
ISSN 2522-9052 Сучасні інформаційні системи. 2022. Т. 6, № 4 

51 

UDC 621.391 doi: https://doi.org/10.20998/2522-9052.2022.4.07 
 

Andrey Zuev, Andrey Ivashko, Denis Lunin 
 

National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine 
 

DIAGNOSIS METHODS FOR MECHANISMS AND MACHINES  

BASED ON EMPIRICAL MODE DECOMPOSITION  

OF A VIBROSIGNAL AND THE WILCOXON TEST 
 

Abstract.  Methods for diagnosing mechanisms and machines based on the analysis of vibration signals are considered. 
In particular, the comparison of various algorithms for analyzing vibration signals in the time and frequency domains was 
made, methods for selecting diagnostic features and methods for secondary processing were analyzed. The purpose of the 

study is to develop algorithms for selecting the vibration signal envelope based on empirical mode decomposition and 
decomposition of the signal into intrinsic mode functions, algorithms for the spectral estimation of envelopes and to choose 
a criterion for making a decision on object classification. It is proposed to choose the non-parametric Wilcoxon signed-rank 

test to determine the statistical significance of the difference between the parameters of normal and faulty objects. The 
multichannel microcontroller system for collecting data from an accelerometer and transmitting it to a computer via a local 
Wi-Fi network, including a number of independent data gathering nodes connected to a common distributed computing 
system, has been developed and experimentally studied. The computer processing of the recorded vibration signals for 
serviceable and faulty mechanisms was performed, including data decoding, Hilbert-Huang transform, spectral analysis 
using the Welch and Yule-Walker methods, and the choice of a diagnostic feature that provides maximum reliability of 
recognition. Based on the results of the work, it was determined that the empirical mode decomposition makes it possible 
to obtain vibration signal envelopes suitable for further diagnostics. Recommendations are developed for choosing the 
intrinsic mode function and the spectral analysis algorithm, it is determined that the first intrinsic mode function is the most 

informative for the mechanism under study. In accordance with the Wilcoxon criterion, the degree of diagnostic reliability 
was numerically determined in the analysis of the spectral power density of the vibration signal and the amplitude of peaks, 
and the comparison of probabilities of error-free recognition for various modifications of the algorithm was made. 

Keywords:  vibration signal; spectral analysis; empirical mode decomposition; Hilbert-Huang transform; intrinsic mode 
functions; Wilcoxon test; accelerometer; microcontroller. 

 

Introduction 

The improvement of the efficiency, reliability and 

resource, as well as the safe operation of machines and 

mechanisms can be achieved primarily by periodically 

assessing their technical condition in order to identify 

defects in the early stages of their development. To 

solve this problem, a wide range of methods of non-

destructive testing are used, primarily vibration 
diagnostics, a method for diagnosing technical systems 

and equipment based on the analysis of vibration 

parameters generated by operating equipment. It is the 

vibration signal, having sufficiently complete 

information about the operation of the unit and its 

elements, that can be a reliable indicator of its 

condition. 

The first methods of vibration diagnostics, widely 

introduced into engineering practice, were the 

measurement of the maximum absolute signal value 

(Peak), the effective value (root mean square value, 

RMS) and the PEAK factor - the ratio of the Peak 
parameter to the RMS. The main disadvantage of these 

methods is the rather late detection of a fault, when the 

defect is sufficiently developed and is accompanied by a 

significant increase in the overall vibration level. 

A set of methods for diagnosing defects in rotating 

equipment that use vibration signal spectra for analysis 

is more effective. Measurement of vibration signal 

spectra, including low and medium frequencies, as well 

as peak values and envelope spectra of high-frequency 

vibration in the rotational support of machine or 

mechanism, allows to detect most types of defects 
before they become dangerous. 

There are a number of modifications of diagnostic 
methods for equipment based on the spectral analysis of 

vibration signals. The ratio of the vibration signal power 

in two fixed frequency bands can be calculated. The 

criterion for the technical condition of the unit is the 

ratio of these calculated capacities. Similarly, the ratio 

of the amplitudes of the spectral peaks in different 

ranges and the ratio of the PEAK/RMS spectrum in 

individual bands can be chosen as a diagnostic feature. 

