ 21 Ht+$s . _121 HrsSy . (26)
S5-5 S$—% S1—3%2 S—35

Similarly, we define the ratio for the calculation of
m(s). We have

mo(s) =
B 12 _ 12 _
52+5(/121+ﬂ.12+,u)+112,u (S_Sl)(S_SZ)
_ A P BG=5)-o(s-s) _ (@7)
$-8 S$-§ (s—s1)(s—$p)
_SB+Bo)-Psr - st
(s—s1)(s—sp)
Further, { A+ha =0,
—P1S2 — Posy = Aa-
From here: Bo =-p;
—PiS2 = Post = Bi(s1—S2) = A2
_ Mo __ 2 28
B sl—sz’ﬁz — (28)
Using (27) and (28), we obtain
M- M2 1 o)

§ 958 S -%5-5
Now, using the correspondence tables of originals,
we find the desired functions P(t) and P(t). We have
A(s) = A1t HES st At U S et
-5 S1-%
M2 st M2 st
=%

(30)

Py(s) =
? S1—9%2

Now obtain the desired distribution laws for the
random duration of the system's stay in the operating
states E ; and E » before going into the failure state Ea.

P(t) = P (t) + Py (t) = Mat A HES st
519
(1)
Mot tHES) st
5152

We check the correctness of the obtained relations
by calculating the values of P1(0) and P»(0), which

should be equal to one and zero, respectively. We have

P(0) = (21 +p+8 — A1 — 11 =%7)/(s1-52) =1,
P2(0) = (A2 —A2)/(s1-52) =0,
which is exactly what was required. Finally, using (30),

we determine the distribution law of the system's stay
duration on the set Zy = {E;, E,} to failure. We have

P(t) = R(t) + P, (t) :l21+—'u+sl.e_51t _
$1—-%
Pt HESy sty ha st Mo
51-52 51-52 51-52
ot tatSs st At gt U S) syt
7% 51-52
_ /121+/J+51(efslt _e752t)+

S1—952
{ S st _ 52 _e—szt}
195 S)

The obtained ratio makes it possible to calculate
the probability of the system being in a set of operable
states for any moment of time t.

Let us now determine the average duration of
system functioning before falling into a set of outflow

df (1)
O

. efszt =

states. Introduce f(t)= T - average time to

failure. Then

© A
T‘:jtf(t)dt: lim jtf (t)dt =
0 A~>ooo

A A
= lim {tP(t)‘@—J‘ P(t)dt}= lim [AP(A)—I P(t)dt} =
A—0 0 A— 0

A 0
= lim _[(P(A)—P(t))dt :I(l—P(t)dt.
A—o0 0 0
The problem is solved. The natural direction of
further research is related to solving the problems of
multithreaded systems analyzing. A possible approach

to solving such problems is proposed in [10].
Conclusions

Thus, a solution is obtained to the problem of
analyzing an inhomogeneous Marcovian system that
resides on a set of possible states before falling into
some selected set of special states (for example,
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failures). The method determines the distribution law of The obtained distribution law allows to calculate
the system's stay random duration on a set of states until  the basic numerical characteristics of a random process
the moment of the first hit in one of the sets of special  of wandering through a set of states before entering the
states. selected set of states.
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AHaJni3 MapKiBCbKHX CUCTEM i3 32JaH0I0 MHOKHHOIO BU/IiJIEHUX CTAHIB
JI. T. Packin, JI. B. Cyxomnus, P. O. Kopcyn

AHoTamif. AHam3 CTAliOHAPHUX MApKIBCBKUX CHCTEM 3a3BUYail BHKOHYEThCS 3 JOMOMOIOI0 CHCTEM JIiHIMHKX
nudepennianbHux piBHsHb Konmoroposa. Taki cucTeMu TO3BOJISIIOTh BU3HAYUTH HMOBIPHICTD MepeOyBaHHsI aHAI30BAHOT CHCTEMH Y
KOXXHOMY 3 MOMKIMBHX CTaHIB y JOBLIBHHMI MOMEHT 4acy. Llsi craHmapTHa 3aa4a yCKIaHIOEThCS, SIKIO MHOXHHA MOXITHBHX CTAHIB
CHCTEM € HEOIHOPIHOK 1 3 Hel MOXKHA BHIUIMTH, BIAMOBIIHO N0 crelu(ikd (QYHKIIOHYBaHHS CHCTEMH, MEBHY OCOOJIUBY
miqMHoXkuHY. [IpeaMeT HocimipkeHHs Hojsirae y po3po0ii TeXHOMOrI] aHali3y TaKuX CUCTeM. BIiAmoBigHO 0 HbOro Mera podoTH —
BI/IIIYKAHHS 3aKOHY PO3IOJILTY BHIAJKOBOI TPUBAIOCTI MepeOyBaHHs TaKMH CHCTEMH HAa MHOXKHHI MOXJIMBHX CTaHIiB J0 MOMEHTY
MOTPAILISTHHS Y BU/IUJICHY ITiIMHOKHHY IIMX CTaHIB. 3alpPOMOHOBAHO METO BUPIIIICHHS TIOCTABJICHOI 3a/1a4i, 3aCHOBAHUI HAa PO3OUTTI
BCi€l MHOYKHHHM MOMJIMBHX CTaHIB CHCTEMH Ha [IBi MiIMHOKHHHM. [lepina MiCTUTh BHIUIEHY ITiIMHOXHHY CTaHiB, a Jpyra — pelira
cTaHiB cucremu. Temep i3 Ipyroi MmiIMHOXHUHH BUIUIETHCS CYOMiZIMHOMKHMHA CTaHIB, 3 SKHX MOXJIMBHE Oe3rocepeqHiil mepexia y
cTany mepiioi maMHokuHA. [lam (opMyersest cucteMa qu(epeHIiaTbHIX PiBHSAHb, [0 OMUCYIOTH MEPEXOAN MK c(hOpPMOBAHUMHU
M MHOXHHAMH. PO3B'13aHHS 11i€i CHCTeMM DIBHSIHb Ja€ UIYKAHHWE pe3ysibTarT — PO3MOJiN BHIAKOBOI TPHBAIOCTI MepeOyBaHHSI
CHCTEMH JI0 MOMEHTY MEpIIOro MOTPAIUISHHS Yy BUIUJICHY MMMHOXHHY CTaHiB. MeTOf [03BOJSIE BUPILIyBaTH BEJIHKY KiTbKICTh
MPaKTHYHUX 3aBJIaHb, HATIPUKIIA, Y TEOPil HAIIMHOCTI CKJIAIHIX CUCTEM 3 Oe3JTiUHI0 PI3HUX BIZIMOBHHX CTaHIB. 30KpeMa, 3HaXODKSHHS
3aKOHY PO3TOALTY TPUBAIOCTI O3B IMOBHOI POOOTH, PO3PAXYHOK CEPEIHBOT TPUBAIOCTI O3B IMOBHOT POOOTH.

Kiaw4uoBi cjoBa: MapKiBCbKi CHCTEMH; IiMHOXHHA OCOOJNHMBHX CTaHiB;, aHAll3 JWHAMIKM HMOBIPHOCTEH CTaHIB
HEOJJHOPITHUX CHCTEM.
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