At the same time, in most algorithms, the vibration 

signal is detected by a digital detector (the signal 

envelope is constructed), and the usual spectrum is 
taken from it, which is subsequently analyzed. 

It should be noted that despite the large number of 

studies in the field of vibration diagnostics, a set of 

issues have not been sufficiently developed and require 

further improvement. Thus, the development of 

algorithms that allow reducing the influence of 

interferences, increasing the accuracy of measurements 

and the reliability of diagnostics of rotating units is 

relevant. 

Overview of methods for diagnosing 

mechanisms and machines based  

on the analysis of vibration signals 

A significant number of works of domestic and 

foreign scientists are devoted to the analysis of methods 

for detecting faults in drives, turbines, bearings and 

other mechanisms containing rotating parts. Thus, in 

analytical reviews [1, 2], the main algorithms for 

computer diagnostics of mechanisms and machines 

based on digital signal processing methods are 

identified. 

©   Zuev A., Ivashko A., Lunin D., 2022 



Advanced Information Systems. 2022. Vol. 6, No. 4 ISSN 2522-9052 

52 

Temporal methods include analysis of the 

maximum and effective value of the vibration signal and 

the PEAK factor. In addition, many works analyze the 

statistical characteristics of vibration signals: standard 

deviation, skewness, kurtosis, higher order moments. 

Methods based on the analysis of a vibration signal 

in the frequency domain are more common. In addition 

to the classical spectral analysis based on the Fourier 
transform, have recently been used methods of 

analyzing vibration signals, which provide greater 

accuracy and clarity of diagnostics: short-term Fourier 

transform [3, 4] with display of results in the form of 

spectrograms, Wavelet analysis [5], Wigner- Villa 

transform [6], bispectral analysis [7]. 

The factor limiting the application of this set of 

methods is the presence in the spectrum of harmonics 

caused by the engine speed, noise and artifacts created 

by data acquisition systems from the unit under study, 

and other interferences. These harmonics can mask 

spectral peaks important for diagnostics and make it 
difficult to isolate faulty mechanisms. 

To a large extent, this problem is eliminated by 

calculating the spectrum not from the signal itself, but 

from its envelope. At the same time, in many works [8, 

9] it is proposed to use the procedure of Empirical 

Mode Decomposition (EMD) to select the envelope. 

EMD decomposes the signal into intrinsic mode 

functions (IMF) that can be used as vibration signal 

envelopes. 

Various methods of secondary processing of the 

obtained spectra and various decision rules can be used. 
Thus, in [8], the wavelet transform is additionally 

calculated from the high- and low-frequency spectral 

coefficients, and the multi-scale entropy IMF is 

calculated in [9]. In many works, neural networks [10], 

as well as singular value decomposition [11], are used 

to make a decision about the serviceability of the unit 

after calculating the EMF. 

Unfortunately, in most of the known works the 

statistical significance of the results obtained is not 

assessed, and the choice of spectral frequencies, for 

which diagnostics is made, is carried out according to 
empirical formulas for the mechanical characteristics of 

bearings and other units, which may reduce the 

reliability of recognition. 

The purpose of the paper is to develop algorithms 

for constructing envelopes of vibration signals and their 

spectral estimation, to choose a method for assessing the 

reliability of diagnostics and to experimentally study the 

proposed algorithms in order to determine the optimal 

parameters of the algorithm and the probability of 

correct classification. 

Selection of vibration signal envelopes  

using the EMD method 

The analysis of the spectrum of vibration signals in 

many cases is difficult due to the predominance of 

harmonics in the spectrum, which correspond to the 
frequency of drive rotation and are multiples of it. So, in 

Fig. 1 the spectrum of vibrations of a mechanical unit 

rotated by a synchronous engine with a frequency of 

50 Hz is given. It is obvious that the selection of 

harmonics that provide amplitude diagnostics, that 

correspond to natural vibrations of bearings, blades, 

gears and other mechanical objects, is largely difficult. 
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Fig. 1. Vibration signal (a) and its spectrum (b) 

 

The analysis of the vibration signal envelope 

which will allow to reduce the influence of the engine 

speed and other interfering influences, can be more 

effective. There are a number of methods for 

constructing an envelope, however, as shown in [8, 9], 

the most effective method for analyzing vibration 

signals is the empirical mode decomposition method. 

The method was proposed by N. Huang in [12] and, as 

well as the Fourier transform and wavelet analysis, has 
found wide application in digital signal processing. 

The EMD method is a part of the Hilbert-Huang 

transform and is an iterative computational procedure, 

as a result of which the signal is decomposed into 

empirical modes or intrinsic mode functions. Each 

intrinsic mode function must have the following 

properties: 

1. The number of extreme points (highs and lows) 

and the number of zero crossings differ by no more than 

one. 

2. The average value, which is determined by two 
envelopes - upper and lower, is equal to zero. 

The essence of the EMD method lies in the 

sequential calculation of empirical modes cj(t) and 

remainders rj(t) = rj−1(t) − cj(t) and the representation of 

the analyzed signal x(t) in the form:  

 
1

( ) ( ) ( ),
n

j n
j

x t c t r t

=

= +  (1) 

where n is the number of empirical modes that is 

determined during the calculations. 

The algorithm includes the following steps: 

1. The extrema of the signal x(t) located between 

each two successive sign changes are found. 

2. By approximation with a cubic spline or due to 

another method, two envelopes - the lower q(t) and the 

upper p(t) are constructed. 
3. The average value  ( )( ) ( ) ( ) 2m t q t p t= +  and the 

difference between the signal and its average value are 
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calculated: h1,1(t) = x(t) − m1,1 (t). The first index in the 

formula denotes the number of the intrinsic modt 

function, the second one is the iteration number during 

its calculation. 

4. It is determined whether the resulting difference 

satisfies the above definition of an empirical mode. For 

this, the following condition must be checked: 

( ) ( )
2 2

, , , 1 , 1

1 1

( ) ( ) ( ) ,
N N

j k j k i j k i j k i
i i

S h t h t h t− −

= =

= −       (2) 

where i is the number of the discrete signal sample, N is 

the number of samples in the signal feagment,  is the 

given error. 

5. If the condition (2) is satisfied, the process 

stops. If the condition is not satisfied, the transition to 

step 1 is performed and the previous operations 

(searching for extrema, constructing envelopes, 

calculating the average and its subtraction) are repeated 

for the obtained difference h1,1(t). 

The procedure for constructing the first 

approximation of IMF1 for the fragment of a vibration 

signal is shown in Fig. 2. 

Thus, the so-called sifting process is performed 

with the assignment of h1, k(t) = h1,k(t) = h1,k−1(t) −  

– m1,k(t) at each step. After the condition (2) is reached, 

the final value of the first IMF c1(t) = h1,d(t) is 

determined, where d is the number of iterations.  

As soon as the empirical mode, denoted by c1(t), is 

selected, the iterations stop. The remainder r1(t) = x(t) − 

c1(t) is calculated and the whole algorithm is repeated 
again, but for the function r1(t). The number of 

algorithms passes that determines the amount of 

empirical modes n in the sum (1) is either set in advance, 

or the decomposition process continues until the 

remainder rn(t) turns out to be a monotonic function or 

has a conditioned small number of extrema. The process 

of decomposition of a vibration signal into empirical 

modes is shown in Fig. 3 (the first 8 IMFs are shown). 
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Fig. 2. Construction of the first approximation h1,1(t) of a vibration signal 
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Fig. 3. Decomposition of a vibration signal into internal mode functions IMF 
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Validity estimation of diagnostic features 

After selecting the envelope of a vibration signal 
using the empirical mode decomposition or another 

method, the question of choosing the diagnostic feature 

that provides, the most reliable separation of serviceable 

mechanisms and machines from defective ones, 

becomes relevant. The review of existing works showed 

that the spectral analysis of a signal envelope 

demonstrates the best results. 

In this case, the comparison of the energy of the 

spectrum attributable to different frequency ranges is 

most often made, as well as the analysis of the amplitude 

and location of the spectral peaks. At the same time, the 
best diagnostic feature is the one that provides the 

maximum statistical significance of the difference 

between the samples of serviceable and defective 

mechanisms. To check the degree of difference between 

the samples, one or another statistical criterion should be 

chosen, that is, the rule by which the differences between 

two measurement samples will be checked. Since the 

power spectral density is distributed according to a law 

different from normal, it is advisable to choose one of the 

nonparametric criteria. 

On the other hand, it is not always possible to 

obtain a significant number of measurements, especially 
for faulty objects. In this case, the Wilcoxon signed-

rank test is most often used. The test is used to detect 

differences between the medians of two dependent 

samples with data distribution other than normal and the 

number of measurements in the samples from 5 to 25. 

Checking the significance of the difference 

between the samples according to the Wilcoxon test is 

performed in the following order 

1. Samples of parameters are formed for normal 

{x1, x2…xN} and faulty {y1, y2…yN} mechanisms. 
2. Differences between the elements of the first 

and second sequences i = xi − yi are obtained. 
3. A «typical» shift (positive or negative), 

corresponding to the expected sign of the parameter 

difference in the samples for the faulty and normal 

mechanisms, is selected. 

4. The absolute values of the differences i, are 

ranked, and a lower rank is assigned to the smaller 
value. 

5. Temp - the sum of ranks corresponding to shifts 

in an atypical direction, is obtained. 

6. From the tables of the Wilcoxon distribution for 

the obtained Temp and the sequence size, the value of the 

probability P0 of making a false positive decision is 

determined. 

7. The significance level  is chosen (usually 0.05 

or 0.1). If P0 ≤ , we conclude that the medians of the 

samples {xi} and {yi} are significantly different and the 

shift to the «typical» side is significantly dominant. 

Experimental study  

of the developed method 

To select the parameters of vibration signals that 

provide reliable diagnostics of machines and 

mechanisms, an experimental facility, shown in Fig.4, 

was built. 

 

 
Fig. 4. The scheme of a facility for data acquisition: IGNn - nth Information Gathering node,  

In - nth Interrupt signal (Buffered Data Ready), ESP - Node control microcontroller with WiFi support 

 

The facility consists of independent Information 

Gathering nodes (IGNs), which are connected to a 
common distributed computing system. Each node 

consists of an accelerometer and a microcontroller with 

support for a wireless data transfer protocol. The 

accelerometer is fixed directly to the object from which 

the data is taken. Data transfer is carried out using a 

high-speed SPI bus. The read data is placed in the 

internal buffer of the accelerometer, after it is half full, 

an interrupt is called, according to which the 

microcontroller reads the accumulated data and sends 
them wirelessly to the processing module. This 

approach allows the use of high sampling rates (up to 

3.2 kHz) due to the parallel operation of the 

accelerometer (data acquisition) and the microcontroller 

(data transmission). In general, the system supports an 

easy way to extend the inspected objects by adding a 

new node. 
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IGN uses the ADXL345 as an accelerometer, and 

the microcontroller for data acquisition and 

transmission  — ESP8266 [13]. After starting IGN, it 

searches for an available local Wi-Fi network and 

connects to it. IGN receives an IP address on the local 

network. After that, the data transfer protocol is 

configured: the SPI bus is initialized in the 

FULLDUPLEX mode, MASTER: the number of data 
bits is 8, the divider is 8, which gives a frequency of 80 

MHz [14]. The GPIO pin of the microcontroller is 

configured to «data ready» "" interrupt input signal from 

the accelerometer, which activates the procedure for 

reading data from the accelerometer buffer. 

Next, the accelerometer is directly configured, the 

Bandwidth Rate register is set to 0x0E, which gives a 

polling rate of 1600 Hz, the number of interrupt samples 

is set as 16, which is half the ADXL345 hardware 

buffer [15]. 

After setup, the interrupt mode is set to fill the 

buffer and the accelerometer is turned on to work in 
continuous mode.  

The IGN software operates in an asynchronous 

mode, after receiving an interrupt signal from the 

accelerometer, data is read through three channels, the 

obtained values form a single data packet and are sent to 

the processing unit (the central computer of the system).  

Each packet is prefaced with the following 

information: 

1. the number of a package for synchronization; 

2. the number of a package to restore the 

contiguous sequence; 
3. countdown of the start time of data acquisition; 

4. duration of data reading. 

The packet is transmitted over a wireless 

communication channel using the UDP protocol. In 

addition to data packets, the module sends packets with 

system information: communication level, supply 

voltage and other information about the IGN status. 

Such packages allow to monitor the serviceability of all 

IGNs and perform synchronization in case of 

transmission errors or unit shutdown (restart). 

The central computer of the system receives and 

stores information coming from the units, and also 

monitors the status of the units. When the control 

software of the central computer starts, a local area 

network is created, after which the computer goes into 

the standby mode for switching on the modules. When 
the next module is turned on, a section with a unique 

identifier (module identifier, date, time) is created in the 

database, in which the data packets coming from the 

module, as well as its status, will be recorded. 

The system has been tested with two modules, 

each of which was connected with its own source of 

data (vibrations) - bearings located on the motor shaft. 

Both modules were connected to a common network 

through a router.  

The same network includes a central computer 

with control software. After turning on the system and 

the electric motor, the data were taken for a certain time 
and placed in the database on the central computer, after 

which they were further processed. 

The signals taken from normal and damaged 

mechanisms were subjected to empirical mode 

decomposition in order to obtain envelopes in the form 

of intrinsic mode functions. For the obtained IMF 

envelopes, the spectral analysis was performed both by 

the Welch periodogram method and on the basis of 

autoregression models using the Yule-Walker equations 

[16]. 

For various IMFs, the location and amplitude of 
the spectral peaks, as well as the distribution of the 

power spectral density along the frequency axis, were 

analyzed. T 

he preliminary analysis showed that the energy 

spectrum of the IMF1 function turned out to be the most 

informative. Typical curves of the power spectral 

density IMF1 of normal and faulty gears are shown in 

Fig. 5. 
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Fig. 5. Power spectral density IMF1 of normal (a) and faulty (b) gears 
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It was determined that for a normal gear, most of 

the energy of the IMF1 spectrum is in the range of 100-

300 Hz, the maximum spectral peaks are also located 

there. At the same time, the faulty gear has a rise in the 

spectrum in the range of 300-500 Hz. Thus, it is 

suggested to choose d1 = E1/E2, d2  = A1/A2 as diagnostic 

parameters, where E1, E2 are the energy of the spectrum, 

A1, A2 are the amplitude of the maximum peaks in the 
bands of 100–300 Hz and 300–500 Hz, respectively. It 

is assumed that for a normal mechanism the condition 

d1 < d1m, d2 < d2m is satisfied. In the presence of a fault, 

d1 > d1m, d2 > d2m, respectively, where d1m , d2m are 

medians of the sample. 

The reliability analysis of the selected criterion 

was made. For this, a number of serviceable 

mechanisms and a number of mechanisms with 

malfunctions were selected (the blades are bent or rub 

against the body, the knife has fallen off or vibrates, 
etc.). Based on the results of the experiment, the Table 1 

was constructed. 
 

Table 1 – The values of parameters d1 and d2 for normal and faulty mechanisms 

Number of the experiment 1 2 3 4 5 6 7 8 

Normal 
d1 0.8802 0.8116 0.9186 0.8708 0.9431 1.0941 1.2093 0.9088 

d2 0.5728 0.5849 0.6558 0.5700 0.8984 0.5359 1.0234 0.7364 

Faulty 
d1 1.0997 1.3728 1.1572 1.1311 0.8858 1.4555 1.1118 1.2915 

d2 1.0744 1.1489 0.9601 1.5420 0.5973 2.0527 1.0064 0.9265 

 

The analysis of the given data in accordance with 

the Wilcoxon test criterion showed that the probability 

of false acceptance of the hypothesis about the 

difference in the medians of the samples of the d1 

parameter is 0.0391, the d2 parameter is 0.0547. Thus, 

the probability of correct classification of mechanisms 

by comparing the energy of the spectrum is Pe = 1 − P0 

= 0.9609, by comparing the peak amplitude Pp = 

0.9453. 

At the same time, checking the spectra of other 

IMFs and comparing other frequency ranges did not 

allow to distinguish vibration signals with a probability 

higher than 0.9218. 
It is obvious that the proposed methodology can be 

successfully applied to diagnose any other mechanisms 

for which parameters that provide the highest possible 

diagnostic reliability, can be selected. 

Conclusions 

1. The spectrum of a vibration signal contains 

harmonics of significant amplitude, corresponding to 

the engine speed and multiples of it, and in its original 

form cannot be used to diagnose mechanisms. 

2. Empirical mode decomposition provides 

vibration signal envelopes suitable for diagnostics by 

spectral analysis or otherwise. 

3. The proposed microcontroller data acquisition 

system makes it possible to record a vibration signal 

with a sufficient sampling rate and, at the same time, 

easily increase the amount of inspected objects. 

4. To determine the reliability of diagnostics, it is 

advisable to use the Wilcoxon test, which allows to 
process small samples containing measurements 

distributed according to a law different from normal. 

5. By comparing the energy of the spectra of the 

intrinsic mode function IMF1 of a vibration signal in 

different bands and the amplitudes of spectral peaks, the 

reliability of diagnostics is 0.9609 and 0.9453, 

respectively. 

6. It is advisable to further develop the proposed 

algorithms in order to ensure the detection of a specific 

defect. 
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Методи діагностики механізмів і машин 

на основі емпіричної модової декомпозиції вібросигналу і теста Уілкоксона 

А. О. Зуєв, А.В. Івашко, Д.О. Лунін 

Анотація .  Розглянуто методи діагностики механізмів та машин на основі аналізу вібросигналів. Зокрема, 
виконано порівняння різних алгоритмів аналізу вібросигналів у часовій та частотній області, проаналізовано методи 
виділення діагностичних ознак та методи вторинної обробки. Метою дослідження є розробка алгоритмів виділення 

огинаючої вібросигналу на основі емпіричної модової декомпозиції та розкладання сигналу на внутрішні модові 
функції, алгоритмів спектрального оцінювання огинаючих та вибір критерію для ухвалення рішення про класифікацію 
об'єкта. Запропоновано вибрати непараметричний тест Уілкоксону для визначення статистичної значущості різниці між 
параметрами справного та бракованого об'єктів. Розроблено та експериментально досліджено багатоканальну 
мікроконтролерну систему знімання даних з акселерометра та передачі в комп'ютер по локальній мережі Wi-Fi, що 
включає ряд незалежних модулів збору даних, з'єднаних у загальну розподілену обчислювальну систему. Виконано 
комп'ютерну обробку знятих вібросигналів для справних та несправних механізмів, що включає декодування даних, 
перетворення Гільберта-Хуанга, спектральний аналіз методами Уелча та Юла-Уолкера та вибір діагностичної ознаки, 

що забезпечує максимальну достовірність розпізнавання. За результатами роботи визначено, що емпірична модова 
декомпозиція дозволяє отримувати огинаючі вібросигналів, придатні для подальшої діагностики. Розроблено 
рекомендації щодо вибору внутрішньої модової функції та алгоритму спектрального аналізу, визначено, що 
максимально інформативною для досліджуваного механізму є перша внутрішня модова функція. Відповідно до 
критерію Уілкоксона чисельно визначено ступінь достовірності діагностики при аналізі спектральної щільності 
потужності вібросигналу та амплітуди піків та проведено порівняння ймовірностей безпомилкового розпізнавання для 
різних модифікацій алгоритму.  

Ключові  слова :  вібросигнал; спектральний аналіз; емпірична модова декомпозиція; перетворення Гільберта-
Хуанга; внутрішні модові функції; критерій Уілкоксона; акселерометр; мікроконтролер. 
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